3002例膝关节镜手术及其关节软骨损伤病例临床流行病学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     膝关节是人体最大、最复杂、所受作用力最强的运动关节。随着人类社会和经济的快速发展,户外运动增多、工交事故频发、人口老年化及生活方式改变,膝关节伤病的发生率呈逐年上升趋势,同时其疾病谱发生着显著变化,因而膝关节伤病十分常见,在骨关节外科门诊与住院的四肢关节疾病患者中所占比例最大,对膝关节疾病的临床流行病学研究,有助于其预防、诊断和治疗以及相关科学研究。
     膝关节软骨具有分散与传递负荷、减少关节面摩擦的重要功能,帮助膝关节进行光滑、无痛的活动。创伤、感染、退变、发育异常等均可引起关节软骨损伤,由于关节软骨无血管、淋巴及神经支配,因此一旦损伤,自身修复能力非常有限,关节软骨损伤后可引起疼痛、关节功能障碍等临床症状,是肢体残障的重要原因,严重影响患者生活质量。目前关于膝关节软骨损伤的临床流行病学研究甚少,而且不同国家地区的研究结果差异较大。
     膝关节镜已经从一种诊断工具发展成为一门新兴的亚学科,其中膝关节镜外科又是关节镜外科专业中最成熟的领域。膝关节镜能在直视下对病变进行观察,并可取病变组织进行活检、涂片、细胞培养等多种检查方法,其诊断为膝关节疾病诊断的“金标准”,通过对大样本量膝关节镜手术病例的临床流行病学研究,能够较为全面地了解目前膝关节疾病的流行病学现状。
     研究目的
     通过调查分析大样本膝关节镜手术患者的疾病构成及其性别比、侧别构成、年龄分布,以及膝关节常见伤病的流行病学特征,为膝关节疾病的预防、诊断、治疗及相关研究提供重要信息;通过大样本量膝关节软骨损伤病例的临床流行病学特征研究,为其预防、诊断、治疗提供重要依据,并为膝关节软骨重度损伤的手术方式选择及术后功能康复提供必要的临床参考,特别是为组织工程技术修复膝关节软骨缺损的研究策略调整提供重要依据。
     研究方法
     一、3002例膝关节镜手术病例临床流行病学特征研究
     第三军医大学西南医院关节外科中心2005年10月至2010年11月3002例膝关节镜手术患者为研究对像。从手术登记表中获取经纳入与排除标准筛选后的3002例患者的ID号;与“护士工作站”的出院信息逐一核对患者的ID号;登陆“医生工作站”通过患者电子病历核实患者性别、年龄,并记录术后诊断,进行其临床流行病学特征的统计分析,分析指标包括:1、膝关节镜手术疾病一般临床流行病学特征:①疾病构成;②不同疾病性别、侧别构成以及患者年龄分布;2、常见膝关节疾病临床流行病学特征:①不同解剖形状半月板损伤患者年龄分布、侧别构成;②前、后交叉韧带损伤构成;③前、后交叉韧带胫骨止点撕脱性骨折构成。
     二、1723例膝关节软骨损伤病例临床流行病学特征研究。
     第三军医大学西南医院关节外科中心2005年10月至2010年11月3002例膝关节镜手术患者为研究对像,按手术时间的先后顺序逐一观看患者手术视频,筛选其中全部关节软骨损伤病例1723例,按国际软骨修复学会(International Cartilage Repair Society ICRS)标准对软骨损伤程度进行分级,损伤部位进行归类,测算Ⅲ级、Ⅳ级膝关节软骨损伤面积,进行其临床流行病学特征的统计分析,分析指标包括:1、不同程度膝关节软骨损伤患者年龄、性别、部位分布;2、不同膝关节疾病关节软骨损伤发生率以及关节软骨损伤程度分布;3、Ⅲ级、Ⅳ级关节软骨损伤单一部位和相吻合部位分布;4、Ⅲ级、Ⅳ级关节软骨损伤面积分布。三、应用SPSS18.0统计分析软件进行分析。记数资料以构成比、发生率表示,采用R×C列联表X2检验进行组间比较;计量资料以±s表示;采用独立样本t检验进行组间比较;α=0.05,双侧,P<0.05为具有统计学差异。
     结果
     一、3002例膝关节镜手术病例临床流行病学特征
     1.一般临床流行病学特征①创伤性疾病占膝关节镜手术的69.02%,感染和炎性疾病占14.85%,关节内游离体和原发性OA占5.86%,关节结构异常占5.66%,其它占4.60%;②患者年龄分布在1~87岁之间,平均年龄37.05±15.91岁。其中10~59岁之间的患者占手术量的89.67%,30~40岁,40~50岁两年龄段患者明显多于其它年龄段(P<0.05)。原发性OA、关节内游离体、RA患者平均年龄高于其它疾病患者(P﹤0.05),髌骨轨迹异常患者平均年龄最小(P﹤0.05);③交叉韧带损伤(cruciate ligament CL)损伤、CL胫骨止点撕脱性骨折、膝关节结核(tuberculosis TB)、化脓性关节炎、关节内骨折、滑膜皱襞综合征、痛风性关节炎、关节粘连的男性构成比高于女性(P<0.05),色素沉着绒毛结节性滑膜炎(pigmented villonldular synovitis PVS)、类风湿性关节炎(rheumatoid arthritis RA)、关节内游离体、原发性骨性关节炎(osteoarthritis OA),髌骨轨迹异常的女性构成比高于男性(P<0.05);④半月板损伤、关节内游离体、滑膜皱襞综合症右膝多于左膝(P<0.01),CL胫骨止点撕脱性骨折左膝多于右膝(P﹤0.05)。
     2.常见疾病临床流行病学特征①半月板损伤占膝关节镜手术患者的48.47%,是膝关节镜手术中最常见的疾病。1455例半月板损伤患者中,盘状半月板损伤患者576例(39.59%),非盘状半月板损伤患者879例(60.41%),前者女性所占比例(60.24%)高于男性(39.76%)(P<0.01),后者男性所占比例(55.75%)高于女性(44.25%)(P<0.01)。前者平均年龄(33.69±15.92岁)小于后者(42.17±14.08岁)(P﹤0.05);②前交叉韧带(anterior cruciate ligament ACL)损伤占交叉韧带的87.53%多于后交叉韧带(Posterior cruciate ligament PCL) 6.11%和前后交叉韧带损伤6.36%(P﹤0.01);ACL胫骨止点撕脱骨折占CL胫骨止点撕脱骨折占84.25%多于PCL胫骨止点撕脱骨折12.60%和前后交叉韧带胫骨止点撕脱骨折3.15%(P﹤0.01)。
