无线多媒体通信网络中的呼叫允许控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信面临用户数量急剧增加,移动业务逐步走向多元化,用户对服务质量的要求不断提高。如何更有效地管理和使用无线资源已成为运营商最为关心的问题之一。如何在恶劣的无线传播环境里以及用户运动且相互干扰的情况下为各类业务提供QoS(QoS:Quality of Service)保证,同时充分利用宝贵的无线频谱资源,是基于CDMA技术的第三代蜂窝通信系统、以及未来无线个人通信系统都必须致力解决的问题。呼叫允许控制(CAC:Call Admission Control)作为无线资源管理(RRM:Radio Resource Management)的重要组成部分,成为近几年研究的热点问题之一。
     本文在充分总结前人研究成果的基础上,从保证用户QoS的角度出发,重点研究了无线多媒体通信网络中的呼叫允许策略。
     首先针对未来无线通信网络的特点,以3GPP定义为基础,对网络中的多媒体业务进行了更细致、更加符合实际情况的建模。然后以此模型为基础,提出了一种CDMA系统中基于剩余容量的CAC策略,对不同优先级的业务采取不同的接入原则,很好的保证了各业务的QoS要求。
     现有无线通信系统多为对称系统,由于非对称业务的出现,系统中将存在分配而未使用的资源,对原本就十分有限的无线资源造成了极大的浪费;另一方面,各运营商也将针对自己所服务的对象特点,定义各类业务的QoS等级。因此本文提出了一种新的对称CDMA系统中非对称业务下基于动态QoS保证的CAC策略。其基本思想是,各运营商根据自己的需求,定义网络中各类业务的优先级和QoS等级;为提高资源利用率,同时提高低优先级业务的QoS,将系统中分配而未使用的资源动态分配给上行链路中的低优先级业务。根据各业务的优先级和QoS要求,以及系统的剩余容量,进行接入控制。该策略在保证各类业务QoS要求的同时,有效的提高了系统的资源利用率。
     在以往的一些CAC策略中,为简化起见,大多考虑理想的功率控制。而在实际系统中,由于路径衰落等多种因素,使得各用户到达基站的功率很难相等,特别是多媒体业务占用带宽资源多、速率可变等特性,使得情况变得更加复杂。因此,在针对多媒体业务的CAC策略中,考虑非理想的功率控制将更加具有实际意义。在本文中,将给出多媒体CDMA网络中非理想功率控制下的系统容量分析,同时分析了不同非理想程度和不同的外小区干扰因子对系统容量的影响,并针对不同业务的QoS要求,给出一种基于QoS保证的CAC策略。仿真结果
The number of users is increasing quickly in mobile communication system, and the traffic types become diverse and the service of quality (QoS) requirement needs to be enhanced in recent years. So how to efficiently manage and use the wireless resource is one of the most important problems for the service providers. How to support the different QoS requirements of heterogeneous services and utilize the scarce wireless resource efficiently in the situation of error-prone wireless channel is now challenging both 3rd generation mobile communication systems and future personal communication systems. Recently, as the most important part of radio resource management, call admission control (CAC) gets more attention.In this thesis, call admission control policies in wireless multimedia communication networks are proposed based on QoS requirements.According to 3rd Generation Partnership Project (3GPP) specifications, a more realistic modeled traffic is taken into account firstly. Based on this traffic model, a residual capacity based call admission control policy is proposed. The priorities according to the traffic characteristics and QoS requirements are defined. The basic idea of our scheme is assigning higher priority classes privilege over lower priority classes in the CAC decision process. Traffic with different priorities has different admission principle, and the QoS requirements are guaranteed efficentlly.As there are more and more asymmetric traffic emerging in the wireless network, the resource should be assigned fairly and reasonably. On the other hand, the operators will define the traffic QoS according to their requirements, and provide the traffic with different QoS guarantee. So in this thesis, a novel QoS based CAC policy for the asymmetric traffic in symmetrical CDMA system is proposed. The basic idea of this method is that: the operators define the priority and QoS according to their requirements. In order to improve the resource utilization, some assigned but not used resource is distributed dynamically to the traffic with lower priority. Call admission control is executed according to the residual capacity and the priority and QoS of traffic. The simulation results show that this policy can guarantee the QoS of different traffic efficiently, and improve the resource utility significantly.In some exiting CAC policies, perfect power control is assumed. But in
    practical CDMA systems, the received power is usually hard to be maintained at fixed level because of signal fading and path loss. Especially the transmission of multimedia traffic makes the situation be more complicated. Therefore CAC with imperfect power control for multimedia traffic will be more significant. In this thesis, the system capacity with imperfect power control and other-cell interference factor is analyzed. And then a QoS based CAC policy is proposed. The simulation results show that the system capacity is affected by imperfect power control obviously, and this policy can guarantee the QoS for different traffic efficiently.
