复杂地表下雷电电磁环境及架空输电线感应过电压模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷电电磁脉冲对如今社会中各类电子设备、通讯系统及电力系统的危害越来越大。因此,了解雷电电磁场脉冲在空间的传播特性及其在输电线上的耦合问题对目前的雷电防护工作具有重要的理论和实现价值。首先,文章研究了复杂地表下雷电回击电磁场的传播特性,依据二维分形粗糙模型讨论了光滑和粗糙地表对回击电磁场的影响,并根据Scott提出的土壤模型讨论了土壤湿度引起的电参数变化对雷电回击电磁场的影响。然后,利用时域有限差分法(FDTD)和传输线的耦合模型,讨论了理想地表情况及地面电导率垂直和水平分层情况下,雷电回击电磁场在传输线路上的感应过电压特性。本文研究取得如下结果:
     (1)当雷电水平电场沿粗糙陆地表面传播时,电场受地表面的粗糙程度影响很大,且随着粗糙度的增加,水平电场开始阶段的负峰值变小;而沿海-陆交接复杂地表传播时,水平电场受陆地部分粗糙度影响比较明显而受海浪起伏影响很小
     (2)电磁场沿土壤湿度为0.2%和10%的地表传播时,土壤湿度为0.2%时对电磁场的影响更加明显,尤其是回击水平电场,其表现主要是水平电场的峰值与湿度成反比;而土壤湿度由0.2%增加到10%时,垂直电场和水平磁场的上升沿时间减小,对垂直电场和磁场的峰值影响不太明显。
     (3)地表理想情况下,架空线上感应过电压值随着雷电回击速度、架空线高度的增加而增加,随架空线距雷击点的距离的增加而减小;雷电回击模型的变化对感应过电压的峰值影响不大,主要影响电压波形的上下沿时间,即对其衰减快慢有影响。
     (4)电导率垂直分层情况时,感应过电压值受电导率较小段影响更明显,因为电导率越小,电磁场场衰减越大,尤其是对水平电场;电导率水平分层情况下,雷电感应过电压值主要受上层电导率的影响。
The damages of lightning electromagnetic impulse(LEMP)to the social electronic equipments, communication systems and power systems are getting worse. In consequence, looking into the LEMP's transmission property in space and the coupling problem on the transmission line of LEMP is very important in the theories and practical application of lighting protection. Firstly, the paper studies the propagation characteristic of lighting return stroke under complex surfaces, discussing the influence of smooth and rough surface on the return stoke electromagnetic fields based on two-dimensional fractal rough model, meanwhile, on the basis of the soil model proposed by Scott, the paper analyzes the influence of lightning return stroke electromagnetic fields caused by the change of the electrical parameter owing to the different soil moisture. Then, we take advantage of the method of FDTD and the transmission line coupling model to analyze the induced over-voltage characteristic of lightning return stroke electromagnetic field sensor on the transmission line in case of ideal surface and vertical and horizontal stratification of the ground conductivity. The conclusions are as follows:
     (1)When the horizontal electric field from lightning spread along the rough land surface, it is of great influence to the electric field according to the surface roughness level. With the increase of the roughness, the negative peak in initial stage of horizontal electric field diminished; But when the horizontal electric filed from lighting spread along the complex surface in the land-sea connecting belt, the influence by the terrestrial part of the roughness is more obvious than the undulate of the waves as to horizontal electric field.
     (2)When the electromagnetic field spread along the surface with0.2%and10%of the soil moisture, the impact of the former one(0.2%of the soil moisture) is more obvious to the electromagnetic field, especially to the horizontal electric field from lightning, which reflected in the peak of the horizontal electric field is inversely proportional to the soil moisture. When the soil moisture increased from0.2%to10%, the rise of the vertical electric field and the horizontal magnetic field decreases with time; the impact of the influence to the peak of the vertical electric and magnetic fields is not obvious.
     (3) In case of an ideal ground, the induced overvoltage on overhead line increases with the increase of the speed of lightning return stroke and the altitude of the overvoltage on overhead line, decreases with the decrease of the distance from the overhead line to the point of strike. Different lightning return stroke models has little effect to the peak of the induced overvoltage, but mainly affect the rising and falling edge time of the voltage waveform, as that influences the attenuation speed.
     (4)In the vertical stratified conductivity situation, Inductive over-voltage values are affected by the conductivity of the smaller segment is more obvious. For the sake of the smaller the conductivity is, the greater the electromagnetic field attenuation, especially to the horizontal electric field. In the horizontal stratified conductivity situation, the lightning induced over-voltage is mainly affected by the upper conductivity, moreover, when the upper thickness is greater than15meters, the lower conductivity of the impact of over-voltage is gradually increasing.
