晶粒细化剂Mg-Al-C及Ce对AZ91D镁合金低周疲劳行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天航空及汽车工业轻量化、节能化和环保化发展的必然趋势,越来越多的镁合金构件用于承载交变载荷并引起疲劳破坏,这就要求对其疲劳性能进行深入研究。研究镁合金的疲劳行为不仅具有理论价值,而且也具有一定的工程实用价值。本课题选用AZ91D合金为母合金,向其中分别加入不同含量的晶粒细化剂Mg-Al-C、Ce,系统地研究了晶粒细化剂对基体合金的微观组织和低周疲劳性能的影响,以期为AZ91D合金的抗疲劳设计和合理使用提供可靠的理论依据。
     力学性能结果表明,晶粒细化剂Mg-Al-C和Ce的添加使AZ91D基体合金的屈服强度、抗拉强度、断面收缩率和弹性模量均得到较大提高。当分别加入1.2%Mg-Al-C和0.9%Ce时,合金的综合力学性能达到最好。加入1.2%Mg-Al-C时,AZ91D合金的σs = 140.34MPa,σb=255.63MPa,ψ=8.60%,E=1.42GPa;加入0.9%Ce时,合金的σs = 136.14MPa,σb=233.29MPa,ψ=7.80%,E=1.38 GPa。两者均较未添加晶粒细化剂的AZ91D合金性能(σs = 103.09MPa,σb=152.13 MPa,ψ=1.30%,E=0.85 GPa)有较大提高,其中添加Mg-Al-C的合金力学性能更好。
     显微组织观察表明,晶粒细化剂Mg-Al-C和Ce的添加可以有效地细化AZ91D基体合金的晶粒,改善β-Mg17Al12相的大小和分布,且细化效果与晶粒细化剂添加量有关。当晶粒细化剂Mg-Al-C、Ce的添加量由0.3%增加到1.2%时,随着添加量的加大,AZ91D合金中的β相不断断网破碎、细化和弥散化,树枝晶最终也得以消除。当添加1.2%Mg-Al-C时,合金的平均晶粒尺寸由未添加细化剂的原始尺寸162μm分别降到57μm;添加0.9%Ce后合金平均晶粒尺寸也降至64μm;降幅分别为64.8%和60.5%。在AZ91D基体中分别加入1.2%Mg-Al-C和0.9%Ce时,合金的平均晶粒尺寸达到最小化。
     低周疲劳实验结果表明:①晶粒细化剂Mg-Al-C和Ce的添加使AZ91D基体合金的低周疲劳寿命得到大幅度提高。当总应变幅?εt/2为0.2%时,AZ91D+1.2%Mg-Al-C合金、AZ91D+0.9%Ce合金的疲劳寿命由未添加细化剂AZ91D合金的疲劳寿命7694周次分别提高到13615周次和12537周次;当?εt/2为1.2%时,AZ91D+1.2%Mg-Al-C合金、AZ91D+0.9%Ce合金的疲劳寿命从AZ91D基体合金的21周次分别升高到113周次和102周次。晶粒细化剂Mg-Al-C的添加比Ce对合金的疲劳寿命影响更大。②在较大应变幅下,镁合金循环滞后回线上分别出现拐点、拉压不对称和锯齿现象。晶粒细化剂的添加大大减缓了上述现象的发生。③镁合金的循环应力响应行为主要呈现循环应变硬化趋势,应变幅的降低和晶粒细化剂的添加使其呈现循环稳定甚至循环软化,其中应变幅的影响占主要地位。④晶粒细化剂的加入大大增强了镁合金的延性,使镁合金的过渡疲劳寿命高于AZ91D基体合金。⑤镁合金的循环应力-应变行为均表现出循环硬化现象,晶粒细化剂的添加增大了循环强度系数、减小了循环应变硬化指数。⑥镁合金疲劳断口上的三个特征区域并不特别明显,出现了多疲劳源现象,且断口随应变幅的增加越来越凹凸不平。⑦镁合金的循环滞后能与疲劳寿命之间呈线性关系,据此可以预测合金的低周疲劳寿命。总之,在低周疲劳实验中,晶粒细化不仅延长了疲劳裂纹的萌生寿命,也延长了疲劳裂纹的扩展寿命,从而延长了整个疲劳寿命。因此,晶粒越细化,镁合金的低周疲劳寿命越长。
With the inevitable development trend of lightweight, energy-saving and environmental protection of aerospace and automotive industry, more and more magnesium alloy components endure cyclic loading, which results in fatigue fracture, therefore, the fatigue properties of magnesium alloys should be studied in depth. Obviously, the investigation concerning fatigue behaviors of magnesium alloys is of both academic and practical significance. In this investigation, the AZ91D alloy is chosen as the master alloy. Through adding different amounts of the grain refiners Mg-Al-C and Ce, the microstructure and low-cycle fatigue behavior of magnesium alloys with various grain refiner have been researched in order to provide a reliable theoretical foundation for both anti-fatigue design and reasonable application of AZ91D alloys.
