矿物粘土与絮凝剂联合处理印染废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染企业在生产过程中产生的印染废水,是纺织印染工业主要污染源。废水若不经治理直接排放,将对地面水体产生严重影响,引起水体中生态系统的破坏和水体腐败。由于这类废水成分相当复杂,往往含有多种有机染料并且毒性强,色度深,pH值波动大,难降解,组分变化大,水量大,所以印染废水是工业废水处理的难点,而开发有效的印染工业废水处理技术是环保行业关注的重要课题。
     现在对印染废水处理的研究颇为活跃,脱色方法主要有吸附、混凝、氧化还原、离子交换、反渗透、生化等,但对絮凝剂联合矿物粘土处理印染废水的系统性研究较少,对其处理机理的研究就更少。
     本课题主要针对絮凝剂与凹凸棒粘土(以下简称凹土)联合处理印染废水进行脱色处理研究,考察此种方法对染料废水的脱色效果,以及其对比单独絮凝剂处理的增效效果;通过处理活性染料废水,对实验中各影响因素(染料废水pH值、絮凝剂投加量、凹土焙烧温度、复配比例等因素)及机理进行探讨并确定最佳工艺,最后通过处理酸性及分散染料废水,考察此种复配方法对酸性及分散染料废水的适用性。
     研究结果表明:聚合硫酸铝铁或硫酸铝与凹土的复配物在适宜条件下对活性染料、分散染料及酸性染料模拟废水均有较好的脱色效果,分散染料和酸性染料模拟废水脱色率可达95%以上,活性染料模拟废水脱色率可接近90%,COD去除率可达75%;较单独使用絮凝剂处理染料废水具有更广的pH使用范围及更好的脱色效果。
     聚合硫酸铝铁或硫酸铝与凹土复配使用在以活性染料为主的废水中有很高的使用价值,一方面提高了絮凝剂单独处理活性染料废水的脱色率,改善了单独使用絮凝剂处理印染废水中,活性染料废水脱色率及COD去除率不高的情况;另一方面减少了调节pH值所带来的麻烦,且此处理方法具有良好的沉降性能和较快的过滤速度加之粘土矿物价格低廉,同时可以再生利用,因而在处理活性染料为主的印染废水的净化处理方面具有良好的应用前景,且值得推广。
The wastewater produced in the printing & dyeing industry is the main pollution source of textile industry.If the wastewater weren't treated before being discharged, this would affect the ground water seriously.Thus may destroy the ecology balance of water and make water septic.The composition of dyeing effluent is considerable complex.It contains many kinds of organic dyestuff.It has complex characteristic, such as strong toxicity,deep colour,the wide fluctuations,difficult biodegradable,the wide variation of composition with a large quantity of water.So the dyeing wastewater is quite difficult for wastewater treatment.Understanding and developing suitable technology for dyeing effluent treatment is the important task of environmental protection industry.
     At present the research on dyeing effluent treatment is quite active,the main decolorization methods include adsorption,coagulation,redox,ion exchange,reverse osmosis,biochemistry and so on.However,there is little reserch on the method of using complex of flocculants and clay mineral to deal with the dyeing effluent,and there is even less reserch on the mechanism of this method.
     In this paper,the study is keen on dealing with the simulated dyeing effluent with the complex of coagulants and attapulgite.The effect of decolorization were studied by using the complex of cagulants and attapulgite to treat simulated disperse,acid and reactive dyeing effluent,as well as the synergistic effect compared the composite with their separate coagulant.The pH value of the effluent,the quantity of coagulants, activation temperature of clay,the ratio of coagulant to clay and other factors affecting color and COD removal rate and their mechanism were also discussed to define the best parameters.Finally,we studied the applicability of the complex method to the other two dyeing effluent by using the complex of cagulant and attapulgite to treat simulated disperse and acid dyeing effluent.
     The experimental results indicated that a synergistic effect was obtained for the decolorization of the simulated reactive,disperse and acid dyeing effluent by using coagulant Poly Ferric-Aluminous-Sulphate(PFAS) or Aluminum Sulfate(AS)and attapulgite simultaneously under the suitable condition.The decolorization of the simulated disperse and acid dyeing effluent can reach the value of 95%.The decolorization and COD reduction of the simulated reactive dyeing effluent can reach the values of 90%and 75%respectively.The method of using the complex of coagulant(PFAS or AS) and attapulgite have a better color and COD removal rate and wider application range of the pH value of the effluent than using coagulant only.