引文
[1]关志根.高电压工程基础[M].北京:中国电力出版社,第一版,2003.
    [2]谭湘海.输电线路的防雷设计[D].湖南大学,2004.
    [3]肖稳安,张小青.雷电与防护技术基础[M].北京:气象出版社,第一版,2006.
    [4]方瑜.配电网过电压[M].水利电力出版社,第一版,1994.
    [5]Bruce C E R, Golde R H.The lightning discharge[M].J Inst Elect,1941:487-520.
    [6]Rakov V A, Uman M A.Review and evaluation of lightning return stroke models including some aspects of their application [J].IEEE Trans on EMC,1998,40(4):403-426.
    [7]Podgorski A S. Three dimensional time domain modeling of lightning[J].IEEE Trans. Power Delivery,1987,2(3):931-939.
    [8]Little P F. Transmission line representation of a lightning return stroke[J].Phys. D:Appl. phys.,1978,11:1893-1909.
    [9]Rakov V A, Uman M A.Review and evaluation of lightning return stroke models including some aspects of their application [J].IEEE Trans on EMC,1998,40(4):403-426.
    [10]陈燕萍,陈慈萱.新型雷电通道模型简介[J].华中电力,2000,13(3):11—14.
    [11]Gomes C, Cooray V. Concepts of lightning return stroke models[J].IEEE Trans on EMC, 2000,42(1):82-96.
    [12]Cooray V. A model for subsequent return strokes [J].Electrostatics,1993,30:343-354.
    [13]宋庭新.基于网格计算的雷电电磁环境仿真[D].华中科技大学,2005.
    [14]Cooray V.Predicting the spatial and temporal variation of the electromagnetic field, currents and speeds of the subsequent return strikes[J].IEE Trans Electromagnetic Compat, 1999,2(40):406-410.
    [15]Rakov V A, Uman M A,Versaggi J A,et al. Electric field close to triggered lightning[C]. Proc EMC94 Roma Int Symp Electromagnetic Compat Rome Italy,1994:33-37.
    [16]M Rubinstein,M A Uman.Transient electric and magnetic fields associated with establishing a finite electrostatic dipole revisited[J].IEEE Transaction on Electromagnetic Compatibility, 1991,33(4):312-320.
    [17]文武.感应雷电磁干扰及防护研究[D].武汉大学,2004.
    [18]Cooray V. On the accuracy of several approximate theories used in quantifying the propagation effects on lightning generated electromagnetic fields. IEEE Transactions on antennas and Propagation,2008,56(7):1960-1967.
    [19]张其林,郄秀书,王振会等.地面有限电导率对雷电电磁波传播的影响[J].高电压技术,2008,36(9):23-25.
    [20]Norton K A. The propagation of radio waves over the surface of the earth and in the upper atmosphere[J], Proc IRE,1937,24:1367-1387.
    [21]Cooray V, Scuka V. Lightning induced overvoltage in power line:validity of various approximation made in overvoltage calculation[J].IEEE Trans Electromagnetic Compat, 1988,40(4):355-363.
    [22]Cooray V. Effects of propagation on the return radiation fields[J]. Radio Sci,1987,22(5): 757-768.
    [23]Cooray V. Horizontal fields generated by return strokes[J].Radio SCI,1992,27:529-537.
    [24]Rubinstein M. An approximate formula for the calculation of the horizontal electric field from lightning at close, intermediate and long ranges[J]. IEEE Trans Electromagnetic Compat,1996,38 (3):531-535.
    [25]Cooray V. Some consideration on the "Cooray-Rubinstein" formulation used in deriving the horizontal electric field of lightning return strokes over finitely conducting ground[J]. IEEE Trans Electromagnetic compat,2002,44(4):560-566.
    [26]Sommerfeld A. Partial differential equations in physics[J].Elsevier.New York,1949.
    [27]Banos A. Dipole radiation in the presence of a conducting half-space[J].New York, Pergamon,1966.
    [28]King R W P,Sandler SS. The electromagnetic field of a vertical electric field dipole in the present of three-layered region[J]. Radio Sci,1944,29(1):97-113.
    [29]杨春山,周壁华.计算地闪回击电流水平场的混合法[D].微波学报,2003,19(2):81—84.
    [30]任合明,周壁华.地闪电磁脉冲对近地电缆外导体的耦合研究[J].电波科学学报.2006.
    [31]邹相国.雷电电磁场空间分布的研究与计算[D].华中科技大学,2006.