     The results reveal that the mechanical properties of AZ91D alloy such as yield strength,σs, ultimate tensile strength,σb, reduction of area,ψ, and elastic modulus,E, have been improved greatly after adding the grain refiner Mg-Al-C or Ce. As adding 1.2%Mg-Al-C grain refiner, which is the most proper amount of its addition, into the master alloy AZ91D, whose comprehensive mechanical properties, such asσs equals to 140.34MPa,σb to 255.63 MPa,ψto 8.60%,E to1.42 GPa ; when adding 0.9%Ce (the most proper amount of its addition) into AZ91D, whoseσs equals to 136.14MPa,σb to 233.29 MPa,ψto 7.80%,E to1.38 GPa. Each exceeds that of no refiner–added master alloy, whoseσs equals to 103.09MPa,σb to 152.13 MPa,ψto 1.30%,E to 0.85 GPa, and the alloys adding grain refiner are much better.
     Observations of microstructure illustrate that the addition of Mg-Al-C and Ce can effectively refine the grain of AZ91D alloy and improve the morphology ofβ-Mg17Al12 with shape, size and distribution. The grain refinement effect is related to the adding amount. As the addition of Mg-Al-C or Ce grain refiner increases from 0.3% to 1.2%, the reticularβ-Mg17Al12 in the matrix of AZ91D alloy splits into dispersive fine pieces and the dendrite has disappeared. The average grain size of alloy are reduced from 162μm to 57μm which is the minimum, when adding 1.2% Mg-Al-C grain refiner; adding 0.9%Ce, the average grain size falls to the minimum 64μm. Amplitude reduction of both reaches to 64.8%and 60.5%, respectively.
     Low-cyclic fatigue tests demonstrate following main points.①the low cycle fatigue life of the AZ91D matrix alloy is enhanced to a great extent with the addition of the grain refiner Mg-Al-C or Ce .When total strain amplitude?εt/2 is 0.2%, fatigue life of AZ91D + 1.2%Mg-Al-C and AZ91D + 0.9%Ce alloy increases to 13615 and 12537cycles, respectively; and that the life of no refiner–added AZ91D alloy is 7694 cycles. When ?εt/2 reaches to 1.2%, the fatigue life of AZ91D alloy is improved from 21cycles up to 113 and 102cycles after adding 1.2%Mg-Al-C and 0.9%Ce, respectively. Therefore, the addition of Mg-Al-C is more effective than that of Ce to the fatigue life of AZ91D alloy.②A t the higher total strain amplitudes, theσ-εhysteresis loops of magnesium alloys exhibit some behaviors such as inflexion, asymmetry of tension and compression and serrated flow deformation, all of which can be reduced by the addition of grain refiner.③The cyclic stress response behavior of magnesium alloys mainly exhibit cyclic strain hardening. The reduction of total strain amplitude and addition of the grain refiner make it show cyclic stability or even cyclic softening, where the impact of total strain amplitudes is more important.④The addition of the grain refiner substantially boosts up the ductility of magnesium alloy, so the transitional fatigue life of magnesium alloy adding grain refiner is much higher than that of the AZ91D matrix alloy.⑤T he cyclic stress-strain behavior of magnesium alloy shows cyclic-hardening; Grain refiner addition increases the cycle intensity factor, meanwhile, reduces the cycle strain hardening index.⑥Fatigue fracture surface of all the magnesium alloys have no three clear regions which characterize fatigue damage, and there exsists several fatigue source zones. As the strain amplitude increases, the fracture surface becomes more rough and concavo-convex.⑦A linear relation exists between the cycle hysteresis energy and fatigue life for all the magnesium alloys. Thus, the low-cycle fatigue life of the magnesium alloys can be predicted by utilizing the cycle hysteresis energy as a material parameter.