     二、1723例膝关节软骨损伤病例临床流行病学特征
     1.膝关节软骨损伤患者年龄分布和性别构成①膝关节软骨损伤患者占膝关节镜手术患者的57.40%,患者年龄分布在3~87岁之间,平均年龄41.77±15.76岁,年龄在30~59岁之间的患者占65.18%,40~49岁年龄段的患者多于其它年龄段(P<0.05)。Ⅲ级、Ⅳ级患者平均年龄高于Ⅰ级、Ⅱ级患者(P<0.01)。②Ⅰ级关节软骨损伤病例男性构成比(17.82%)多于女性(14.45%)(P﹤0.01),Ⅲ级、Ⅳ级关节软骨损伤病例女性构成比(8.30%、14.68%)高于男性(6.33%、12.19)(P﹤0.05)。
     2.2,753只伴有关节软骨损伤的膝关节中,共有4,060处不同程度的关节软骨损伤,平均每膝1.47处。股骨滑车软骨(trochlea TROCH)是最常见的损伤部位(25.07%)。
     3.不同膝关节疾病伴发关节软骨损伤的流行病学特征①原发性OA、关节内游离体、关节TB患者关节软骨损伤发生率分别以100%、87.39%、78.20%排在前三位。CL胫骨止点撕脱性骨折以25.17%最低。②半月板损伤、CL损伤、CL胫骨止点撕脱性骨折的Ⅰ级、Ⅱ级关节软骨损伤构成比高于Ⅲ级、Ⅳ级(P﹤0.01),TB、化脓性关节炎、关节内游离体、原发性OA的Ⅳ级关节软骨损伤构成比大于Ⅰ级、Ⅱ级、Ⅲ级(P﹤0.01)。
     4.严重膝关节软骨损伤的流行病学特征①单一部位或相吻合部位损伤在Ⅲ级、Ⅳ级关节软骨损伤中所占的比例为72.63%,其中滑车占18.29%,最常见(P﹤0.01)。②Ⅲ级、Ⅳ级关节软骨损伤面积分布在0.06~16.30 cm~2之间,平均面积为3.27±3.47cm~2,0.06~3.99cm~2范围内的损伤共占关节软骨损伤的70.30%。
     结论
     一、3002例膝关节镜手术病例临床流行病学特征
     1.一般临床流行病学特征①创伤性疾病患者占膝关节镜手术的69.02%,最常见;②CL损伤、CL胫骨止点撕脱性骨折、TB、化脓性关节炎、关节内骨折、滑膜皱襞综合征、痛风性关节炎、关节粘连的男性患者构成比高于女性,PVS、RA、关节内游离体、原发性0A,髌骨轨迹异常女性患者构成比高于男性;③89.67%的膝关节镜手术患者年龄分布在10~59岁之间,特别以30~40岁,40~50岁两年龄段最常见;④半月板损伤、关节内游离体、滑膜皱襞综合症患者的右膝多于左膝,在CL胫骨止点撕脱性骨折中左膝多于右膝。
     2.常见疾病临床流行病学特征①盘状半月板损伤患者女性多于男性,非盘状半月板损伤男性多于女性,前者平均年龄小于后者;②ACL损伤和ACL胫骨止点撕脱性骨折在CL损伤和CL胫骨止点撕脱性骨折中最常见。
     二、1,723例关节软骨损伤病例临床流行病学特征
     1.膝关节镜手术患者软骨损伤发生率为57.40%,临床上常见;在Ⅰ级损伤病例男性构成比多于女性,Ⅲ级、Ⅳ级损伤病例女性构成比高于男性。
     2.股骨滑车是膝关节软骨最易受到损伤的部位。
     3.原发性OA、游离体、TB关节软骨损伤发生率排在前三位,CL胫骨止点撕脱性骨折关节软骨损伤发生率最低。
     4.单一部位或相吻合部位在Ⅲ级、Ⅳ级软骨损伤中所占的比例为72.63%,股骨滑车为最常见部位。
     5.大部分Ⅲ级、Ⅳ级关节软骨损伤面积在4cm~2以下。
Background
     Knee is the most complex and largest synovial joint in musculoskeletal system. With the increase of sports injuries, traffic accidents, accidental injuries and the incidence of osteoarthritis in older population, patients with knee diseases take up a large proportion in outpatients and inpatients in the Joint Surgery and Orthopedics. Studying the clinical epidemiology of knee diseases, will facilitate its prevention, diagnosis and treatment. The main function of the articular cartilage of knee joint is transmiting and distracting load, reduceing friction and keeping smooth, painless activity between the articulation. Trauma, infection, degeneration, abnormal development can lead to damage of articular cartilage, causing pain, joint dysfunction and other clinical symptoms, which is the major cause of disability. However, little attentions had been paid to clinical epidemiology in previous studies, and the results differed in published data.
