柔嫩艾美耳球虫Rhomboid蛋白与微线蛋白相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代化养鸡业的发展,鸡球虫病已成为四季多发性疾病,预防和治疗球虫病目前已成为研究的焦点。由于长期以来传统药物的使用,使得球虫产生一定的耐药性,再加上药物残留等问题使得球虫病的防治愈发困难。免疫预防是控制该病的主要手段,但是因为球虫生活史复杂,侵入机制尚不清楚,目前行之有效的疫苗较少,对于疫苗候选基因的选择亟待解决。微线蛋白作为一种粘附相关蛋白,由位于虫体顶端的微线体分泌,是虫体识别和结合宿主细胞受体的关键性蛋白。Rhomboid蛋白自发现以来一直吸引着研究者的注意。作为一类膜内的丝氨酸蛋白酶,它参与着表皮生长因子及表皮生长因子受体信号的转导。近年来人们在很多顶器门的原虫体内也发现了Rhomboid蛋白的存在,其中包括柔嫩艾美耳球虫。经过对弓形虫和疟原虫Rhomboid蛋白的鉴定,发现Rhomboid蛋白水解其底物MIC蛋白是虫体侵入宿主细胞的关键过程,而柔嫩艾美耳球虫Rhomboid蛋白的功能还未见报道,它能否水解MIC蛋白,其水解过程是不是球虫侵入的关键过程还有待研究。
     酵母作为一种提高免疫力的佐剂,早已经被人们研究和关注。酵母细胞中含有大量的葡聚糖和甘露寡糖,可以提高免疫能力,增加抗体效价和外周血中淋巴细胞的数量,从而增加机体的抗菌抗癌能力。然而酵母作为免疫佐剂的应用方向还有待进一步拓宽,在防治寄生虫病方面将具有意义深远的研究价值。3,4二氯异香豆素(DCI)是一种非常有效的丝氨酸蛋白酶抑制剂,它能够使大多数丝氨酸蛋白酶失去活性,据报道,DCI可以抑制果蝇属Rhomboid-1的酶活性,影响其EGFR的信号转导;也能够抑制弓形虫TgROM5的活性,影响速殖体侵入宿主细胞。而DCI是否能够抑制柔嫩艾美耳球虫Rhomboid的活性,从而影响其侵入,目前还未见报道。
     本研究首先根据CytoTrap酵母双杂交系统,验证了E. tenella Rhomboid蛋白对温度敏感型酵母菌株cdc25H存在自激活作用;然后根据Ga14酵母双杂交系统,成功构建诱饵表达质粒pGBKT7-Rho与捕获质粒pGADT7-MIC1和pGADT7-MIC4,通过诱饵质粒与捕获质粒共转化酵母细胞AH109,从而筛选出与Rhomboid蛋白相互作用的MIC4蛋白;免疫共沉淀进一步验证Rhomboid与MIC4蛋白存在相互作用:将含有互作蛋白的酵母细胞AH109破碎后免疫雏鸡,攻虫试验证明互作蛋白对雏鸡具有一定的免疫保护作用,抗球虫指数可以达到168.24;最后验证了DCI体外对子孢子侵入细胞的抑制作用。为柔嫩艾美耳球虫侵入细胞的分子机制研究奠定了基础,也为球虫病的防治提供了理论依据。
     E.tenella Rhomboid蛋白CytoTrap酵母双杂交系统自激活作用的鉴定通过RT-PCR扩增Rhomboid基因并对其分析,然后根据CytoTrap酵母双杂交系统构建诱饵质粒pSos-Rho,将诱饵质粒与对照质粒共转化酵母细胞中,从而验证Rhomboid蛋白的自激活作用。结果表明,成功扩增了柔嫩艾美耳球虫Rhomboid基因开放阅读框并构建了重组诱饵表达载体pSos-Rho,同源性比对分析得出Rhomboid蛋白即柔嫩艾美耳球虫EtROM3.Western blot显示诱饵蛋白在酵母细胞中可以成功表达,间接免疫荧光将重组蛋白定位于宿主酵母cdc25H细胞膜附近。通过将诱饵质粒与对照质粒共转化酵母细胞中,结果显示重组诱饵融合蛋白激活了宿主菌cdc25H的Ras途径,导致酵母细胞在37℃半乳糖培养基上能够生长,说明诱饵质粒对于CytoTrap酵母双杂交系统存在自激活作用,从而不能使用本系统进行互作蛋白的筛选。
     E.tenella Rhomboid蛋白相互作用的MIC蛋白的筛选首先通过RT-PCR扩增柔嫩艾美耳球虫MIC1和MIC4基因片段,然后根据Ga14酵母双杂交系统构建诱饵质粒pGBKT7-ROM,捕获质粒pGADT7-MIC1和pGADT7-MIC4,将捕获质粒分别与诱饵质粒共转化酵母细胞AH109中,验证蛋白的交互作用。结果表明,重组诱饵质粒与捕获质粒均构建成功,目的基因可以在感受态酵母细胞中表达,诱饵蛋白对酵母细胞既没有毒性,也不存在自激活作用。通过Ga14酵母双杂交系统验证,Rhomboid蛋白与MIC4蛋白存在相互作用,Western blot鉴定结果显示MIC4蛋白长度变小,推测是由于Rhomboid蛋白酶的切割作用所致。
     Rhomboid与MIC4蛋白相互作用的鉴定构建重组原核表达质粒pET28a-MIC4,重组真核表达质粒pcDNA-Myc-ROM和pcDNA-HA-MIC4,对柔嫩艾美耳球虫MIC4蛋白进行原核表达,纯化及复性,从而通过免疫共沉淀鉴定Rhomboid与MIC4蛋白间的互作;然后将构建的重组真核表达质粒共转染HeLa细胞,免疫共沉淀鉴定Rhomboid蛋白与MIC4蛋白间的相互作用。结果表明,重组原核与真核表达质粒均构建成功;将原核表达的Rhomboid与MIC4蛋白混合,通过免疫共沉淀说明,两种蛋白存在相互作用;将真核重组质粒共转染HeLa细胞,间接免疫荧光显示Rhomboid蛋白与MIC4可以成功表达;将共转染重组质粒的HeLa细胞破碎后,通过免疫共沉淀以及Western blot鉴定,Rhomboid蛋白与MIC4蛋白存在相互作用,而且Rhomboid蛋白具有酶切活性,可以切割其底物MIC4蛋白。这个试验的结果为更深入的研究球虫侵入宿主细胞的分子机制提供了理论依据。
     酵母中互作蛋白的动物保护性研究将含有Rhomboid蛋白、MIC4蛋白以及互作蛋白的酵母细胞AH109破碎后免疫雏鸡,从而进行攻虫试验,观察酵母细胞中具有互相作用的两种蛋白对柔嫩艾美耳球虫的动物保护性。结果说明,通过体液免疫水平和细胞免疫水平的检测,各实验组与对照组相比差异均显著(P<0.05),其中含有两种互作蛋白的实验组差异极显著(P<0.01);攻虫试验结果显示其ACI可以达到168.24;同时试验结果首次表明酵母细胞也能够产生一定的免疫保护作用。本试验为鸡球虫病疫苗的研究提供了理论依据,也为酵母在寄生虫病方面的应用研究奠定了基础。