     The method of using the complex of coagulant(PFAS or AS) and attapulgite to treat reactive dyeing effluent from printing & dyeing mill has a very high application value.On the one hand,it improves the color and COD removal rate at the situation that the color and COD removal rate of the reactive dyeing effluent is so high.Also it can avoid the pH adjusting for dyeing effluent and has a good settling property performance and faster filtering rate.The clay also has several traits,such as fewness secondary pollution problem,low cost and can be recycled.Thus,this complex method has a good application prospect in the treatment of dyeing wastewater and should be promoted.
引文
[1]国家环保局、纺织工业部编.纺织印染废水-我国几种工业废水治理技术研究[M].北京:化学工业出版社,1988.
    [2]肖刚,王景国.染料工业技术[M].北京:化学工业出版社.2004,3:532-595.
    [3]李旭东,杨芸.废水处理技术及工程应用[M].北京:机械工业出版社.2003,1:194-200.
    [4]孙杰,张靖,李进平,氧化絮凝复合床处理印染废水的研究[J].武汉科技学院学报,2005,18(1):67-70.
    [5]苏玉萍,林颖,奚旦立.以活性染料为主要成分的印染废水的混凝脱色试验[J].化工环保,2000,20(2):7-11.
    [6]冯秀娟,葛天源.无机混凝剂在印染废水处理中的研究进展[J].中国资源综合利用,2005,3(10):6-9.
    [7]娄金生等.水污染治理新工艺与设计[M].北京:海洋出版社.1999.
    [8]林昆霞.印染废水处理探讨[J].云南环境科学,1998,17(4):36-38.
    [9]傅平青,程鸿德.印染废水治理研究现状[J].地质地球化学,2001,29(4):86-91.
    [10]唐淑娟,李然,刘桂英.印染废水的脱色[J].纺织科技发展,2005,(1):18-20
    [11]朱保家.印染废水吸附脱色技术的研究进展[J].沿海企业与科技技术与运用,2003,(2):71-72.
    [12]黄克玲,刘维屏等.混凝法处理印染生活混合型城市污水[J].工业用水与房水,2000,33(5):37-38.
    [13]古映莹,廖仁春.高岭石-MBT复合材料的制备及其对pb~(2+)的吸附性能[J].贵州化工,2001,26(3):23-25.
    [14]杨赞中,仁京成.粘土矿物在环境保护中的应用研究进展[J].中国非金属矿工业导刊,2000,2:23-26.
    [15]朱建平等.吸附气浮法脱除染料离子的研究[J].环境工程,1993,1(1):10-12.
    [16]Reed B E,Matsumoto M R,et al.Water Environment Research,1998,70(4):449-473.
    [17]文军.用超声波气振技术处理染料废水[J].污染防治技术,1994,7(1):26-27.
    [18]王敏,朱志远等.电子束辐照处理水溶液中的活性染料[J].核技术,2005,28(1):40-45.
    [19]常青.水处理絮凝学[M].北学:北京工业出版社,2003.
    [20]苏威.无机絮凝剂发展及建议[J].工业水处理,1993,13(1):3-7.
    [21]C.C.Tanner,J.P.S.Sukias,M.P.U psdell.Substratum Phosphorus Acumulation During Maturation of Gravel-Bed Constructed Wetlands[J].Wat.Sci.Tech,1999,40(3):147-154.
    [22]Jerry E Boothe.Some homo-and copolymerization studies of dimethyldiallylammonium chloride.J.Macromol.Sci.Chem.1970,A4(6):1419-1430.
    [23]吴早春,胡勇有,王忠民等.新型混凝剂聚磷氯化铝在污水处理中的特性[J].工业水处理,1996,16(5):15-17.
    [24]G S Kwon.et.al.ANovel Flocculant Biopolymer Poduced by Pestalotiopsis SP KCTC8637P[J].Biotechnology Letters,1996,18(2):1459-1464.
