直驱式风力永磁同步发电机损耗与发热计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直驱式风力永磁同步发电机(Permanent Magnet Synchronous Generator,PMSG)由风力机直接驱动,取消了齿轮箱,具有结构简单、可靠性高等优点,在风力发电领域具有良好的应用前景。然而,PMSG通过全额变频器与电网连接,变频器的存在使系统的谐波含量增加,从而导致PMSG的损耗与发热增加,其分析与计算也变得十分复杂。因此,对PMSG的损耗和发热进行深入分析与计算具有重要意义。本文依托重庆市自然科学基金项目《MW级风力PMSG及其系统的优化设计研究》,以1台1.5MW的直驱式风力PMSG为例,重点研究变频器类型及控制参数对其损耗和温度分布的影响。
     首先,从电磁场基本理论出发,建立了PMSG的二维场路耦合时步有限元模型;其次,分析了变频器的特点,介绍了变频器控制参数及其对谐波的影响;第三,分析了PMSG定子铁心、定子绕组和转子永磁体的谐波损耗计算方法,并根据所建立的模型,针对RL负载、不可控整流器负载和PWM整流器负载,分别计算了PMSG的定子谐波铁耗、定子谐波铜耗和转子永磁体损耗,并对比分析了其变化规律;第四,分别建立了PMSG的二维热网络模型和二维温度场有限元模型,并通过计算得到了PMSG定转子的温度分布规律;最后,讨论并总结了变频器类型及控制参数对PMSG损耗和温度分布规律的影响。
     结果表明,在额定转速下,对于带不可控整流负载的直驱式风力PMSG来说,定子铜耗最大,转子永磁体损耗次之,定子铁耗最小;而对于带RL负载和PWM整流器负载的直驱式风力PMSG来说,定子铜耗最大,定子铁耗次之,转子永磁体损耗最小。变频器类型及控制参数对PMSG的损耗和发热有明显影响,最高温度均出现在定子上层绕组处。
     本文的研究工作对直驱式风力PMSG的设计和控制,具有参考价值。
The permanent magnet synchronous generator(PMSG) is directly driven by the wind turbine, the gearbox is not needed, and it has the advantages such as simple structure, high reliability, and so on. It has wide application in the area of wind generation. However, PMSG is connected with the grid through the full scale converter. The converter produces more harmonics, which result in the increase of loss and heat. The analysis and calculation of the loss and heat of PMSG become very complicated. Therefore, it is very important to analyze and calculate the loss and heat of PMSG in detail. This thesis, supported by Natural Science Foundation Project of Chongqing, mainly studies the effect of types and control parameters of the converter on the distribution of losses and temperature of PMSG. And a 1.5 MW PMSG is calculated as an example.
     Firstly, from the theory of electromagnetic field, the 2D time-stepping finite element model coupled with the circuit was built up. Secondly, the feature of converter was analyzed, and the influences of converter on the harmonics were stated. Thirdly, the calculation methods of the stator harmonic iron loss, copper loss and eddy current loss of rotor permanent magnet were presented. The losses of PMSG were calculated at the RL load, uncontrollable rectifier load and PWM converter load respectively. The characteristics of change are discussed in detail by the comparison. Fourthly, the 2D thermal network model and 2D temperature field finite element model were built up respectively. Furthermore, the temperature distribution of PMSG was got. Finally, the influences of converter types and control parameters on the loss and temperature distribution were discussed.
     The results show that, when the direct-driven PMSG operated at the rated speed is connected with uncontrollable converter load, the stator copper loss is biggest, the eddy current loss of permanent magnet is bigger, and the stator iron loss is least. However, when the direct-driven PMSG operated at the rated speed is connected with RL load or PWM converter load, the stator copper loss is biggest, the stator iron loss is bigger, and the eddy current loss of permanent magnet is least. The converter type and control parameters have the significant influence on the loss and heat of PMSG. The maximum temperature appears on the stator upper layer winding at all the conditions.