引文
[1] C. Y. Huang, R. D. Yate. Call admission in power controlled CDMA systems. IEEE Proc of VTC'96[C]. Atlanta, USA/California, USA: IEEE Vehicular Technology Society, 1996: 1665-1669
    [2] H. Holma, J. Laasko. Uplink admission control and soft capacity with MUD in CDMA. IEEE Proc of VTC'99[C]. Amsterdam, Netherlands/California, USA: IEEE Vehicular Technology Society, 1999: 431-435
    [3] I. M. Kim, B. C. Shin, D. J. Lee. SIR-based call admission control by intercell interference prediction for DS-CDMA cellular systems. IEEE Communications Letters, 2000, 4(1): 29-31.
    [4] P. S. Sampath, J. M. Kumar, Holtzman. Power control and resource management for a multimedia wireless CDMA system. PIMRC'95, Toronto, Canada, Sept. 1995. vol.1: 21-25
    [5] J. W. So. Adaptive traffic prediction based access control in wireless CDMA systems supporting integrated voice/data/video services. IEEE Communications Letters. 2004, 8 (12): 703-705
    [6] R. M. Rao, C. Comaniciu, T. V. Lakshman, et al.. Call admission control in wireless multimedia networks. IEEE Signal Processing Magazine. 2004, 21(5): 51-58
    [7] Z. Liu, M. El Zarki. SIR-based call admission control for DS-CDMA cellular systems. IEEE Journal Selected Areas in Communications. 1994, 12(4): 638-644
    [8] H. Hossam, O. Alex, N. Nasser. Uplink QoS aware admission control in WCDMA networks with class-based power sharing. IEEE 2004 First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, 2004: 10-17
    [9] H. Lei, K. C.-C. Jay. Joint connection-level and packet-level quality-of-service support for VBR traffic in wireless multimedia networks. IEEE Journal on Selected Areas in Communications. 2005, 23(6): 1167-1177
    [10] F. Y. Li, N. Stol. A Priority-oriented call admission control paradigm with QoS re-negotiation for multimedia services in UMTS. IEEE VTS 53rd Vehicular Technology Conference. 2001, vol. 3: 2021-2025
    [11] 3rd Generation Partnership Project, QoS Concept and Architecture, TS 23.107 V5.4.0, 2002.3
    [12] J. Kalliokulju. Quality of service management functions in 3rd generation mobile telecommunication networks. IEEE proc. of WCNC'99, 1999, vol.3: 1283-1287
    [13] K. Kim, Y. Han. A call admission control scheme for multi-rate traffic based on total received power. IEICE Trans. Commun., 2001, E84-B(3): 457-463
    [14] L. Jorguseski, E. Fledderus, J. Farserotu. Radio resource allocation in third-generation mobile communication systems. IEEE Commun. Magazine, Feb. 2001: 117-123
    [15] O. Gurbuz, H. Owen. Dynamic resource scheduling schemes for W-CDMA systems. IEEE Commun. Magazine, Oct. 2000: 80-84
    [16] V. Huang, W. Zhuang. Optimal resource management in packet-switching TDD CDMA systems. IEEE Personal Commun., Dec. 2000: 26-31
    [17] R. Becher, M. Dillinger, M. Haardt, et al.. Broadband wireless access and future communication networks. Proceedings of the IEEE. 2001, 89(1): 58-75
    [18] J. Sun, J. Sauvola, D. Howie. Features in future: 4G visions from a technical perspective. IEEE proc. of Globecom'01,2001, vol. 6: 3533-3537
    [19] M. Soleimanipour, W. Zhuang, G. H. Freeman. Optimal resource management in wireless multimedia wideband CDMA systems. IEEE Transactions on Mobile Computing. 2002, 1(2): 143-160