     DCI对子孢子侵染细胞的体外抑制试验进行柔嫩艾美耳球虫的体外原代鸡肾细胞培养,将DCI分成两组,一组提前作用于子孢子,一组与子孢子共同培养,然后通过对第一代裂殖体、第二代裂殖体以及子代卵囊的数量统计,观察不同浓度DCI体外对球虫子孢子侵染细胞的抑制作用。结果说明,20μM的DCI即可有效抑制子孢子体外对鸡肾细胞的侵入,同时能够控制球虫子代卵囊的产出量,对球虫病有潜在的治疗作用,有望成为抗球虫药物的候选成分,为球虫病的治疗研究奠定基础。本试验结果表明DCI通过抑制Rhomboid蛋白酶活性可以间接抑制球虫子孢子对宿主细胞的侵染,更进一步说明Rhomboid的酶切作用在虫体侵入过程中的重要地位,同时研究结果也为球虫病的治疗提供了理论依据。
With the development of modern poultry industry, coccidiosis has become a season of multiple disease. Prevention and treatment of coccidiosis has become the focus of research. Due to long-term use of traditional drug, drug resistant has emerged in coccidian. It is more difficult to control coccidiosis combined with the problem of drug residues. Immunization is available means of controlling the disease, but because of complexed life cycle and uncleared intrusive mechanism of the coccidia, the current vaccine was less effective. Choice of candidate genes for coccidiosis vaccines must be resolved as soon as possible. Microneme protein, an adhesion protein, is secreted by the microneme at the top of the sporozoite. MIC is a key protein which is used to recognize and bind the host cell receptors. Rhomboid protein has been attracted the researchers note all the time since it was discovered. As a class of intramembrane serine proteases, Rhomboid participate in the epidermal growth factor and epidermal growth factor receptor signal transduction. In recent years, many rhomboid proteins had also been found in some apicomplexan protozoa, including Eimeria tenella. After identification of rhomboid in Toxoplasma and Plasmodium, the result indicated that the proteolysis of rhomboid and MIC was a key process of host cell invasion. There is no reporte about E. tenella rhomboid protein function now. Whether MIC protein is hydrolyzed by the rhomboid, Whether the hydrolysis process is the key to the process of coccidia invasion, which are need to study.
     As an immune promoter, Yeast had already been studied and attention. A large number of glucan and mannan oligosaccharides are contained in yeast cells. Yeast can improve immunity, increase in antibody titer and the number of peripheral blood lymphocytes, thereby increasing the body's anti-bacterial and anti-cancer ability. However, as the immune enhancer, application of yeast need to be further expanded. Yeast will have far-reaching research value when it used to control parasitic disease. 