     The results of the thesis are valuable for the design and control of the direct-driven wind PMSG.
引文
[1]全球风能理事会.2008年度风能统计报告[R].2008.
    [2] H. Polinder, F. A. van der Piji, Gert-Jan de Vilder, et al. Comparison of direct-drive and geared generator concepts for wind turbines[J]. IEEE Transactions on Energy Conversion, 2006, 21(3): 725-733.
    [3]国家发展改革委办公厅关于组织实施可再生能源和新能源高技术产业化专项的通知.国家发展和改革委员会办公厅文件[R].发改办高技〔2005〕509号.
    [4] Shoudao Huang, Keyuan Huang, Xin Long and Luoqiang Cai. An engineering design of a 2 MW direct-drive permanent-magnet wind-power generation system[C].Proceedings of ICEMS 2008, Wuhan, China: 2337-2342.
    [5]重庆市政府公众信息网.http://www.cq.gov.cn/today/news/78739.htm, 2007,8[EB/OL].
    [6] C.P. Steinmetz. On the law of hysteresis[J]. AIEE Transactions, 1892, 9: 3-51.
    [7] A. Boglietti, P. Ferraris, et al. About the possibility of defining a standard method for iron losses measurement in soft magnetic materials with inverter supply[J]. IEEE Transactions on Industry Applications, 1997, 33(5): 1283-1288.
    [8] F. Fiorillo. A phenomenological approach to rotational power losses in soft magnetic laminations[J]. Physikalisch-Technische Bundesanstalt, Braunschweig. Germany, 1991: 11-24.
    [9] G. Bertotti, A. Boglietti, M. Chiampi, et al. An improved estimation of iron losses in rotating electrical machines[J]. IEEE Transactions on Magnetics, 1991, 27(6): 5007-5009.
    [10] J. G. Zhu, V. S. Ramsden, P. A. Watterson. Finite element calculation of core losses in motors with nonsinusoidal fields[C]. ICEM’92, Machester, U.K.: 1182-1186.
    [11] J. G. Zhu, V. S. Ramsden. Improved formulations for rotational core losses in rotating electrical machines[J]. IEEE Transactions on Magnetics, 1998, 34(4): 2234-2242.
    [12] L. Ma, M. Sanada, S. Morimoto, et al. Prediction of iron losses in rotating machines with rotational loss included[J]. IEEE Transactions on Magnetics, 2003, 39(4): 2036-2041.
    [13] B. Stumberger, A. Hamler, V. Gorican, et al. Accuracy of iron loss estimation in induction motors by using different iron loss models[J]. Journal of Magnetism and Magnetic Materials, 2004: 1723-1725.
    [14] C. Mi, G. R. Slemon, R. Bonert. Modeling of iron losses of permanent magnet synchronous motors[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 734-742.
    [15] C. Mi, G. R. Slemon, R. Bonert. Minimization of iron losses of permanent magnetsynchronous machines[J]. IEEE Transactions on Energy Conversion, 2005, 20(1): 121-127.
    [16]张洪亮,邹继斌.考虑旋转磁通的PMSM铁心损耗[J].电机与控制学报,2007,11(4):340-344+348.
    [17]韦鲲,胡长生,张仲超.一种新的消除无刷直流电机非导通续流的PWM调制方式[J].中国电机工程学报,2005,25(7):104-108.
    [18] A. Boglietti, A. Cavagnino, M. Lazzari, et al. Predicting iron losses in soft magnetic materials with arbitrary voltage supply: An engineering approach[J]. IEEE Transactions on Magnetics, 39(2): 981-989.
    [19]吴新振,王祥珩,罗成.异步电机转子感应非正弦电流时的导条损耗[J].中国电机工程学报,2005,25(17):131-135.