     Arthroscopy was only a diagnostic tool in early stage, but now it has evolved from a technology to a new sub-disciplines. Knee is the most mature area in arthroscopic surgeries. Lesions can be observed under direct vision through arthroscopy, examination of pathology, smear, cell culture and other inspection methods can also be performed. Arthroscopy serves as the "gold standard" in the diagnosis of knee diseases.
     Purpose
     Studying the characteristics of clinical epidemiology of knee diseases under arthroscopy,can provide important information for prevention, diagnosis, treatment and rehabilitation for cartilage lesion.
     Methods
     Part I:The clinical epidemiology investigation of 3,002 knee arthroscopies 3,002 cases with knee arthroscopy done from October 2005 to November 2010 are involved in this study.
     First, all patients’ID were collected from the surgery records.
     Second, the ID were confirmed in the "nurses station" of the hospital management system.
     Third, patient information including sex, age, postoperative diagnosis were registered from the "doctor station" of the hospital management system.
     Fourth, Outcome measures:1,The clinical epidemiological characteristics of the diseases:
     (1)The proportion of diseases;(2) The proportion of sex, side, and the age distribution of the patients with different diseases;2,The clinical epidemiological characteristics of common diseases:(1)The location and age distribution of patients with different meniscus shape;
     (2)The proportion of cruciate ligament injuries;(3)The proportion of avulsion fractures of cruciate ligament insertion.
     Part II:The clinical epidemiology investigation of 1,723 knee arthroscopies with articular cartilage lesions
     First, we study each video of operations, to determine the grade and location of articular cartilage lesions. The classification of the level and location accords to criteria of the International Cartilage Repair Society (ICRS) .
     Second ,we calculate the area of cartilage damage of gradeⅢ,Ⅳ.
     Third, Outcome measures: 1,The distribution of age, sex, site in varying degrees of articular cartilage lesions; 2, The incidence of articular cartilage lesions in different diseases;3, The distribution of single lesions or“kissing lesions”in gradeⅢand gradeⅣof articular cartilage lesions; 4, The distribution of area in gradeⅢand gradeⅣof articular cartilage lesions.