     In conclusion, in the low-cycle fatigue experiments, with the addition of the grain refiner, both the initiation and propagation life of the fatigue crack are prolonged, so the whole fatigue life is extended. As a result, the finer the grains of magnesium alloy, the longer the low cycle fatigue life of it.
引文
[1] Winandy C D.Magnesium die-castings in motor vehicles[J].Automotive Sourcing Special Report,1998(1):8~9
    [2] Thomas J,Ruden,Darry L,etal.High ductility magnesium alloys in automotive applications [J].Advanced Mater and Processes,1994,145(6):28~132
    [3] Polmear I J.Magnesium alloys and applications[J].Materials Science and Technology,1994,10(1):1~6
    [4]刘金海,李国禄,刘根生.镁合金成形工艺及应用研究进展[J].轻合金加工技术,2001,29(8):1~4
    [5]许志峰,王梦立.现代科学技术与当代社会[M].长春:东北师大出版社,1991.98~106
    [6]彭晓光,李玉兰,刘江等.轻金属在汽车上的应用[J].机械工程材料,1999,23(2):1~4
    [7] Mitsuguki I, Murakami S. Development and application of aluminum extrusion for automotive parts [J].Journal of Materials Processing Technology,1993,38(4):635~654
    [8] Mihriban O , Pekguleryuz ,Mike Dierks , etal.Creep resistant magnesium alloys for power-train applications[J].Proceedings of Annual World IMA 2001 Magnesiu Conference,2001,32(1)37~45
    [9] Robert Brown.International magnesium association 54th annual world conference[J]. Light Metal Age,1997,(8):72~75
    [10] Froes F H.The science technology and applications of magnesium[J].Journal of Materials Science,1998,(9):30~34
    [11] Dwain M, Magers A G.Review of magnesium parts in automobile[J].Light Metal Age,1996, 10: 62~63
    [12] Munit A Z,Cotler C,Stem A etal.Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates[J].Materials Science and Engineering,2001,302:68~73
    [13]徐日瑶,刘宏专.镁基合金的活力及其生产[J].轻金属,1999, 1l: 47~50
    [16] Polmear I J.Magnesium alloys and applications [J]. Mater Sci Tech ,1994(1): 1~16
    [17]师昌绪,李恒德,王定佐.加速我国金属镁工业发展的建议[J].材料导报,2001,23(4): 5~6
    [18]刘正,张奎,曾小勤.镁基轻质合金理论基础及应用[M].北京:机械工业出版社,2002.45~50
    [19]陈振华.镁合金[M].北京:化学工业出版社,2004.124~126
    [20]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.210~215
    [21] Liu Y H,Liu X F,Bian X F.Grain refinement of Mg-A1 alloys with A14C3-SiC/Al master alloy[J].Materials Letters, 2004, 58(8): 1282~1287
    [22] Jin Q L,Eom J P,Lim S G,etal. Grain refining mechanism of a carbon addition method in a Mg-A1 magnesium alloy [J]. Scripta Materialia, 2003, 49: 1129~1132
    [23]张世军,黎文献,余琨.添加含碳熔剂细化镁合金晶粒的方法[J].特种铸造及有色合金,2002, (4):18~19
    [24] Tamura Y,Kono N,Sato E.Grain refining mechanism of cast Mg-Al alloy[J].Journal of Japan Institute of Light meats,1998,48(8):395~399
    [25]吴炳尧.半固态金属铸造工艺的研究现状及发展前景[J].铸造.1999(3):45~51
