功能纳米粉体的新型超声喷雾法制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用超声喷雾技术进行了常温常压下制备HAP(羟基磷灰石)纳米粉体和稀土离子掺杂的YAG(钇铝石榴石)纳米荧光粉的研究和探索,研究了化学反应时间与烧结温度对HAP的结晶度和颗粒均匀性的影响规律,并探讨了在制备工艺过程中添加不同表面活性剂对制备的HAP纳米粉体的分散性能、颗粒大小、均匀性及形貌等的影响情况;详细地研究了稀土离子掺杂的YAG纳米荧光粉的结构、物相组成、颗粒形貌以及不同掺杂浓度纳米荧光粉的发射光谱和激发光谱。主要成果和进展如下:
     (1)在常温常压下,以Ca(NO_3)_2·4H_2O和(NH_4)_2HPO_4为原料制备了HAP纳米粉体,获得了颗粒度为30~40 nm的均匀HAP粉体。研究了化学反应时间与烧结温度对HAP的结晶度和颗粒均匀性的影响规律。与传统的超声化学法和化学沉淀法制得的HAP粉体样品比较,发现此法可以在较短的反应时间内制备出纳米HAP,显著提高HAP的合成效率、结晶度,且获得的颗粒度相对均匀。
     (2)探讨了在超声喷雾法制备工艺过程中添加柠檬酸、甘氨酸、葡萄糖和TX-10四种表面活性剂对制备的HAP纳米粉体的分散性能、颗粒大小、均匀性及形貌等的影响情况。表面活性剂的加入对粉体的产物相没有影响,但对制备出的纳米HAP粉体的分散效果均有一定的影响。从SEM照片看出,在本反应体系中当甘氨酸适量加入时,对纳米HAP粉体能起到很好的分散作用,有利于颗粒的细化与均匀;而等量柠檬酸的加入反而加剧了纳米HAP颗粒的团聚;葡萄糖与TX-10的加入则使颗粒度变大,并易造成局部团聚。
     (3)将Al(NO_3)_3、Y(NO_3)_3和Ce(NO_3)_3的混合溶液作为母盐溶液,以NH_4HCO_3与NH_3·H_2O的混合溶液为复合沉淀剂,应用新型的超声喷雾技术,把母盐溶液加入到复合沉淀剂中,获得的前驱体沉淀物经过一定温度煅烧,制得YAG:Ce纳米荧光粉。详细地研究了粉体的结构、物相组成、颗粒形貌以及不同掺杂浓度纳米荧光粉体的发射光谱和激发光谱。此法制得的YAG:Ce荧光粉体呈现均匀的、分散的、尺寸为50~70 nm的纳米颗粒,与共沉淀法法相比,明显地改善了粉体的颗粒度与分散性。当Ce掺杂浓度达6~7 mol%时,荧光强度达到最大,其浓度猝灭效应明显高于共沉淀法所报道的4.8 mol%,可望实现YAG基荧光材料的高浓度掺杂与高发光效率。
     (4)以NH_4HCO_3与NH_3·H_2O的混合溶液为沉淀剂,用超声喷雾共沉淀法结合后续不同温度煅烧制备了纳米YAG:Eu荧光粉。对粉体的结构、物相组成、颗粒形貌以及不同铕掺杂浓度的发射光谱和激发光谱进行了研究。此法与溶胶-凝胶法和共沉淀法等技术制备的颗粒大小和均匀性相比,显示出一定的优势。同时研究还表明,烧结温度对YAG:Eu荧光粉的析晶有重要影响,随着烧结温度的升高,衍射峰逐渐变窄,衍射强度增大,有利于促进YAG相的生成。
In this paper, a novel metod named ultrasonic atomization precipitation method was employed to synthesize the HAP nanopowders and YAG phosphor powders at room temperature and normal atmospheric pressure. The effects of the reaction time, the sintering temperature on the crystal morphology of HAP and homogeneity were investigated and the effect of the different surfactants on the synthesis and characteristic of HAP was discussed. Moreover, the influence of the rare earth doping concentration on the luminescence and excitation spectra of the as-prepared powders was studied. The results and development are as follows:
     1. At room temperature and normal atmospheric pressure, the hydroxyapatite nano-powders were prepared by ultrasonic atomization precipitation method and with Ca(NO_3)_2·4H_2O and (NH_4)_2HPO_4 as raw materials. The obtained powders were homogenous and in size of 30~40 nm. The effects of the reaction time, the sintering temperature on the crystal morphology of HAP and homogeneity were investigated. The obtained HAP powders were compared with those synthesized by the conventional ultrasonic method and traditional chemical precipitation method under the same conditions. The results revealed that the method taken in the experiment can shorten reaction time to make HAP nano-powders, enhance the synthetic efficiency effectively and crystallinity of HAP nanopowders in a relatively short reaction period, moreover, the obtained nano-particles were more homogenous.