3,4-dichloroisocoumarin (DCI) is a very effective serine protease inhibitor. Majority of serine protease sctivity can be losed by DCI. According to reports, Drosophila Rhomboid-1's activity could be inhibited by DCI and the EGFR signal transduction was influenced. Activity of Toxoplasma gondii TgROM5 could also be impacted. So the host cells invasion was inhibited. But there is no report has been published on DCI used to inhibit Eimeria tenella Rhomboid and against coccidiosis.
     In this study, first, suitability of E. tenella rhomboid for CytoTrap yeast two-hybrid system was detected. Then according to the Gal4 yeast two-hybrid system, bait plasmid pGBKT7-Rho, Capture plasmids pGADT7-MIC1 and pGADT7-MIC4 was successfully constructed. Plasmids were cotransformed into yeast cells AH109, respectively. E.tenella MIC4 was screened for interacted with Rhomboid protein. Then the interaction was further validated by coimmunoprecipitation. The yeast host cells which contained interacted protein was broken to immune chickens. Experiment of attacking E. tenella showed that chicken had got protective immunity. Anticoccidial index could reach 168.24. Finally, inhibited effect of sporozoites cell invasion was detected by DCI. It is the basis for molecular mechanism research of E. tenella invasion. It is also theoretical evidence for prevention and treatment of coccidiosis.
     Sequence analysis and verification of E. tenella rhomboid bait plasmid suitability for CytoTrap yeast two-hybrid system The rhomboid gene segment of E. tenella was generated and analyzed by RT-PCR with primers. According to the CytoTrap yeast two-hybrid system, rhomboid gene was subcloned into the plasmid pSos. Then bait and control plasmids were cotransformed into yeast cells cdc25H. Self-activation of Rhomboid was verified. The results showed that E. tenella Rhomboid gene open reading frame was successfully amplified. Recombinant expression vector bait pSos-Rho was constructed. Compared with other amino acid sequence of rhomboid-like protein, we supposed that EtROMz is EtROM3 in E. tenella. Western blot showed that the bait protein in yeast cells could be successfully expressed. Rhomboid was located in the vicinity of the host cell membrane of yeast cdc25H by indirect immunofluorescence. When bait and control plasmids were cotransformed into cells, ras pathway was activated and yeast cells grew on galactose medium at 37 ℃. That mean bait protein could self-activation. Thus rhomboid can not use the system to screen interacted protein.