    [20] O. Sallent, J. Perez-Romero, F. J. Casadevall, et al.. An emulator framework for a new radio resource management for QoS guaranteed services in W-CDMA systems. IEEE Journal on Selected Areas in Communications. 2001, 19(10): 1893-1904
    [21] D. Zhao, X. Shen, J. W. Mark. Radio resource management for cellular CDMA systems supporting heterogeneous services. IEEE Transactions on Mobile Computing, 2003, 2(2): 147-160
    [22] H. Zhang, C. S. Chen, W. S. Wong. Distributed power control for time varying systems: performance and convergence analysis. IEEE Transactions on Vehicular Technology, 2005, 54(5): 1896-1904
    [23] A. El-Osery, C. Abdallah. Distributed power control in CDMA cellular systems. IEEE Antennas and Propagation Magazine, 2000. 42(4): 152-159
    [24] C. Wu, D. P. Bertsekas. Distributed power control algorithms for wireless networks. IEEE Transactions on Vehicular Technology, 2001, 50(2): 504-514
    [25] G. Kulkarni, V. Raghunathan, M. Srivastava. Joint end-to-end scheduling, power control and rate control in multi-hop wireless networks. IEEE Global Telecommunications Conference, 2004. vol. 5: 3357-3362
    [26] A. Mercado, K. J. R. Liu. Rate control for DS-CDMA channels using power control and short orthogonal pseudo random codes. IEEE Vehicular Technology Conference, 54th, 2001, vol.3: 1716-1720
    [27] T. ElBatt, A. Ephremides. Joint scheduling and power control for wireless ad hoc networks. IEEE Transactions on Wireless Communications, 2004, 3(1): 74-85
    [28] A. H. Solana, A. V Bardaji. Scheduling and call admission control schemes in soft handoff for packet switched transmission in WCDMA networks. IEEE 60th Vehicular Technology Conference, 2004, vol.5: 3486-3490
    [29] Y. Cheng, W. Zhuang. DiffServ resource allocation for fast handoff in wireless mobile Internet. IEEE Communications Magazine, 2002, 40(5): 130-136
    [30] B. Moon, H. Aghvami. Diffserv extensions for QoS provisioning in IP mobility environments. IEEE Transaction on Wireless Communications, 2003, 10(5): 38-44
    [31] 杨峰义,覃燕敏,胡强.WCDMA无线网络工程.人民邮电出版社,2004
    [32] 方旭明,张丹丹.无线通信网络中呼叫允许控制研究策略的研究现状与未来方向,投《电子学报》,审稿中
    [33] Y. Xun, F. Gang, K. S. Chee. Call admission control for multi-service mobile networks with bandwidth asymmetry between uplink and downlink. IEEE 2004 Global Telecommunications Conference. vol.5: 3285-3289
    [34] S. J. Wha, G. J. Dong. Call admission control for mobile multimedia communications with traffic asymmetry between uplink and downlink. IEEE Transactions on Vehicular Technology. 2001, 50(1): 59-66
    [35] H. S. Cho, J. Shin, Y. Lee. Call blocking probability for heterogeneous and asymmetrical traffics in a TD-CDMA system. IEEE Communications Letters. 2004, 8(12): 706-708
    [36] M. Ahemd, H. Yanikomeroglu. SINR threshold lower bound for SINR-based call admission control in CDMA networks with imperfect power control. IEEE Communications Letters. 2005, 9(4): 331-333
    [37] T. Shu, Z. Niu. A novel call admission control scheme for multimedia CDMA networks with power multiplexing and imperfect power control. IEEE 2003 57th IEEE Semiannual Vehicular Technology Conference. 2003, vol.2: 1208-1212
    [38] A. Sampath, J. M. Holtzman. Access control of data in integrated voice/data CDMA systems: benefits and tradeoffs. IEEE Journal on Selected Areas in Communications. 1997, 15(8): 1511-1525