     2. In the normal temperature and pressure, nano-hydroxyapatite was synthesized by ultrasonic atomization process with Ca(NO_3)_2·4H_2O and (NH_4)_2HPO_4 as the calcium and phosphorus precursors respectively. The effect of four different surfactants on the synthesis and characteristic of hydroxyapatite (HAP) was discussed. The phase of the samples with addition of the same quantity surfactant have no significant change showed in the XRD patterns, therefore, we can consider that the surfactant presence or absence did not to have an affect on crystallization. Scanning electron microphotographs shows that the different additives affect the size and morphology of HAP nanoparticles. The glycine had a positive effect on promoting homogeneity and separation of HAP nanoparticle, and the D-Glucose and TX-10 shows little effect on HAP morphology, whereas Citric acid induced into heavy degree of particle agglomeration. The Author was explored and explained the effect of four different surfactants on the synthesis and characteristic of hydroxyapatite (HAP) from the basic principles of physical chemistry. These results will be provided an effective means of technology to synthesized nano-hydroxyapatite and other ultrafine powders.
     3. The Y(NO_3)_3, Al(NO_3)_3 and Ce(NO_3)_3 mixed solution was transferred into the NH_4HCO_3 and NH_3·H_2O mixed solution via the ultrasonic atomizer,then the powder was calcined at different temperature. Finally, the homogenous and separate YAG:Ce powders in size of 50-70 nm were obtained. X-ray diffraction, Scanning electron microscopy were used to characterize the phase and morphology of the obtained phosphor powders. The influence of Ce concentration on the luminescence and excitation spectra of the as-prepared powders was studied. The results showed that the ultrasonic atomization and co-precipitation method for preparation of YAG:Ce nano-phosphor have advantages of traditional one in homogeneity and separation of nano-powders. The emission intensity of YAG:Ce reached to the maximum as the Ce-doping concentration to 6-7 mol%. The concentration quenching was obviously higher than that prepared by co-precipitation method, which was only 4.8 mol%. The present studies show that ultrasonic atomization and co-precipitation precipitation method is a promising approach to obtain homogenous YAG:Ce phosphor powders. This method can be employed as a new route for synthesizing analogous phosphor materials.
     4. Eu-doped Y3Al5O12 (YAG:Eu) phosphor ultrafine powders were synthesized by the Ultrasonic atomization and Co-precipitationmethod using the mixture solution of ammonium hydroxide(NH_3·H_2O) and ammonium hydrogen carbonate(NH_4HCO_3) as precipitant.Fluorescence spectrometer、X-ray diffraction、Scanning electron microscopy were used to characterize the phosphor powders and the influence of Eu concentration on the luminescence of the as-prepared powders was studied.The obtained powders were homogenous and in size of 50~70 nm, and were compared with those synthesized by the sol-gel method and other method shows some advantages.When the calcination temperature was increased, the width of the diffraction peaks decreased and the intensity increased.
引文
[1]解思深,张立德编.创新者的报告之纳米科学与技术研究成果专著.北京:科学出版社,2000.
    [2]张立德,等编.纳米材料学.沈阳:辽宁科学技术出版社, 1994. 5
    [3]陈彩凤,陈志刚,陈雪梅,郝臣.纳米粉体的制备技术.江苏理工大学学报(自然科学版), 2000, 21(6): 98~102
    [4]顾宁,付德刚,张海黔,等编.纳米技术与应用.北京:人们邮电出版社,2002. 20~35
    [5]代淑芬.纳米材料的特性和发展.无锡南洋学院学报, 2008, 7(4): 49~53
    [6]张立德,牟季美编.纳米材料和纳米结构.北京:科学出版社,2001.