     Screen interacted MIC proteins with the rhomboid First E. tenella MIC1 and MIC4 gene segment were generated. Then bait plasmid pGBKT7-ROM, capture plasmid pGADT7-MIC1 and pGADT7-MIC4 were constructed. Bait and capture plasmid were cotransformed into yeast cells AH109, respectively. At last, protein interaction could be identified by X-Gal verification. The results showed that the recombinant bait plasmid and capture plasmids were constructed successfully. The target gene could be expressed in yeast cells. There was no self-activation and toxicity for yeast. Interaction of rhomboid protein and MIC4 protein was identified by Gal4 yeast two-hybrid system. Western blot showed that MIC4 protein became more smaller. We presumed that it was due to the cutting action of rhomboid proteins.
     Interacted verification of rhomboid and MIC4 protein First, recombinant prokaryotic expression plasmid pET28a-MIC4, recombinant eukaryotic expression plasmid pcDNA-Myc-ROM and pcDNA-HA-MIC4 were constructed. Then expression, purification and renaturation of E. tenella MIC4 were performed. Interaction of rhomboid and MIC4 was verified by western blot. The recombinant eukaryotic expression plasmids were cotransfected HeLa cells and then interaction of rhomboid and MIC4 protein was verified by immunoprecipitation. The results showed that prokaryotic and eukaryotic expression plasmids were successfully constructed. The prokaryotic expressed rhomboid protein mixed with MIC4. Immunoprecipitation showed that there was interaction between two proteins. The eukaryotic recombinant plasmids were transfected HeLa cells. Indirect immunofluorescence showed rhomboid and MIC4 protein could be successfully expressed in HeLa cells. Immunoprecipitation and western blot proved that rhomboid interacted with MIC4 protein and enzyme activity of Rhomboid protein could cut their substrate MIC4 protein. The test result provides a theoretical basi for further study of the molecular mechanisms of coccidia invasion.
     Protective immunity of interacted protein in yeast against E.tenella challenge Yeast cells AH109 that contained rhomboid, MIC4 and interacted protein were broken. Chickens were immunized with recombinant proteins via subcutaneous route. Chickens were then challenged with E.tenella sporulated oocysts and the efficacy of immunization was evaluated on the basis of oocyst output, cecal lesion scores, ACI, response immunity of cellular and antibody. All the recombinant proteins immunized chickens developed specific immune responses, and there was a significant increases of the percentages of CD4+and CD8+cells and antibody titre compared to the control(P<0.05), especially interacted protein group (P<0.01). ACI of that group could reached 168.24. The yeast group also produced a good immune protection for coccidiosis. This resule was a theoretical basis of coccidiosis vaccine research.
     Inhibited effect of sporozoites cell invasion was detected by DCI. E. tenella sporozoites was cultured in vitro in primary chicken kidney cells. DCI was divided into two groups. One, sporozoites were dealed with DCI, and then add into the cells. Other, DCI and sporozoites were add into the cells together. The number of the first-generation schizonts, second-generation schizonts and progeny oocysts were counted. Inhibited effect of different DCI concentrations was identified. Results showed that chicken kidney cells invasion was inhibited by 20μM DCI. At the same time, the number of progeny coccidia oocysts was controled. DCI existed potential role of treatment coccidiosis and it will be become one candidate component for the anticoccidial drugs study.
引文
[1]Williams RB. A compartmentalised model for the estimation of the cost of coccidiosis to the world's chicken production industry [J]. Int. J. Parasitol.1999, 29(8):1209-1229.
    [2]Shirley MW, Ivens A, Gruber A, et al. The Eimeria genome projects:a sequence of events [J]. Trends Parasitol.2004,20(5):199-201.
    [3]Dalloul RA, Lillehoj HS. Recent advances in immunomodulation and vaccination strategies against coccidiosis [J]. Avian Dis.2005,49(1):1-8.
    [4]Jeffers TK, Challey JR, McGibbon WH. Response of several lines of fowl and their single-cross progeny to experimental infection with Eimeria tenella [J]. Avian Dis.1970,14(2):203-210.
    [5]Lillehoj HS. Influence of inoculation dose, inoculation schedule, chicken age, and host genetics on disease susceptibility and development of resistance to Eimeria tenella infection [J]. Avian Dis.1988,32(3):437-444.