    [26] K.H,马图哈.非铁金属的结构与性能[M].北京:科学出版社,1999.86~89
    [27]王振卿,刘相法,边秀房等.Al-C反应的DSC和XRD分析[J].铸造.2003,52(17):80~83
    [28]高义斌,张金山,裴利霞等.Al-C和Al-Ti-C中间合金对AZ91合金晶粒的细化[J].铸造设备研究.2004(6):20~22
    [29] LLu,AK Dahle.Heterogeneous nucleation of Mg-Al alloys[J].Scripta Materialia,2006,(54):2197~2201
    [30]张世军,黎文献,余琨.铈对镁合金AZ31晶粒大小及铸态力学性能的影响[J].铸造,2002,51(12):767~771
    [31]程育仁.疲劳强度[M].北京:中国铁道出版社,1990.152~168
    [32]黄正华,郭学峰,张忠明等.铈对铸造镁合金AZ91D显微组织和力学性能的影响[J].稀有金属.2004,28(4):78~82
    [33] Jin QL,Eom JP,Lim SG,etal.Grain refining mechanism of a carbon addition Method in a Mg-Al magnesium alloy[J],Scripta Materialia,2003,49: 1129~1132
    [34] Tamura Y,Kono N,Motegi T,etal.Grain refinement of easting Mg-Al alloys[J].JJILM,1998,48(8):396~99
    [35]黄晓峰,周宏,何镇明.AZ91D加铈阻燃镁合金氧化膜结构分析[J].中国稀土学报,2002,20(l):49~52
    [36]束德林.金属力学性能[M].北京:机械工业出版社,1995.86~89
    [37]徐颗.疲劳强度[M].北京:高等教育出版社,1988.213~224
    [38]航空工业科学技术委员会.应变疲劳分析手册[M].北京:科学出版社,1987.148~152
    [39]机械设计手册编委会.疲劳强度[M].北京:机械工业出版社,2007.312~336
    [40] Suresh,S.材料疲劳(王中光译)[M].北京:国防工业出版社,1993. 361~373
    [41] Fine M E and Ritchie R O.Fatigue crack initiation and near-threshold crack growth [J]. Fatigue and Microstructure,1979(2):245~278
    [42] Bronfin BM,Zhitova LP,Popov VV,etalApplication of CX-type modifiers in Al-Si alloys[J].Engineering Materials Advisory Services,1972(3):1255~1262
    [43]何家文.表层强度及其对疲劳的影响[J].金属热处理学报,1997,18(3):23~28
    [44] Lankford J,Kusenberger F N. Initiation of Fatigue Crack in 4340 steel[J].Metallurgical and Materials Transactions B,1973,4:553~561
    [45] Schoeler K ,Christ H J. Influence of prestraining on cyclic deformation behaviour and microstructure of a single-phase Ni-base super alloy [J]. International Journal of Fatigue ,2001,23(9):767~775
    [46] Halford G R,The energy required for fatigue[J].Joumal of Materials,1966,(l):3~18
    [47]陈振华,许芳艳,傅定发等.镁合金的动态再结晶[J].化工进展,2006,25(2):140~146
    [48]刘楚明,刘子娟,朱秀荣等.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(l):1~12
    [49] Ono N,Nowak R,Miura S.Effect of deformation temperature on Hall-Peteh relationship registered for polycrystalline magnesium[J].Materials Letter,2003,58: 39~43
    [50]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998.121~126
    [51]杨友,刘勇兵.稀土元素对AZ91D压铸镁合金高周疲劳性能的影响[J].金属热处理,2006,31(7):18~22
    [52]杨友.Nd对压铸镁合金AZ91D高周疲劳性能的影响[J].特种铸造及有色合金,2006,26(10):646~649
    [53]曾荣昌,韩恩厚.轧制组织对镁合金AM60疲劳性能的影响[J].材料科研学报,2003,17(3):241~246
    [54] Lee S,Lee S H,Kim D H. Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys[J].Metallurgical and Materials Transactions A.1998,29,12~21