    [7]唐膺,等.生物陶瓷的发展与应用.材料科学与工程,1994, 2: 63~64
    [8]李世普编.生物医用材料导论.武汉:武汉理工大学出版社,2000, 57~72
    [9]阎峻.纳米材料的表征.材料导报, 2001, 15(4): 53~55
    [10]贡长生,张克森编.新型功能材料.北京:化学工业出版社, 2001, 535~546
    [11]刘光华编.现代材料化学.上海:上海科学技术出版社,2000: 512~517
    [12] Webster T J, Ergun C, Doremus R H, et al. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials, 2001, 22: 1327~1333
    [13] Deng X, Hao J, Wang C. Preparation and mechanical properties of nanocomposites of poly (D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials, 2001, 22: 2867~2873
    [14] Masunxi K, Srichiru I, Shizuko Z, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22: 1705~1711
    [15]彭继荣,李珍.羟基磷灰石的应用研究进展.中国非金属矿工业导刊, 2005, 2: 14~19
    [16]于方丽,周永强,张卫珂,马景云.羟基磷灰石生物材料的研究现状、制备及发展前景.陶瓷, 2006, 2: 7~12
    [17] Tsutomu Kawasaki, Makoto Niikura, Yuriko Kobayashi. Fundamental study of hydroxyapatite high-performance liquid chromatography: III. Direct experimental confirmation of the existence of two types of adsorbing surface on the hydroxyapatite crystal. Chromatography, 1990, 515: 125-148
    [18]沈卫,等.羟基磷灰石的表面特征.硅酸盐通报,1996, 1: 45~51
    [19]江丽都,杨遇春.稀土荧光材料新进展.稀有金属, 1996, 20(2): 129~133
    [20]王勇,李苹,王介强.稀土掺杂YAG荧光粉制备方法的研究进展.山东化工, 2007, 36(2): 22~27
    [21] CHEN Teng - Ming, Chen S C, Yu Chao - Jung. Preparation and characterization of garnet phosphor nanoparticles derived from oxalate coprecipitation . Journal of solid state chemistry, 1999, 144: 437~441
    [22]姚光庆,段洁菲,施建新,林建华.紫光发光二极管激发的三基色荧光粉和合成方法.中国,发明专利.专利号:ZL02126097, 2004, 11, 10
    [23] Ohno K, Abe T. synthesis and particle growth meehanism of bright green phosphor YAG:Tb. Journal of The Electrochemical Society, 1994, 141(5): 1252~1254
    [24]孟弘.纳米材料制备研究进展.矿产保护与利用, 2003, 4: 14~18
    [25] Gleiter H. Progress in Materia. Science, 1989, 33: 223
    [26] R.K. Islamgaliev, F. Chmelik, I.F. Gibadullin, W. Biegel, R.Z. Valiev. The nanocrystalline structure formation in germanium subjected to severe plastic deformation. Nanostructure Materials, 1994, 4(4): 387~395
    [27] D.L. Zhan, S. Raynova, C.C. Koch, R.O. Scattergood, K.M. Youssef. Consolidation of a Cu–2.5 vol.% Al2O3 powder using high energy mechanical milling. Materials Science and Engineering A, 2005, 410: 375~380
    [28] Mohsen Mhadhbi, Mohamed Khitouni, Myriam Azabou, Abdelwaheb Kolsi. Characterization of nanosized powders synthesized by high energy mechanical milling. Materials Characterization, 2008, 59: 944~950
    [29]费金喜,朱维婷,吴红玉.纳米材料的物理制备方法.丽水师范专科学校学报, 2001, 23(2): 29
    [30]姚斌,丁炳哲,等.纳米材料制备研究.科学通报,1994 , 39: 1656
    [31] V. Paillard, P. Mélinon, J.P. Perez, V. Dupuis, A. Perez, J.L. Loubet, H. Pascal, M. Tonck, M. Fallavier. Mechanical properties of nanostructed diamond-like carbon films synthesized by low energy cluster beam deposition. Nanostructure Materials, 1994, 4(6): 759~767
    [32]严东生,冯端编.纳米新星纳米材料科学.长沙:湖南科学技术出版社, 1997. 16