     Results
     Part I:The clinical epidemiology investigation of 3,002 knee arthroscopies
     1. Trauma accounts for 69.02%, infection and inflammatory account for 14.85%, loose bodies and primary OA account for 5.86%, abnormalities of joint structure account for 5.66% in all cases. Meniscus injuries account for 48.47%, which is the most common disease.
     2. The constituent ratio of male is higher than that of female (P <0.05) in the injuries of cruciate ligament, tuberculosis,tibial avulsion fractures of cruciate ligament insertion, septic arthritis, intra-articular fractures, synovial plica syndrome, gouty arthritis and joint ankylosis.While the ratio of female is higher than male (P <0.05) in pigmented villonodular synovitis, rheumatoid arthritis, loose bodies of knee, primary 0A, abnormal track of patellar(P <0.05 ).
     3. The ages of patients range from 1 to 87, with the average of 37.05±15.91. Ones between 10~59 accounted for 89.67%. Ones between 30~40 years old and 40~50 years old are significantly more than other groups. The average age in primary 0A, loose bodies of knee, rheumatoid arthritis is higher than that in other diseases (P <0.05). The average age in abnormal track of patellar is the lowest(P <0.05).
     4. The constituent ratio of right is higher than left (P <0.01) meniscus injuries, loose bodies, plica syndrome. The ratio of left is higher than right (P <0.05) in tibial avulsion fractures of cruciate ligament insertion.
     5. There are 576 cases (39.59%) with discoid meniscus and 879 (60.41%) cases with normal shape in 1455 cases of meniscus injuries. The ratio of female(60.24%) are higher than male(39.76%) in injuries with discoid meniscus. The ratio of male (55.75%) are higher than female (44.25%) in injuries with normal shape meniscus. The average age (33.69±15.92 years) of patients with injuries of discoid meniscus is lower than that with injuries of normal shape meniscus(P <0.05).
     6. The ratio of ACL injuries(87.53%) is higher than that of PCL(P <0.01); The ratio of tibial avulsion fractures of ACL insertion(84.25%) is higher than that of PCL(P <0.01).
     Part II:The clinical epidemiology investigation of 1,723 knee arthroscopies with articular cartilage lesions
     1. There are 1723 cases (57.40%) with articular cartilage lesions in the total 3002 cases. The age range is from 3 to 87, with the average of 41.77±15.76.Patients between 30~59 years old accounted for 65.18%. Ones aged between 40~49 are significantly more than other age groups. The average age of cases with gradeⅢ,Ⅳis higher than that of gradeⅠ, gradeⅡ. (P <0.01).
     2. The constituent ratio of male (17.82%) is higher than that of female(14.45%)in gradeⅠinjuries(P <0.05). The ratio of female(8.30%, 14.68 %) is higher than male(6.33%, 12.19) in gradeⅢand gradeⅣinjuries(P <0.01).The percentage(32.27%) of gradeⅠis the highest (P <0.01), while gradeⅢis the lowest (14.63%,P <0.01).
     3. There are 4060 lesions in 2753 knees with articular cartilage injury, with the average quantity of 1.47. Trochlea is the most common site lesions happen in(25.07%).
     4. The incidence of articular cartilage injuries in primary OA, loose bodies, tuberculosis are 100%, 87.39%,and 78.20%,respectively.Among the top three,tibial avulsion fractures of cruciate ligament insertion is the lowest(25.17%).
     5. The ratio of gradeⅢ,Ⅳis higher than gradeⅠ,Ⅱin meniscus injuries,cruciate ligament injuries,tibial avulsion fractures of cruciate ligament insertion(P﹤0.01). The ratio of gradeⅣis higher than gradeⅠ,Ⅱ,Ⅲin TB , rheumatoid arthritis, loose bodies and primary 0A(P﹤0.01).
     6. The ratio of gradeⅢ,Ⅳin trochlea (18.29%) is higher than other regions in the single lesions or kissing lesions.(P <0.01)
     7. The area of articular cartilage lesion range between 0.06~16.30 cm~2 in gradeⅢand gradeⅣwith the average of 3.27±3.47cm~2. 70.3% of the lesions are between 0.06~3.99cm~2.