    [55] Eisenmeier G,Holzwarth B,Mughrabi H,etal.Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91 [J]. Materials Science & Engineering A,2001,3,26~30
    [56] Mayer H,Papakyriacou M,Zettl B,etal. Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys[J].International Journal of Fatigue, 2003,(4):32~36
    [57] Hilpert M, Wagner L.Magnesium alloys and their applications Kainer [J]. Metals and Materials Society,2000,(3),525~529
    [58] Altenberger I,Scholtes B.Improvement of fatigue behaviour of mechanically surface treated materials by annealing[J].Scripta Mater,1999,41(8):873~881
    [59] Hilpert M,Wagner L,Corrosion fatigue behavior of the high strength magnesium AZ80[J],Journal of Materials Engineering and Performance, 2000,9:402~408
    [60] Kusukawa K,Takao K.Fatigue crack initiation behavior and notch sensitivity of AZ91 magnesium alloy[J].Transactions of the Japan Society of Mechanical Engineers A,2002,68(7):1092~1097
    [61] Koutsomichalis A,Saettas L,Badekas H.Laser Treatment of Magnesium [J].Journal of materials science,1994,29:6543~6547
    [62] Song G L,Atrens A.Corrosion Mechanisms of Magnesium Alloys[J].Advanced Engineering Materials,1999,1,11~33
    [63] Ross P N,MacCulloch J A. International die casting congress and exposition[J].University of Shefield,1999,2(13):26~30
    [64] Eliezer A,Cutman EM.Corrosion of fatigue of die cast and extruded magnesium alloys[J].Light Metals,2001,1:179~190
    [65] Mayer H,Papakyriacou M,Zettll B,etal.Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys[J].International Journal of Fatigue, 2003,4:247~252
    [66] Eifert A J,Thomas J P,Rateick R G.Influence of anodization on the fatigue life of WE43A-T6 magnesium[J].Scripta Materialia,1999,40(8):929~945
    [67] Hilpert M, Wagner L.Corrosion fatigue behavior of the high-strength magnesium alloy AZ80 [J].Journal of Materials Engineering and Performance, 2000,17(8):1601~1607
    [68] Wagner L.Mechanical surface treatments on titanium,aluminum and magnesium Alloys[J].Materials Science & Engineering,1999,26(8):210~216
    [69] Zhang P,Lindemann J.Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80[J].Scripta Mater,2005,52:485~490
    [70] Deiseroth D,Zinn W,et a1.Consequences of mechanical surface treatments on near surface properties of magnesium alloy AZ31[J].Magnesium Alloys and Their Applications,1998,31(2):409~414
    [71] Zhang P,Lindeman J.Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80[J].Scripta Mater,2005,5(2):1011~1015
    [72] Wagner L,Hilpert M,Wendt J,eta1.On Methods for improving the fatigue performance of the wrought magnesium Alloys AZ31 and AZ80[J].Mater.Sci.Forum.,2003,26(12):419~422