    [39] G. F. Robert, J. Abbas. A precision predictive call admission control in packet switched multi-service wireless cellular networks. IEEE Global Telecommunications Conference. 2003, vol.7: 4122-4126
    [40] K. Kim, S. K. Kim, H. S. Kim, et al.. A new fair call admission control in packet radio networks. 12th IEEE International Conference on Networks. 2004, vol.2: 635-639
    [41] M. Bourouha, S. Ci, G. B. Brahim, et al.. A cross-layer design for OoS support in the 3GPP2 wireless systems. IEEE GLOBECOM'04. 2004: 56-61
    [42] G. Carneiro, J. Ruela, M. Richardo. Cross-layer design in 4G wireless terminals. IEEE Wireless Communications. 2004, 11(2): 7-13
    [43] Q. Liu, S.Zhou, G. B. Giannakis. Cross-layer scheduling with prescribed OoS guarantees in adaptive wireless networks, IEEE Journal of Selected Areas in Communications. 2005, 23(5): 1056-1066
    [44] F. Yu, V. Krishnamurthy, V. C. M. Leung. Cross-layer optimal connection admission control for variable bit rate multimedia traffic in packet wireless CDMA networks. IEEE GLOBECOM'04. 2004, vol.5: 3347-3351
    [45] 方旭明 等著.下一代无线因特网技术——无线Mesh网络,人民邮电出版社,2006.3出版
    [46] 汤泽滢,卢汉清.MPEG的新发展——多媒体框架标准MPEG-21.中国图象图形学报,2003:984-992
    [47] (芬)哈里·霍尔马.安提·托斯卡拉.WCDMA技术与系统设计.机械工业出版社,2002.1
    [48] 张平,王卫东,陶小峰,王莹.WCDMA移动通信系统.人民邮电出版社,2004.8
    [49] 胡琳娜.MPEG-4面向网络传输的特性及应用.电视字幕·特技和动画,2004:44-45
    [50] P. Wan, Z. Du, W. Wu. A simple and efficient MPEG-4 video traffic model for wireless network performance evaluation. IEEE Wireless Communications and Networking Conference. 2004, vol. 3: 1738-1742
    [51] E. M. Crovella, A. Bestavros. Self-Similarity in World Wide Web Traffic Evidence and Possible Causes. 1996 ACM Conference on Measurement and Modeling of Computer Systems. Philadelphia, PA, 1996.5
    [52] 胡严,张光昭.重尾ON/OFF源模型生成自相似业务流研究.电路与系统学报.2001,6(3):72-76
    [53] 石春艳.自相似网络几种不同模型的比较和分析.电信快报.2004(6):39-41
    [54] 许都,李乐民.长相关业务流经成形器后的输出特性研究.电路与系统学报.1998,3(1):66-70
    [55] 吴援明,宁正容,梁恩志.网络自相似业务模型进展.通信学报.2004,25(3):97-104
    [56] 文有为,曾文曲,孙炜.基于FBM模型的信号表示方法.广东工业大学学报.2000,17(4):6-9
    [57] 许都,李乐民.自相似业务流的快速生成方法及其性能研究.通信学报.1998,19(8):89-95
    [58] 张连芳,薛飞,王蕾,刘嘉焜,舒炎泰.自相似网络业务的一个FARIMA模型.计算机研究与发展.2000,37(9):1138-1144
    [59] 潘明,季晓飞,范戈.基于α-Stable自相似随机过程的通信网业务量建模.上海交通大学学报.2004,38(2):1-4
    [60] 葛晓虎,朱耀庭,朱光喜.基于Alpha稳定自相似过程的网络业务流建模.高技术通讯.2003:2-4
    [61] 朱小钦,朱光喜,葛晓虎.网络业务流量的α稳定分布特性.电讯技术.2004(3):57-60
    [62] C. W. J. Granger, R. Joyeux. An introduction to long-menory time series models and fractional differencing. Journal of Time Series Analysis. 1980, 1(1):15-29
    [63] L. Zhu, X. Ling, S. Wu. Call admission control in multiservices CDMA systems. Communications, IEEE 2002 International Conference on Circuits and Systems and West Sino Expositions. 2002, 1(29): 177-181
    [64] W. S. Jeon, D. G. Jeong. Call admission control for CDMA mobile communications systems supporting multimedia services, IEEE Transactions on wireless Communications. 2002, 1(4): 649-659
    [65] D. Zhang, X. Fang, L. Zhu. Novel Multimedia Traffic Modeling based CAC Scheme for CDMA Communications Systems. 《Journal of Electronics (China)》, 已录用
    [66] T. S. Rappaport. Wireless communications principles and practice. Beijing: Publishing House of Electronics Industry, 2002: 307-321