     Conclusions
     Part I:The clinical epidemiology investigation of 3,002 knee arthroscopies
     1. Trauma is the most common diseases in knee arthroscopy.
     2. The ratio of male is higher than female in cruciate ligament injuries, tuberculosis, tibial avulsion fractures of cruciate ligament insertion, septic arthritis, intra-articular fractures, synovial plica syndrome, gouty arthritis, joint ankylosis.The ratio of female is higher than male in pigmented villonodular synovitis, rheumatoid arthritis, loose bodies, primary 0A, abnormal track of patellar.
     3. Patients aged between 10~59 account for 89.67%. Patients between 30~40 years old, 40~50 years old are significantly more than other groups.
     4. The ratio of right is higher than left in meniscus injuries, loose bodies, plica syndrome. The ratio of left is higher than right in tibial avulsion fractures of cruciate ligament insertion.
     5. The ratio of female is higher than male in injuries of discoid meniscus, the ratio of male is higher than female in injuries of normal shape meniscus. The average age of the former is lower than the latter.
     6. ACL is more common in cruciate ligament injuries and tibial avulsion fracture of cruciate ligament insertion.
     Part II:The clinical epidemiology investigation of 1,723 knee arthroscopies with articular cartilage lesions
     1. The incidence of cartilage injuries is 57.40%, the ratio of males is higher than female in gradeⅠ,the ratio of female is higher than male in gradeⅢ,Ⅳ.
     2. Trochlea is the most vulnerable site to injury.
     3. The incidence of articular cartilage injuries in primary OA, loose bodies, tuberculosis are the top three highest,the tibial avulsion fractures of cruciate ligament insertion are the lowest.
     4. The Percentage of single lesions and kissing lesions are 72.63% in gradeⅢ,Ⅳ, tackle is the most common site.
     5. Area of most gradeⅢ,Ⅳlesions is less than 4 cm~2.
引文
1.戴尅戎,陈启明,王亦璁.现代关节外科学,科学出版社,北京,第一版,2007:557-565.
    2.毛宾尧,庞清江,朱振安.现代关节外科学,科学出版社,北京,第二版,2009:47.
    3.杨柳.重视“三基”训练,树立微创理念,立志成为一名合格关节外科医师.第三军医大学学报,2008,30(15):1402-1403.
    4. Naimark W A , Pereira C A , Tsang K,et al.Cross-linking of bovine pericardial tissue : a potential role of the solvent environment in the design of bioprost hetic materials.Journal of Materials Science:Materials in Medicine,1995,6:235-241.
    5. Van Luyn M J A,Van Wachem P B,L Olde Damink,et al.Relations between in vit rocytotoxicity and crosslinked dermal sheep collagens. Journal of Biomedical Materials Research Part A,1992, 26:1091-1110.
    6. Sally R. Frenkel Paul E. Di CESARE, et al.Scaffolds for Articular Cartilage Repair Annals of Biomedical Engineering.Annals of Biomedical Engineering,2004,32:26–34.
    7. Chajra H,Rousseau C.F,Cortial D,et al.Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects.Bio-Medical Materials and Engineering,2008,18:333–345.
    8. Bigony L. Arthroscopic surgery a historical pective .Orthopaedic Nursing.2008,27 (6):349-354.
    9. Global tuberculosis control. Surveillance, planning, financing. (WHO/HTM/TB/ 2007(6)376 ). Geneva: World Health Organization,2007.
    10.刘玉杰,王岩,王立德.实用关节镜手术学.人民军医出版社,北京,2006.16-18.
    11.陈峥嵘,译.O’connor关节镜外科学[M],复日大学出版社,上海,2版,2001:347-352.
    12. Bernthal NM, Seeger LL, Motamedi K,et al. Can the Reparability of Meniscal Tears Be Predicted With Magnetic Resonance Imaging. AMERICAN JOURNAL OF SPORTS MEDICINE.2011,39(3),506-510.
    13. Dargel J, Gotter M, Mader K, et al.Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction.Strategies Trauma Limb Reconstr.2007, 2(1):1-12.
    14. Toritsuka Y,Amano H, Kuwano M, et al. Outcome of double-bundle ACL reconstruction using hamstring tendons.Knee Surg Sports Traumatol Arthrosc.2009,10:715-9.
    15. Clayton RA, Court-Brown CM. The epidemiology of musculoskeletal tendinous and ligamentous injuries. Injury.2008;39(12):1338-1344.
    16. FanelliG C, OrcuttD R, Edson C J.The multiple-ligament injured knee: evaluation, treatment, and results. Arthroscopy.2005;21 (4): 471-486.
    17. Jee W H , McCauley T R, Kim J M. Magnetic resonance diagnosis of meniscal tears in patient s wit h acute anterior cruciate ligament tears.J Comput Assist Tomogr.2004,28:402-406.