    [25]J E Gregor.C J Nokes,E Femon.Optimising natural organic matter removal from low turbidity water by controlled pH adjustmem aluminium coagulation[J].Water research,1997,31(12):2949-2958.
    [26]Aratan f.Evaluation of floc form by fractal dimension.Japan Soc ChemEngrg,1988,14(3):395-402.
    [27]李多松.用煤矸石制取复方聚合铝铁的研究[J].煤矿环境保护,1994,8(6):17-19.
    [28]Youji Negi.Cyclopolymerization of diallylamine derivatives in dimethyl sulfoxide[J].Polyme.Science,1967(5):1951-1965.
    [29]刘琼玉,李太友.难降解有机污染物的高级氧化技术.江汉大学学报,19(2):56-58.
    [30]童旭卿,王国庆.印染废水的脱色方法[J].广东化工,2004(2):62-66.
    [31]汪晓军.印染废水污染控制[J].环境科学与技术,2002,12:29-30.
    [32]赵东源,陈尔庭等.天然蒙托土对印染废水吸附处理的研究[J].环境污染与防治,1993,15(5):23-27.
    [33]王连军,黄中华等.膨润土的改性研究[J].工业水处理,1999,19(1):9-11.
    [34]王连军,黄中华等.改性凹凸棒土处理染化废水研究[J].南京理工大学学报,1998,22(3):240-243.
    [35]冀静平,祝万鹏等.膨润土的改性及对染料废水的处理研究[J].中国给水排水,1998,14(4):7-9.
    [36]邵颖,王青清等.膨润土改性及其在分散大红溶液脱色处理中的应用[J].环境科学与技术,1997,(4):16-18.
    [37]曾秀琼.弱酸性蓝GR在羟基铁柱撑膨润土上的吸附研究[J].水处理技术,2001,27(4):200-203.
    [38]Dipa Ghosh,Krishna G.Bhattacharyya.Adsorption of methylene blue on kaolinite[J].Applied Clay Science,2002,(20):295-300.
    [39]F A Banat,B AI-Bashir,S AI-Asheh,OHayneh.Adsorption of phenol by bentonite[J].Environmental Pollution,2000,107:391-398.
    [40]陈天虎,汪家权.蒙脱石粘土改性吸附剂处理印染废水实验研究[J].中国环境科学,1996,16(1):60-63.
    [41]陈天虎,凌丽华等.凹凸棒石粘土处理印染废水研究[J].环境污染与防治,1995,17(1):24-26.
    [42]裘祖楠,蔡明星等.活化凹凸棒石对阳离子染料的脱色作用及其作用研究[J].中国环境科学,1997,17(4):373-376.
    [43]彭书传.凹凸棒土复合净水剂处理印染废水[J].环境导报,1997,(4):19-20.
    [44]Tang H X,Luan Z K.The differences of behaviour and coagulating mechanism between inorganic polymer flocculants and traditional coagulants[J].In:Hahn H H,Hoffman E,Odegaard H ed.Chemical water and Wastewater Treatment:Ⅳ.Springer-Verlag,1996,20(5):83-93.
    [45]Hasegawa T,Go to K,Tambo N.Characteristic of metal-polysilicate coagulants[J],water Sci.Technol,1991,23(8):1713-1722.
    [46]Jean-Philoppe Boissert,et al.Phosphate adsorption in flocculation processes of aluminum sulphate and poly-aluminum-silicate-sulphate[J].Wat Res 1997,31(8):1939-1946.
    [47]K.Urano,et al.Process development for removal and recovery of phosphorus from wastewater by a new adsorbent.1.preparation method and adsorption capacitv of a new adsorbent.Ind.Eng.Chem.Res.1991,30:1893-1896.
    [48]Dentel SK,Gossett JM,Mechanisms of Coagulation.With Aluminum Salts.J Am Water,Works Assoc,1988,80(4):187.
    [49]Katz LE,Hayeds KF,Surface Complexation.Modeling,Colloid Interface Sci,1995,170:477.
    [50]Dentel SK,Applieation of the Precipitation-Charge.Neutralization Model of Coation.J.Envem,Sci,Technol,1988,22(7):825.
    [51]Amittharajah A mills K J.Journal AWWA.1988,74(4):210.
    [52]常青.水处理絮凝学[M].北学:北京工业出版社,2003.