    [32]田明宏,魏光辉.通道高度对雷电回击电磁场的影响研究[J].电波科学学报,2002,(05).
    [33]Rusck s. Induced lightning overvoltage on power transmission lines with special reference to the overvoltage protection of low voltage networks[J].K. Tek.Hoegsk. Handl,1958, (120).
    [34]Chowdhuri P. Anaysis of lightning induced voltages on overhead line [J].IEEE Transactions on Power Delivery,1989,4(1):479-491.
    [35]Agrawal A, H Price,S Gurbaxani.Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field[J].IEEE Trans on Antennas Propagation,1980 18(2):432-435.
    [36]Taylor C D,R S Satterehite,C W Harrison.The response of a terminated two wire transmission line excited by a nounniform electromagnetic field[J].IEEE Trans on Antennas Propagation,1987,13(11):987-989.
    [37]Rachidi F. Formulation of field-to-transmission line coupling equations in terms of magnetic excitation field [J].IEEE Transactions on Electromagnetic Compatibility,1993,35(3):404-407
    [38]Nucci C A,Rachidi F.On the contribution of the electromagnetic field components in field to transmission line interaction[J].IEEE Trans on Electromagnetic Compat,1995,37(4):505-508.
    [39]任合明,周壁华.雷电电磁脉冲对架空电力线的耦合效应[J].强激光与粒子束,2005.
    [40]杨静,郄秀书.雷电在水平导体中产生感应电压的观测及数值模拟研究[J].物理学报,2008(57)
    [41]莫付江,陈允平.架空输电线感应过电压耦合机理及计算方法分析[J].电网技术.2005.第29卷.第6期.
    [42]邹相国,杨新华.雷电电磁场空间分布的计算与仿真[J].技术创新.2006.22卷.第12-1期.
    [43]刘涤尘,解子凤.雷电电磁场在建筑物内外分布的数值计算[J].高电压技术.1994.第20卷.第2期.
    [44]郄秀书,张其林,杨静.雷电在水平导体中产生感应过电压的观测及数值模拟研究[J].物理学报.2008.第57卷.第3期.
    [45]文习山,彭向阳,解广润.架空配电线路感应过电压的数值计算[J].中国电机工程学报,1998,18(4):299-301.
    [46]李福寿.电力系统过电压计算[M].水利电力出版社,第一版,1986.
    [47]Uman M.Lightning return stroke electric and magnetic field[J].J G R.1985,90 (D4): 6121-6130.
    [48]Sommerfeld A.Propagation of waves in wireless telegraphy[J].Ann Phys,1926,81:1135-1153.
    [49]King R W P. The electromagnetic field of a vertical electric dipole over the earth or sea[J].IEEE Transaction on antennas and propagation,1994,42(3):282-389.
    [50]Norton K A. The propagation of radio waves over the surface of the earth and in the upper atmosphere[J].Proc IRE,1937,24:1367-1387.
    [51]Cooray V. Horizontal fields generated by return strokes[J]. Radio Sci,1992,27:529-537.
    [52]Cooray V. On the accuracy of several approximate theories used in quantifying the propagation effects on lightning generated electromagnetic fields[J]. IEEE Trans on Antennas Propagation,2008,56(7):1960-1967.
    [53]Qilin Zhang. Propagation effect of a fractal rough ground boundary on the lightning-radiated vertical electric field[J]. Atmospheric Research,2011, doi:10.1016/j. atmosres.2011.10.009.
    [54]Qilin Zhang. Propagation effects of a fractal rough ocean surface on the vertical electric field generated by lightning return strokes[J]. Journal of Electrostatics,2011, doi:10.1016/j. elstat. 2011.10.003.
    [55]Uman M, Mclain D, Fisher R. Electric field intensity of the lightning return stroke[J].J G R.1973,78 (18):3523-3529.
    [56]Lin Y T,Uman M, Standler. Lightning return stroke modles[J] J G R.1980,85(C3):1571-1583.
    [57]刘有菊,和伟.雷电放电电磁场及保护[J].云南大学出版社,第一版,2009,44.
    [58]Heidler F. Analytische blitzstromfunktion zur LEMP-Berechnung[J].paper presented at the 18th international Conference on lightning protection,1985.
    [59]Heidler F, Cvetic J A. Class of analytical functions study the lightning effects associated with the current front[J].Electrical Engineering,2005,87:121-128.
    [60]Senior T. B. A. Impedance boundary condition for statistically rough surface.[J]. Appl. Sci. Res.1968(8B):437-462.