    18. Lee S Y,Matsui N,Yoshida K,et al.Magnetic resonance delineation of the anterior cruciate ligament of the knee flexed knee position within a surface coil.J Clin Imaging.2005,29:117– 122.
    19.李顶夫,侯严振.前交叉韧带损伤的MRI与关节镜对比研究及其损伤分级.海南医学.2010,21(4):1-4.
    20. Gomez E, DeLee JC.Incidence of in jury in Texas girls high school basketball.Am J SportsM ed.1996,3:684–687.
    21. Davies EM, Mclaren MI.TypeⅢFibial spine Avulsions trented with arthroscopic acutrakTM Screw reattachment. Clin Orthop.2001, 388:205-208.
    22. MEYORS MH. Isolated avulsion of the tibial attachment of the posterior cruciate attachment of the kine. J Bone Joint Surg(Am), 1975, 57: 667- 672.
    23. PEREZ CL, CARCIA SG, GOME I CF. The arthroscopic knot technique for fracture of the tibia in children. Arthoscopy,1994, 10(6): 698- 699.
    24. ANDO T, NISHIHARA K. Arthroscopic internal fixation of fractures of the intercondylar eminence of the tibi. Arthroscepy,1996, 12(5): 616- 622.
    25. MAH JY, OTSUKA NY, MCLEAN J. An arthroscopic technique or the reduction and fixation of tibial eminence fractures. J Pediatr Orthop,1996,16(1):119- 121.
    26. Heldal E,Dahle UR,Sandven P,et al.Risk factors for recent transmission of Mycobacterium tuberculosis. Eur Resp ir J,2003, 22(4):637-642.
    27. Yoshio T,Masuyama J.Two cases of pneumococcai septic arthritis complicating rheumatoid arthritis.Ryumachi,1993,33(2):169-174.
    28. Porat S,Goitien K, Saperia BS,et al.Complications of suppurative arthritis and osteomyelitis in children.Int Orthop,1991,15(3):205-208.
    29.杨柳,郭林,唐康来等.关节镜下清理及术后大流量短程持续灌洗治疗化脓性膝关节炎.中国矫形外科杂志.2004,12(19)1471-1473.
    30. Martin P,Siegfried H.Surgical treatment of knee joint osteoarthritis in the middle-aged patient.Wien Med Wochenschr.2007,157(1-2):7-15.
    31. The cartilage standard evaluation form knee. ICRS Newsletter, spring 1998.
    32. International Cartilage Repair Society evaluation form showing the grid map of the knee. Published with permission from the ICRS.
    33. Steadman J,Richard R,Arun J.An arthroscopic treatment regimen for osteoarthritis of the knee.Arthroscopy,2007,23(9):948-955
    34. Peter C,Kreuz M,Christoph D.Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger?Arthroscopy,2006,22(11):1180-1186.
    35. Williams,Riley J,Harnly, Heather W.Microfracture: indications, technique, and results. Instr Course Lect,2007,56:419-428.
    36. Daher RJ,Chahine NO,Greenberg AS, et al. New methods to diagnose and treat cartilage degeneration. Nature reviews rheumatology, 2009,5:599-607.
    37. Steadman J,Richard R,Arun J.An arthroscopic treatment regimen for osteoarthritis of the knee.Arthroscopy,2007,23(9):948-955.
    38. Mont MA,Jones LC,Vogelstein BN, et al.Evidence of inappropriate application of autologous cartilage transplantation therapy in an uncontrolled environment.Am J Sports Med,1999,27:617-620。
    39. Curl WW,Krome J,Gordon ES,et al.Cartilage injuries: a review of 31,516 knee arthroscopies.1997,13(4):456-460.
    40. Widuchowski W,Kusz D,Widuchowski J,et al.Analysis of articular cartilage lesions in 5114 knee arthroscopies.Chir Narzadow Ruchu Ortop Pol,2006,71(2):117-121.
    41. Widuchowski W,Widuchowski J,Trzaska T.Articular cartilage defects:Study of 25,124 knee arthroscopies.The Knee,2007,14(2007):177-182.
    42. Hjelle K,Solheim E,Strand T,et al.Articular cartilage defects in 1000 knee arthroscopies. Arthroscopy,2002,18(7):730-4.
    43.李海鹏,刘玉杰,姚建华等.568例膝关节镜检查软骨损伤情况的回顾性分析.中国矫形外科杂志,2009,17(8):561-563.