    [33]卢柯,王景唐.固体相变法制备超细金属(合金)微粉及纳米固体.全国首届纳米固体研讨会论文集,合肥:1990, 43
    [34]张玉龙,李长德编.纳米材料与纳米塑料.北京:中国轻工业出版社, 2002. 43
    [35]吴金桥,等.纳米材料的液相制备技术及其进展.西安石油学院学报(自然科学版), 2002, 17(3): 31
    [36]宋丽萍.化学气相沉积法在碳纤维复合材料领域的应用.化工新型材料, 1994, 8: 25
    [37]殷亚东,张志成,徐相凌.纳米材料的辐射合成法制备.化学通报, 1998, 12: 21~ 25
    [38]李颖,王光祖.纳米材料的表征与测试技术.超硬材料工程, 2007, 19(2): 38~42
    [39]黄惠忠.纳米材料分析.现代仪器,2003, 1: 5~7
    [40]张立德.纳米功能材料的进展和趋势.材料导报, 2003, 17:1~4
    [41]郑昌琼,冉均国编.新型无机材料.北京:科学出版社,2003, 581
    [42] H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chuang, C.S. Chang, M.T. Lui. Hydroxyapatite synthesized by a simplified hydrothermal method. Ceramics International, 1997, 23: 19-25
    [43] G. Bezzi, G. Celotti, E. Landi, T.M.G. La Torretta, I. Sopyan, A. Tampieri. A novel sol–gel technique for hydroxyapatite preparation. Materials Chemistry and Physics, 2003, 78: 816~824
    [44] Chai C S, Ben-Nissan B. Bioactive nanocrystalline sol-gel hydroxyapatite coatings. Journal of Materials Science: Materials in Medicine, 1999, 10(8): 465~469
    [45] Furuzono T, Walsh D, Sato K. Effect of reaction temperature on the morphology and size of hydroxyapatite nanoparticle in an emulsion system. Journal of Materials Science Letters, 2001, 20(1): 111~114
    [46] lim G K, Wang J. Formation of nanohydroxyapatite in nonionic emulsion. Langmiur, 1995(15): 7472~7477
    [47] Limin Q, Jiming M. Microemulsion-mediated synthesis of calcium hydroxyapatite fine poweder. Journal of Materials Science letters, 1997, 16(21): 1779~1781
    [48] Murray M G S, Ponton C B, Marquis P M. Processing of ultrafine grained hydroxyapatite bioceramics Britain Ceramic Processings. Nanoceramics, 1993,5 1:25~30
    [49]王志强,马铁成,韩趁涛,等.湿法合成纳米羟基磷灰石粉末的研究.无机盐工业, 2001, 33(1): 3~5
    [50] Tas A C. Synthesis of biomimetic Ca - hydroxyapatite powder at 37℃in synthetic body fluid. Biomaterials, 2000, 21(14): 1429~1438
    [51] Yamaguchi I,Tokuchi k, Fukuzaki H. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. Journal of Biomedical Materials Research, 2000, 55(1): 20~27
    [52]黄立业,徐可为.纳米针状羟基磷灰石涂层的制备及其性能的研究.硅酸盐学报, 1999, 27(3): 351~356
    [53] Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. Journal of Materials Science: Materials in Medicine, 1998, 9(2): 67~72
    [54]陈际达,王远亮,蔡绍皙,等.纳米羟基磷灰石复合材料制备方法研究.生物物理学报, 2001, 17(4): 778~784
    [55]林开利,成荣明,常江.超声化学法合成纳米羟基磷灰石粉体的研究.材料导报, 2006, 20(专辑Ⅶ): 182~184
    [56] Suslic K S. Sonochemistry. Science, 1990, 247: 1439
    [57]华缜,靳正国,程志捷.超声条件下羟基磷灰石纳米针状晶体的制备.材料导报, 2003, 17: 75~77
    [58]李玲珍,赵淑佳,易杨柳.对羟基苯甲酸乙酯合成方法的改进.化学通报, 1998, 4: 33
    [59]范闽光,蒋月秀.化钙脱水法合成对羟基苯甲酸酯.化学世界, 1999, 5: 248~251
    [60] T.Matsumoto, M.Okazaki, M.Inoue, Y.Hamada, M.Taira, J.Takahashi. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid. Biomaterials, 2002, 23: 2241~2247
    [61]肖清泉.稀土掺杂YAG荧光粉和Y-TZP纳米粉的制备及表征:学位论文.厦门:厦门大学, 2007
    [62] Tang Y J, Wang Y G, Yang Z J, et al. Fabrication and Properties of White Luminescence Conversion LEDs. Chinese Journal of Luminescence, 2001, 22 (10): 91~94