    [61]Barrick D E. Theory of HF and VHF propagation across the rough sea,1,the effective surface impedence for a slightly rough highly conducting medium at grazing incidence. Radio Sci. 1971,6(56):527-533. doi:10.1029/RS006i005p00517.
    [62]Lancaster H O. The Chi-squared distribution[D].New York:John Wiley&Sons Inc,1969.
    [63]Beckman P,Spizzichino A. The scattering of electromagnetic waves from rough surfaces[J]. New York:Pergamon,1963.
    [64]Falconer K. Scattering from natural rough surfaces modeled by fractal Brownian motion two-dimension processes.[J]. IEEE Trans. Antennas. Propag.47:1405-1415.
    [65]Falconer K. Fractal geometry:mathematical foundation and application[J]. New York:Wiley, 1990.
    [66]Barrick D E. Theory of HF and VHF propagation across the rough sea,1, The effective surface impedance for a slightly rough highly conducting medium at grazing incidence[J]. Radio Sci.1971a,6(5):517-526.
    [67]Barrick D E. Theory of HF and VHF propagation across the rough sea,2, Application to HF and VHF propagation above the sea[J]. Radio Sci.1971b,6(5):527-533.
    [68]Fuller B D,Ward S H. Linear system description of the electrical parameters of rocks[J].IEEE Trans Geosci Electron,1970,97(D14):15913-15917.
    [69]Scott J H. Electrical and magnetic properties of rock and soil[J]. Dep of the interior, Washington D C,1966.
    [70]Longmire C L,Smith K S. A universal impedance for soils[J]. Topical Report for Period July 1-September 30,1975.
    [71]Delfino F,Procopio R. Influence of frequency-dependent soil electrical parameters on the evaluation of lightning electromagnetic fields in air and underground[J].Journal of Geophysical research,2009,114:12.
    [72]George W, Bechtold, Dennis J,Kozakoff. Transmission line model response of a multiconductor cable on a transient electromagnetic field[J].IEEE Transaction on electromagnetic compatibility,1970,EMC-12(1):1-9.
    [73]Lee K S H.Two parallel conductors in external field[J]. IEEE Transaction on electromagnetic compatibility,1978,EMC-20(2):289-296.
    [74]Taylor C D,Satterwhite R C, The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field[J].IEEE Trans.Anternnas.1987.AP-13(6):987-989.
    [75]Tkatchenko S, Rachidi F, Ianoz M. Electromagnetic field coupling to a line of finite length: Theory and fast interative solutions in frequency and time domains[J].IEEE Transaction on electromagnetic compatibility.1955.37(4):509-518.
    [76]郭硕鸿.电动力学[M].高等教育出版社,第二版,1997,19-23.
    [77]吕英华.计算电磁场学的数值方法[M].清华大学出版社,第一版,2006,6,222-280.
    [78]Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J].IEEE Transaction on.1966.14(3):302-307.
    [79]Taflove A, Hagness S C. Computational electromagnetic:The Finite-difference time-domain method[M].Artech house boston,2005.
    [80]Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equantions[J].Electromagnetic compatibility, IEEE Transactions on.1981(4):377-382.
    [81]Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of computational physics.1994,114(2):185-200.
    [82]Rachidi F, Nucci C A, Ianoz M. Influence of a lossy ground on lightning-induced voltages on overhead lines[J].IEEE Transactions on electromagnetic compatibility,1996,38(3):250-264.
    [83]Paolone M. Modeling of lightning-induced voltages on distribution networks for the solution of power quality problems and relevant implementation in a transicant program[J]. PHD in electrical engineering, Department of electrical Engineering,University of Bologna, Italy 2001.
    [84]Orlandi A, Paul C R. FDTD analysis of lossy, multiconductor transmission lines terminated in arbitrary loads[J]. IEEE Trans EMC,1996,38(3):388-398.
    [85]葛德彪.电磁波时域有限差分方法[M].西安电子科技大学出版社,2002,4:26-27.
    [86]杨静,郄秀书.雷电在水平导体中产生感应电压的观测及数值模拟研究[J].物理学报,2008,3,57(3)1968-08.
    [87]Nucci C A, Rachidi F, Michel V. Lightning-induced voltages on overhead lines[J]. IEEE Transactions on electromagnetic compatibility,1993,35(1):75-85.
    [88]Nucci C A, The lightning induced over-voltage code[J].IEEE,Power engineering society winter meeting,2000,10(4):2417-2418.
    [89]刘晓东.地闪回击电磁场沿光滑有耗地表传播的模拟研究[D].南京信息工程大学,2011,22-23.