    44. Aroen A,Loken S,Heir S, et al.Articular Cartilage Lesions in 993 Consecutive Knee Arthroscopies.The American Journal of Sports Medicine.2004,32:211-215.
    45. Saris DBF, Dhert WJA, Verbout AJ.The discrepancy between old and fresh injuries in cartilage repair.Journal of bone and joint surgery-british volume,2003,85B(7),1067-1076.
    1. Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 1998;28:192-202.
    2. Grande DA, Pitman MI, Peterson L, et al. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 1989;7:208-18.
    3. Jackson RW, Dieterichs C. The results of arthroscopic lavage and debridement of osteoarthritic knees based on the severity of degeneration: a 4- to 6-year symptomatic follow-up.Arthroscopy 2003;19:13-20.
    4. Kreuz PC, Erggelet C, Steinwachs MR,et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy. 2006;22(11):1180-1186.
    5. Hunt SA, Jazrawi LM, Sherman OH. Arthroscopic management of osteoarthritis of the knee. J Am Acad Orthop Surg 2002;10:356-63.
    6. Steadman JR, Briggs KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chondral defects of the knee:average 11-year follow-up. Arthroscopy 2003;19:477-84.
    7. Steadman JR, Rodkey WG, Singleton SB, Briggs KK. Microfracture technique for full thickness chondral defects: technique and clinical results. Oper Technol Orthop 1997;7:300-5.
    8. Kang SW, Bada LP, Kang CS,et al. Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnol Lett.2008;30(3):435-439.
    9. Strauss E, Schachter A, Frenkel S,et al. The efficacy of intra-articular hyaluronan injection after the microfracture technique for the treatment of articular cartilage lesions. Am J Sports Med. 2009;37(4):720-726.
    10. Carranza-Bencano A, Garcia-Paino L, Armas-Padron JR,Cayuela Dominguez A. Neochondrogenesis in repair of fullthickness cartilage defects using free autogenous periosteal grafts in the rabbit. A follow-up in six months. Osteoarthritis Cartilage 2000;8:351-8.
    11. Carranza-Bencano A, Perez-Tinao M, Ballesteros-Vasquez P,et al. Comparative study of the reconstruction of articular cartilage defects with free costal perichondrial grafts and free tibial periosteal grafts: an experimental study on rabbits.Calcif Tissue Int 1999;65:402-7.
    12. Zarnett R, Salter RB. Periosteal neochondrogenesis for biologically resurfacing joints: its cellular origin. Can J Surg 1989;32:171-4.
    13. Bouwmeester S, Beckers J, Kuijer. et al. Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop 1997;21:313-7.
    14. Bachmann G, Basad E, Lommel D, Steinmeyer J. MRI in the follow-up of matrix-supported autologous chondrocyte transplantation (MACI) and microfracture. Radiologe 2004;44: 773-82.
    15. Marcacci M, Kon E, Delcogliano M,et al. Arthroscopic autologous osteochondral grafting for cartilage defects of the knee:prospective study results at a minimum 7-year follow-up. Am J Sports Med. 2007;35(12):2014-2021
    16. Horas U, Pelinkovic D, Herr G, et al. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 2003;85:185-92.
    17. Bentley G, Biant LC, Carrington RW, et al. A prospective,randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 2003;85:223-30.
    18. Huntley JS, Bush PG, McBirnie JM, et al. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone J Surg Am 2005;87:351-60.
    19. Redman SN, Dowthwaite GP, Thomson BM, Archer CW. The cellular responses of articular cartilage to sharp and blunt trauma. Osteoarthritis Cartilage 2004;12:106-16.
    20. Evans PJ, Miniaci A, Hurtig MB. Manual punch versus power harvesting of osteochondral grafts. Artroscopy 2004;20:306-10.
    21. Davidson PA, Rivenburgh DW, Dawson PE,et al. Clinical,histologic, and radiographic outcomes of distal femoral resurfacing with hypothermically stored osteoarticular allografts. Am J Sports Med. 2007;35(7):1082-1090.
    22. Bugbee WD, Convery FR. Osteochondral allograft transplantation.Clin Sports Med.1999;18(1):67-75.
    23. Williams RJ 3rd, Ranawat AS, Potter HG,et al. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am.2007;89(4):718-726
    24. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 994;331:889-95.
    25. Zaslav K, Cole B, Brewster R,et al. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. Am J Sports Med. 2009;37(1):42-55.
    26. Minas T. Chondrocyte implantation in the repair of chondral lesions of the knee: economics and quality of life. Am J Orthop 1998;27:739-44.