    [73] Wendt J,Hilpert M, Kiese J,eta1.Surface and environmental effects on the fatigue behavior of wrought and east magnesium alloys[J].Magnesium Technology ,16(5):281~285
    [74]董定乾.镁及镁合金晶粒细化剂的制备及其对组织和性能的影响:[硕士学位论文].赣州:江西理工大学.2007
    [75]张滂,唐靖林.镁合金熔炼阻燃技术进展及发展趋势[J].铸造技术,2005,(26):930~940
    [76] Dahle AK, Lee YC, Mark DN,eta1.Development of the as-cast microstructure in magnesium-aluminium alloys[J].Journal of Light Metals,2001, (1):61~72
    [77] Kaya A A, Uzan P, Eliezer D, etal. Electron microscopical investigation of as-cast AZ91D alloy[J].Materials Science and Technology,2000,12(8):1001~1006
    [78]郑飞燕,翁康荣,白慧龙等.微量S对AZ91lD镁合金凝固过程的影响[J].特种铸造及有色合金,2006,26(11):745~746
    [79]赵红亮,郑飞燕,关绍康等.厚条带Mg-Al-Zn基合金的显微组织研究[J].材料科学与工程学报,2005,23(4):607~609
    [80]张诗昌,魏伯康,林汉同等.钇及镧铈混合稀土对AZ91镁合金铸态组织的影响[J].中国有色金属学报,2001,(11):99~102
    [81]王立世,段汉桥,魏伯康等.混合稀土对AZ91镁合金组织和性能的影响[J].特种铸造及有色合金,2002,(31): 12~14
    [82]王军.压铸镁合金AZ91的稀土改性及切削机理研究[硕士学位论文].重庆:重庆大学,2005
    [83]杨友,刘勇兵,杨晓红等.AZ91系列压铸镁合金高周疲劳断口形貌分析[J].铸造,2006,(2):135~139
    [84] Christian J W, Mahajan S. Deformation twinning [J]. Progress in Materials Science, 1995,(39): 142~157
    [85]陈振华,杨春花.镁合金塑性变形中孪生的研究[J].材料导报,2006,20(8): 107~113
    [86]余琨,黎文献,李松瑞.变形镁合金材料的研究进展[J].轻合金加工技术,2001,29(7):6~11
    [87]周惦武,庄厚龙,刘金水等.镁合金材料的研究进展与发展趋势[J].河南科技大学学报,2004,25(3):23~27
    [88]《轻金属材料加工手册》编写组.轻金属材料加工手册[M].北京:冶金工业出版社,1979.432~438
    [89]《工程材料实用手册》编辑委员会.工程材料实用手册(第三卷:铝合金、镁合金) [M].北京:中国标准出版社,2002.582~587
    [90]曾正明.实用工程技术手册[M].北京:机械工业出版社,2001.68~72
    [91]张士宏,王忠堂.镁合金成形加工技术[J].世界科技研究与发展,2001,23(6):12~16
    [92]陈振华,夏伟军.镁合金材料的塑性变形理论及其技术[J].化工进展,2004 (23):35~39
    [93]卢志文,汪凌云,潘复生等.变形镁合金及其成形工艺[J].材料导报,2004 (9):39~42
    [94]李媛媛,计海涛,申健等.热加工对挤压态AM50镁合金的力学行为的影响[J].汽车工艺与材料,2005,(1):10~11
    [95]申健,洪成森,李锋等.AZ91与AM50+Nd镁合金的低周疲劳行为[J].第四届中国国际压铸会议论文集,2004,(2)133~138
    [96] Raske D T, Morrow J. Mechanics of Materials in Low-Cycle Fatigue Testing [J]. American Society for Testing and Materials, 1969,15(2):22~26
    [97] Coffin L F. Fatigue at high temperatures [J].American Society for Testing and Materials, 1973.23(4): 26~30
    [98] Shivkumar S, Ricci S, Keller C,etal.Effect of solution treatment parameters on tensile properties of cast aluminum alloys [J]. Heat Treating, 1990, 8(1): 63~70
    [99] Landgraf R W .Achievement of high fatigue resistance in metals and alloys[J].ASTM STP,1970, (3): 467~472
    [100]童小燕,万小朋.复合材料的疲劳寿命预测[J].机械强度,1995,17(3):94~100
    [101]余琨;黎文献;王日初.镁合金塑性变形机制[J].中国有色金属学报,2005,15(7):104~110
    [102] Mukai T,Yamanoi M ,Watanabe H ,etal. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure[J].Scripta Materialia , 45(1 ):89~94