    [67] A. Sampath, P. S. Kumar, J. M. Holtzman. Power control and resource management for a multimedia CDMA wireless system. 1995 IEEE Personal, Indoor and Mobile Radio Communications, 1995, vol.(1): 21-25
    [68] F. Hu, N. K. Sharma. A novel CAC mechanism for guaranteeing QoS of multimedia traffic in next-generation wireless and mobile networks. IEEE International Conference on Communications. 2001, vol.2: 417-421
    [69] J. G. Choi, S. Bahk, J. Y. Lee. Call admission control schemes guaranteeing the frame and call level QoSs in CDMA cellular networks. IEEE Global Telecommunications Conference. 2002, vol.2: 1480-1484
    [70] Y. C. Lai, Y. D. Lin. Fair admission control in QoS capable networks communications, lEE Proceedings Communications. 2005, 152(1): 22-28
    [71] H. Hassanein, A. Oliver, N. Nasser, et al.. Uplink QoS-aware admission control in WCDMA networks with class-based power sharing. Quality of Service in Heterogeneous Wired/Wireless Networks, 2004: 10-17
    [72] S. Aissa,. J. Kuri, P. Mermelstein. Call admission on the uplink and downlink of a CDMA system based on total received and transmitted powers. IEEE Transactions on Wireless Communications. 2004, 3(6): 2407-2416
    [73] 张丹丹,方旭明,朱龙杰.一种新的对称CDMA系统中非对称业务下的呼叫允许控制策略.《电子学报》,审稿中
    [74] R. Fantacci, S. Nannicini. Multiple access protocol for integration of variable bit rate multimedia traffic in UMTS/IMT-2000 based on wideband CDMA. IEEE Journal on Selected Areas In Communications. 2000, 18(8): 1441-1454
    [75] P. R. Larijani, R. H. Hafez. I. L. Lambadaris. Adaptive access control for multimedia traffic in a CDMA cell with imperfect power control. The 8th IEEE PIMRC. 1997, vol.2: 729-733
    [76] M. H. Ahmed, H. Yanikomeroglu. A lower bound on SINR threshold for call admission control in multiple-class CDMA systems with imperfect power-control. IEEE, GLOBECOM'04. vol.5: 3280-3284
    [77] T. Shu, Z. Niu. Uplink capacity optimization by power allocation for multimedia CDMA networks with imperfect power control. IEEE Journal on Selected Areas in Communications. 2003, 21(10): 1585-1594
    [78] T. Shu, Z. Niu. Call admission control using differentiated outage probabilities in multimedia DS-CDMA networks with imperfect power control. Proceedings. Eleventh International Conference on Computer Communications and Networks. Oct. 2002: 336-341
    [79] T. Shu, Z. Niu. Capacity optimized power allocation for multimedia CDMA networks under imperfect power control. IEEE, GLOBECOM'02. 2002, vol. 1: 783-787
    [80] D. Zhang, X. Fang. Capacity analysis and call admission control scheme with imperfect power control in multimedia CDMA networks. IEEE Transactions on Vehicular Technology, 审稿中
    [81] 张彦,阎鸿森,朱世华.非理想功率控制下WCDMA系统中的业务速率与系统容量.电子与信息学报.2005,25(5):639-643
    [82] 杨大成.cdma2000 1x移动通信系统.北京,机械工业出版社,2003:452-453
    [83] S. Schwartz, Y. Yeh. On the distribution function and moments of power sums with lognormal components. Bell. Systems Technical Journal.. 1982, 61(7): 1441-1462
    [84] Z. Lei, V. O. K. Li. Interference Estimation for Admission Control in Multi-service DS-CDMA Cellular Systems. 2000 IEEE GlobCom, vol.3: 1509-1514.
    [85] J. S. Evans, D. Everitt. On the traffic capacity of CDMA cellular networks. IEEE Trans. Vehicle. Tech. 1999, 48(1): 153-165.