    27. Micheli LJ, Browne JE, Erggelet C, et al. Autologous chondrocyte imlplantation of the knee: multicenter experience and minimum 3-year follow up. Clin J Sport Med 2001;11:223-8.
    28. Bentley G, Biant LC, Carrington RW, et al. A prospective, randomized comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 2003;85:223-30.
    29. Chen AC, Nagrampa JP, Schinagl RM, et al. Chondrocyte transplantation to articular cartilage explants in vitro. J Orthop Res 1997;15:791-802.
    30. LeBaron RG, Athanasiou KA. Ex vivo synthesis of articular cartilage. Biomaterials 2000;21:2575-87.
    31. Garc?′a-Alvarez F, Castiella T, Grasa JM, et al. Autologous platelets and articular surface repair in an experimental model. J Orthop Sci 2005;10:237-9.
    32. Graichen H, von Eisenhart-Rothe R, Vogl T, et al. Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analysis of cartilage volume and further morphologic parameters. Arthritis Rheum 2004;50:811-6.
    33. Peterson L, Brittberg M, Kiviranta I, et al. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 2002;30:2-12.
    34. Waldman SD, Grynpas MD, Pilliar RM, Kandel RA. The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage. J Orthop Res 2003;21:132-8.
    35. Behrens P, Ehlers EM, Kochermann KU, et al. New therapy procedure for localized cartilage defects. Encouraging results with autologous chondrocyte implantation. MMW Fortschr Med 1999;141:49-51.
    36. Lee JW, Kim YH, Kim SH, et al. Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J 2004;45:41-7.
    37. Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;98:2615-25.
    38. Grigolo B, Roseti L, Fiorini M, et al. Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials 2001;22: 2417-24.
    39. Hui JH, Chen F, Lee EH, Chan J. Treatment of chondral lesions in advanced osteochondritis dissecans: a comparative study of the efficacy of chondrocytes, mesenchymal stem cells, periosteal graft, and mosaicplasty (osteochondral autograft) in animal models. J Pediatr Orthop 2004;24:427-33.
    40. Matsumoto T, Ikawa T, Yasuda H,et al. Articular cartilage repair with autologous bone marrow mesenchymal cells. J Cell Physiol. 2010. [Epub ahead of print
    41. Khan WS, Johnson DS, Hardingham TE. The potential of stem cells in the treatment of knee cartilage defects. Knee. 2010. Epub ahead of print
    42. Katayama R,Wakitani1 S, Tsumaki N, et al1 Repair of articular cartilage defects in rabbits using CDMP1 gene2transfected autologousmesenchymal cells derived from bone marrow [ J ] 1 Rheumatology (Oxford) , 2004, 43 (8) : 980-985.
    43. ChenWH,LaiWF,DengWP, et al1Tissue engineered cartilage using hu2 man articular chondrocytes immortalized by HPV216 E6 and E7 genes[ J ] J BiomedMater ResA, 2006, 76 (3) : 5122-52 .
    44. Thorvaldsson A, Stenhamre H, Gatenholm P,et al.Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules. 2008;9(3):1044-1049
    45. Ikeda R, Fujioka H, Nagura I,et al. The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects. Int Orthop. 2009;33(3):821-828.
    46. Crawford DC, Heveran CM, Cannon WD Jr,et al. An autologous cartilage tissue implant NeoCart for treatment of grade III chondral injury to the distal femur: prospective clinical safety trial at 2 years. Am J Sports Med. 2009;37(7):1334-1343.
    47. Matsusaki M, Ochi M, Uchio Y, et al. Effects of basic fibroblast growth factor on proliferation and phenotype expression of chondrocytes embedded in collagen gel. Gen Pharmacol 1998;31:759-64.
    48. Nawata M, Wakitani S, Nakaya H, et al. Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage. Arthritis Rheum 2005;52:155-63.
    49. Lohmann CH, Schwartz Z, Niederauer GG, et al. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo. Biomaterials 2000;21:49-61
    50. Garc?′a-Alvarez F, Castiella T, Grasa JM, et al. Autologous platelets and articular surface repair in an experimental model. J Orthop Sci 2005;10:237-9.
    51. Elder BD,Athanasiou KA. Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs. Osteoarthritis Cartilage. 2009;17(1):114-123.
    52. An C, Cheng Y, Yuan Q,et al. IGF-1 and BMP-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells. Ann Biomed Eng. 2010;38(4):1647-1654.
    53. Khan WS, Tew SR, Adesida AB,et al. Human infrapatellar fat pad-derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2. Arthritis Res Ther. 2008;10(4):R74.