    [20]黄平林,胡虔生,崔杨,黄云凯.PWM逆变器供电下电机铁心损耗的解析计算[J].中国电机工程学报,2007,27(12):19-23.
    [21] J. Lee, Y. Kim, H. Nam, et al. Loss distribution of three-phase induction motor fed by pulsewidth-modulated inverter[J]. IEEE Transactions on Magnetics, 2004, 40(2):762-765.
    [22] Y. Zhan, A. M. Knight, Y. Wu, R. A. McMahon. Investigation and comparison of inverter-fed induction machine loss[C]. IEEE Industry Applications Society Annual Meeting, 2008: 1-6.
    [23] K. Yamazaki, Y. Seto. Iron loss analysis of interior permanent-magnet synchronous motors - variation of main loss factors due to driving condition[J]. IEEE Transactions on Industry Application, 2006, 42(2): 1045-1052.
    [24]徐永向,胡建辉,邹继斌.表贴式永磁同步电机转子涡流损耗解析计算[J].电机与控制学报,2009,13(1):63-66.
    [25] Z. Q. Zhu, D. Howe, C.C. Chan. Improved analytical model for predicting the magnetic field distribution in brushless permanent magnet machines[J]. IEEE Transactions on Magnetics, 2002, 38: 229-238.
    [26] Z. Q. Zhu, K. Ng, N. Scofield, et al. Improved analytical modeling of rotor eddy current loss in brushless machines equipped with surface mounted permanent magnets[J]. IEEE Transactions on Electr. Power Application, 2004, 151(6): 641-650.
    [27] K. Atallah, D. Howe, P. H. Mellor, et al.Rotor Loss in Permanent-Magnet Brushless AC Machines[J]. IEEE Transactions on Industry Application, 2000, 36(6): 1612-1618.
    [28] C. Kral, T G. Habetler, R G. Harley. Rotor temperature estimation of squirrel-cage induction motors by means of a combined scheme of parameter estimation and a thermal equivalent model[J].IEEE Transactions on Industry Applications, 2004, 40(4): 1049~1056.
    [29] C.Jang, J.Y.Kim,Y.J.Kim, J.O.Kim.Heat Transfer analysis and simplified thermal resistancemodeling of linear motor driven stages for SMT applications[J].IEEE Transactions on Components and Packaging Technologies, 2003, 26(3): 532~540.
    [30] J.K.Al-Tayie, P.P.Acarnley. Estimation of speed, stator temperature and rotor temperature in cage induction motor drive using the extended Kalman filter algorithm[J].IEE Proc.-Electr. Power Appl.,1997, 144(5): 301~309.
    [31] A N鲍里先科等.电机中的空气动力学与热交换[M].北京:机械工业出版社,1985.
    [32] A. F. Armor. Heat flow in the stator core of large turbine generators by the method of three-dimensional finite elements. Part I: Analysis by scalar potential formulation; Part II: Temperature distribution in the stator iron[J]. IEEE Transactions PAS, 1976, 95(5): 1648-1668.
    [33]李德基,白亚民.用热路法计算汽轮发电机定子槽部三维温度场[J].中国电机工程学报,1986,(6):36-45.
    [34]刘丹,范永达.冷却器非正常运行传热能力的分析与计算[J].大电机技术,1995,(2):37-42+64.
    [35]张大为,汤蕴璆等.大型水轮发电机定子最热段三维温度场的有限元计算[J].哈尔滨电工学院学报,1992,(3):186-194.
    [36]陈志刚.等效热网络法和有限元法在电机三维温度场计算中的应用与比较[J].中小型电机,1995,22(1):3-6+35.
    [37]李伟力,周封,侯云鹏,程树康.大型水轮发电机转子温度场的有限元计算及相关因素的分析[J].中国电机工程学报,2002,22(10):85-90.
    [38]李伟力,赵志海,侯云鹏.大型同步发电机定子同相槽和异相槽的温度计算[J].电工技术学报,2002,17(3):1-6+92.