    [53]JohnSon P N,Amirtharajah A..Journal AWW A.1983,75(5):232.
    [54]Tang H X,Stumm W.The coagulation behaviors of Fe(Ⅲ)polymeric species [J].WaterRes,1987,21(1):115-121.
    [55]AWWA.coagulation Committee[J].Journal AWWA.1988,81(10):72.
    [56]Dental S K,Gossett J M.Journal A WW.1888,80(4):187.
    [57]Overbeek J.Colloid and Interface Sci[M].San Diego:Academic Press Inc,1977.
    [58]胡弘鲲.聚合氯化铝铁的制备及其应用研究.四川大学.2002,4.
    [59]HofstteterA,TrollGt MatthiesD.Anabst(London),1991,116(1):65.
    [60]栾兆坤,汤鸿霄.混凝过程中铝与聚合铝水解形态的动力学转化及其稳定性[J].环境科学学报,1997,17(3):321-326.
    [61]栾兆坤,汤鸿霄.聚合铝形态分布特征及转化规律[J].环境科学学报,1988,8(2):146-155.
    [62]卢建杭.印染废水混凝脱色与染料结构及混凝剂种类间的关系[J].工业水处理,1999,19(4):28-29.
    [63]何杰,刘玉林.天然沸石对含酚废水的处理[J].矿产综合利用,1999,1(2):39-43.
    [64]何瑾馨.染料化学[M].北京:中国纺织出版社,2004.
    [65]陈天虎.凹凸棒石粘土吸附废水中污染物机理探讨[J].高校地质学报,2000,6(2):267-268.
    [66]魏翔、朱琨、王海涛等.改性沸石对印染废水的脱色研究[J].兰州铁道学院学报,2003,22(4):113-115.
    [67]胡涛,郭迎卫,严群.改性凹土处理印染废水的研究[J].青海环境,2005,16(2):66.
    [68]彭书传、黄川徽、陈天虎等.盐酸活化凹凸棒石吸附Cr~(3+)工艺条件的优化研究[J].合肥工业大学学报,2003,26(3):332-335.
    [69]Myriam M,Su(?)rez M and Mart(?)n2Pozas J M.St ructural and textural modifications of palygorskite and sepiolite under acidt reatment[J].Clay and Clay Minerals,1998,46(3):225-231.
    [70]周伟等.改性凹凸棒土处理含铜废水的研究[J].四川化工,2007,10(3):44.
    [71]严瑞暄.水处理应用手册[M].北京:化学工业出版社,2003.
    [72]彭书传、黄川徽、陈天虎等.盐酸活化凹凸棒石吸附Cr(3+)工艺条件的优化研究[J].合肥工业大学学报,2003,26(3):332-335.
    [73]胡涛,郭迎卫,严群.改性凹土处理印染废水的研究[J].青海环境,2005,16(2):66.
    [74]孙从军,王敏等.硅藻土混凝剂在污染河水处理中的应用研究[J].上海环境科学,2003,22(4):275-278.
    [75]龙一飞.絮凝剂在棉及其混纺织物印染废水处理中的应用[D].武汉理工大学,2004.
    [76]罗岳平,施周,王仕汇,李炳.用粘土作助凝剂提高聚合氯化铝除藻效果的研究[J].中国给水排水,2007,23(17):65.
    [77]常青.水处理絮凝学[M].北京:化学工业出版社,2002,30.
    [78]王晓昌,丹保宪仁,絮体形态学和密度的探讨[J].环境科学学报,2000,20(3):257-262.
    [79]卢建杭,刘维屏,张刚,潘春秀.印染废水混凝脱色结构及混凝剂种类间的关系[J].工业水处理,1999,19(4):28-31.
    [80]童杨.沸石与聚合氯化铝复合处理水源水中藻类的研究[J].盐城工学院报,2006,19(4):25.
    [81]Yang Y,Wyatt D T,Bahorsky M.Decolorization of dyes using UV/H2O2photochemical oxidation[J]Text Chem Color,1998.130(4):27-35.
    [82]代伟伟,刘义新.安徽明光凹凸棒土盐酸改性前后的矿物学特征及其孔结构[J].矿物学报,2005,25(4):393.