    [103]凌绪玉,李聪,沈保罗等. Zr-4合金低周疲劳特性研究[J].原子能科学技术,2003,37(27):36~40
    [104] Cong L,Shihao Y,Baoluo S,etal.Cyclic stress-strain response of textured Zircaloy-4[J].Journal of Nuclear Materials, 2003,21(3): 60~69
    [105] Mould PR, Gray JM.Plastic anisotropy of low-carbon, low-manganese steels containing niobium[J].Metallurgical Transactions ,1978,9(12):141~152
    [106] Tenckhoff E.The development of the deformation texture in zirconium during rolling in sequential passes [J]. Metallurgical and Materials Transactions A,,1978,34(12):26~30
    [107] Koike J.Dislocation plasticity and complementary deformation mechanisms in polycrystalline Mg alloys[J].Material Science Forum, 2004,4(12):449~452
    [108] Perex-Prado M T, Valle J A, Ruano O A.Effect of sheet thickness on the microstructural evolution of anMg AZ61 alloy during large strain hot rolling[J].Scripta Materialia, 2004,50: 667~671
    [109] Caceres C H, Sumitomo T, Veidt M. Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading-unloading[J]. Acta Materialia,2003,5(1):6211~6218
    [110]苏燕铃.孪生在镁合金塑性变形中的作用:[硕士学位论文].南京:南京理工大学,2007
    [111]陈文哲,彭开萍,钱匡武.动态应变时效对不锈钢高温强度的影响[J].机械工程学报,1992, 28(2):34~3 8
    [112] Valsan M, Sastry D H, Rao K B,etal.Effect of strain rate on the high-temperature low-cycle fatigue properties of a nimonic PE-16 alloy[J].Metallurgical and Materials Transactions, 1994, 2(5): 159~171
    [113]郑子樵,刘明桂,尹登峰.Al-Li合金的锯齿屈服现象[J].中南工业大学学报,1995, 26(1): 87~91
    [114]钱匡武,李效琦,彭开萍等.高强度铝合金LC4中锯齿屈服特征的研究[J].福州大学学报,1995,23(2): 53~58
    [115] Hong SG,Lee SB. Dynamic strain aging under tensile and LCF loading conditions and their comparison in cold worked 316L stainless steel[J]. Journal of Nuclear Materials, 2004, 3(28): 232~242
    [116] Picu R C, Zhang D. Characterization and analysis of low-temperature superplasticity in 8090 Al-Li alloys [J]. Acta Materialia, 2004, 52:161~171
    [117]李锋,吴崴,陈立佳等.热处理对挤压变形AM50镁合金疲劳行为的影响[J].沈阳工业大学学报,2007,29(3):26~31
    [118]钱匡武,李效琦,萧林钢等.金属和合金中的动态应变时效现象[J].福州大学学报,2001, 29(6): 8~21
    [119] S.Suresh .材料的疲劳[M].北京:国防工业出版社,1999.398~406
    [120]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998.212~217
    [121]侯旭明.金属力学性能[M].北京:机械工业出版社.1995.69-75
    [122] Tomkins B. Mechanisms of fatigue-crack propagation in ductile and brittle solids [J].Philosophical Magazine, 1968,12(8):122~128
    [123] Zheng X,Hirt M. Fatigue crack propagation in martensitic and austenitic steels [J]. International Journal of Fracture,18(2):965~974
    [124] Zheng XL.A simple Formula for Fatigue Crack Propagation and a New Method for the determination of ?K[J]. Engineering Fracture Mechanics, 1987,27(3):465~475