    [63] Schlotter P, Schmidt R, Scheider J. Luminescence Conversion of Blue Light Emitting Diodes. Journal of Applied Physics, 1997, 64A: 417~418
    [64] A. Ikesue, K. Yoshida, K. Kamata. Transparent Cr4+-Doped YAG Ceramics for Tunable Lasers. Journal of the American Ceramic Society, 1996, 79(2): 507~509
    [65] D. Ravichandran, R. Roy, A.G. Chakhovskoi, C.E. Hunt, W.B. White, S. Erdei. Fabrication of Y3Al5O12:Eu thin films and powders for field emission display applications. Journal of Luminescence, 1997, 71(4): 291~297
    [66]夏国栋,周圣明,张俊计,等.凝胶-燃烧法合成YAG:Eu3+纳米荧光材料的结构和发光性能.无机化学学报,2005, 21(8): 1203~1207
    [67] Y.H. Zhou, J. Lin, M. Yu, et al. Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis. Materials Research Bulletin, 2003, 38(8): 1289~1299
    [68] Y. Hakuta, K. Seino, H. Ura, et al. Production of phosphor (YAG:Tb) fine particles by hydrothermal synthesis in supercritical water. Journal of Materials Chemistry, 1999, 9(10): 2671~2674
    [69] M. Yada, M. Ohya, M. Machida, T. Kima. Synthesis of porous yttrium aluminium oxide templated by dodecyl sulfate assemblies. Chemical Communications, 1998, (18): 1941~1942
    [70]张凯,刘河洲,仵亚婷,等.共沉淀法制备纳米铈掺杂钇铝石榴石荧光粉及其荧光特性.机械工程材料, 2007, 31(1): 53~56
    [71] D. Haranath, Harish Chander, Pooja Sharma, et al. Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes. Applied Physics Letters, 2006, 89(17): 173118
    [72] H.M.H. Fadlalla, C.C. Tang, E.M. Elssfah, F. Shi. Synthesis and characterization of single crystalline YAG:Eu nano-sized powder by sol–gel method. Materials Chemistry and Physics, 2008, 109: 436~439
    [73] Xia Li, Qiang Li, Jiyang Wang, Shunliang Yang . Synthesis of YAG:Eu phosphors with spherical morphology by solvo-thermal method and their luminescent property. Materials Science and Engineering B, 2006, 131: 32~35
    [74] J. Su, Q.L. Zhang, S.F. Shao, W.P. Liu, S.M.Wan, S.T. Yin. Phase transition, structure and luminescence of Eu:YAG nanophosphors by co-precipitation method. Journal of Alloys and Compounds, 2009, 470: 306~310
    [75] Chung-Hsin Lu, Wei-Tse Hsu, Chia-Hao Hsu, Hsiao-Chi Lu, Bing-Ming Cheng. Structural analysis and vacuum ultraviolet excited luminescence properties of sol–gel derived Y3Al5O12:Eu3+ phosphors. Journal of Alloys and Compounds, 2008, 456: 57~63
    [76] Y.H Zhou, J. Lin, M. Yu, S. Wang. Comparative study on the luminescent properties of Y3Al5O12:RE3+ (RE: Eu, Dy) phosphors synthesized by three methods. Journal of Alloys and Compounds, 2004, 375:93~97
    [77]张然,曹献英.羟基磷灰石生物陶瓷材料的研究概况.生物骨科材料与临床研究, 2005,(4): 43~47
    [78]储成林,朱景川,尹钟大.致密羟基磷灰石(HA)生物陶瓷烧结行为和力学性能.功能材料, 1999, 30(6): 606~609
    [79]李家驹编.陶瓷工艺学,北京:中国轻工业出版社,2001,32
    [80]韩钰,施雨湘,张凡,陈君平.致密羟基磷灰石生物陶瓷烧结技术研究进展.材料科学与工艺, 2006, 14(5): 558~560
    [81]张建民,郭军松,杨长春,石秋芝.高纯度羟基磷灰石纳米功能材料的制备工艺.中国陶瓷, 2003, 39(4): 19~20