    [39]李伟力,丁树业,靳慧勇.基于耦合场的大型同步发电机定子温度场的数值计算[J].中国电机工程学报,2005,25(13):44-47.
    [40] Weili Li, Shuye Ding, Huiyong Jin, Yingli Luo. Numerical Calculation of Multicoupled Fields in Large Salient Synchronous Generator[J]. IEEE Trans. on Magnetics, 2007, 43(4): 1449-1452.
    [41] H.Ohishi等.旋转电机单匝线圈股线中的温度分布[J].国外大电机,1987:6-13.
    [42] A. Alexander Eigeles Emanuel. Estimating the effects of harmonic voltage fluctuation on the temperature rise of squirrel-cage motors[J]. IEEE Transactions on Energy Conversion, 1991, 6(1):162~168.
    [43] J. T. Boys, M. J. Miles. Empirical thermal model for inverter-driven cage induction machines[J].IEE Proc.-Electr.Power., 1994, 141(6): 360-372.
    [44] Di Gerlando, R. Perni. Analysis evaluation of the stator winding temperature field ofwater-cooled induction motors for pumping drives[C]. ICEM 2000. Espoo, Finland: 1005-1009.
    [45] M.J. Durán, F.M. Pérez, J. Fernández. Induction machine deep-bar and thermal models for sensorless IRFOC application[J].IEE Proc.-Electr. Power, 2005, 152(3):479-484.
    [46] A. Boglietti, A. Cavagnino, D. Staton, et al. Thermal analysis of induction and synchronous reluctance motors[J]. IEEE Trans on Industry Applications, 2006, 42(3): 675-680.
    [47]何山,王维庆,张新燕,等.大型永磁同步风力发电机定子温度场研究[J].2009,30(6):799-803.
    [48]胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社,1986.
    [49]胡敏强,黄学良等.电机运行性能数值计算方法及其应用[M].南京:东南大学出版社,2003.
    [50] N. Mohan,T. Vndeland,W. P. Robbins.电力电子学—变换器、应用和设计[M].北京:高等教育出版社,2004.
    [51] Ruifang Liu, Chris Chunting Mi, David Wenzhong Gao. Modeling of iron losses of electrical machines and transformers fed by PWM inverters[C]. IEEE Power Engineering Society General Meeting, 2007: 1-7.
    [52] A. Boglietti, P. Ferraris, M. Lazzari, F. Profumo. Iron loss in magnetic materials with six-step and PWM inverter supply[J]. IEEE Trans. on Magnetics, 1991, 27(6): 5334-5336.
    [53]陈世坤.电机设计[M].北京:机械工业出版社,2000.
    [54]江善林,邹继斌,张洪亮.电梯曳引PMSM三维暂态温度场的数值计算与分析[J].电工技术学报,2007,22(10):6-11.
    [55]冯尔健.铁磁体实心转子异步电机理论与计算[M].科学出版社,1980.
    [56]白延年.水轮发电机设计与计算[M].北京:机械工业出版社,1982.
    [57]李伟力,李守法,谢颖,丁树业.感应电动机定转子全域温度场数值计算及相关因素敏感性分析[J].中国电机工程学报,2007,27(24):85-91.
    [58]刘亮.兆瓦级直驱式永磁风力发电机关键技术研究[D].山东大学硕士学位论文,2008.
    [59]吴海鹰.大中型永磁电机温度场数值计算[D].华中科技大学硕士学位论文,2007.
    [60]魏永田.电机内热交换[M].北京:机械工业出版社,1998.
    [61]杨菲.永磁电机温升计算及冷却系统设计[D].沈阳工业大学硕士学位论文,2007.
    [62] J. Xypteras, V. Hatziathanassiou. Thermal analysis of an electrical machine taking into account the iron losses and the deep-bar effect[J]. IEEE Trans. on Energy Conversion, 1999, 14(4): 996-1003.