    [6]Lillehoj HS, Ruff MD, Bacon LD, Lamont SJ, Jeffers TK. Genetic control of immunity to Eimeria tenella. Interaction of MHC genes and non-MHC linked genes influences levels of disease susceptibility in chickens [J]. Vet. Immunol. Immunopathol.1989,20(2):135-148.
    [7]McDougald LR. Coccidiosis [M]. In:Diseases of Poultry. Saif YM (Ed.). Iowa State Press, IA, USA,2003,974-991.
    [8]Allen PC, Fetterer RH. Recent advances in biology and immunobiology of Eimeriaspecies and in diagnosis and control of infection with these coccidian parasites of poultry [J]. Clin. Microbiol. Rev.2002,15(1):58-65.
    [9]Williams RB. Anticoccidial vaccines for broiler chickens:pathways to success [J]. Avian Pathol.2002,31(4):317-353.
    [10]Levine ND. Taxonomy and life cycles of coccidian [M]. In:The Biology of the Coccidia. Long PL (Ed.). Univeristy Park Press, MD, USA,1982,1-33.
    [11]Witlock DR, Lushbaugh WB, Danforth HD, Ruff MD. Scanning electron microscopy of the cecal mucosa in Eimeria tenella-infected and uninfected chickens. Avian Dis.1975,19(2):293-304.
    [12]Lillehoj HS, Min W. Dalloul RA. Recent progress on the cytokine regulation of intestinal immune responses to Eimeria [J]. Poult. Sci.2004,83(4):611-623.
    [13]Rose ME, Lawn AM, Millard BJ. The effect of immunity on the early events in the life-cycle of Eimeria tenella in the caecal mucosa of the chicken [J]. Parasitology,1984,199-210.
    [14]Houssaint E, Belo M, Le Douarin NM. Investigations on cell lineage and tissue interactions in the developing bursa of Fabricius through interspecific chimeras [J]. Dev. Biol.1976.53(2):250-264.
    [15]Ratcliffe M. Development of avian B-lymphocyte lineage [J]. CRC Crit. Rev. Poult. Biol.1989,2:1207-1234.
    [16]Gobel TW. The T-dependent immune system [M]. In:Poultry Immunology. Davison TF. Morris TR, Payne LN (Eds). Carfax Publishing Co., Abingdon, UK,1996.31-45.
    [17]Davidson NJ, Boyd RL. Delineation of chicken thymocytes by CD3-TCR complex, CD4 and CD8 antigen expression reveals phylogenically conserved and novel thymocyte subsets [J]. Int. Immunol.1992,4(10),1175-1182 (1992).
    [18]Jeurissen SHM, Vervelde L, Janse ME. Structure and function of lymphoid tissues of the chicken [J]. Poult. Sci. Rev.1994,5:183-207.
    [19]Mast J, Goddeeris BM. Peeters K, Vandesande F. Berghman LR. Characterisation of chicken monocytes, macrophages and interdigitating cells by the monoclonal antibody KUL01 [J]. Vet. Immunol. Immunopathol.1998. 61(2-4):343-357.
    [20]Underhill DM, Ozinsky A. Phagocytosis of microbes:Complexity in action [J]. Ann. Rev. Immunol.2002,20(1):825-852. (2002).
    [21]Iqbal M, Philbin VJ, Smith AL. Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines [J]. Vet. Immunol. Immunopathol.2005,104(1-2):117-127.
    [22]Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ. Identification and sequence analysis of chicken Toll-like receptors [J]. Immunogenetics,2005,56(10): 743-753.
    [23]Lillehoj HS, Chai JY. Comparative natural killer cell activities of thymic, bursal, splenic and intestinal intraepithelial lymphocytes of chickens. Dev. Comp. Immunol.1998,12(3):629-643.
    [24]Gobel TWF, Kaspers B, Stangassinger M. NK and T-cells constitute two major, functionally distinct intestinal epithelial lymphocyte subsets in the chicken [J]. Int. Immunol.2001,13(6):757-762.
    [25]Yun CH, Lillehoj HS, Choi KD. Eimeria tenella infection induces local y-interferon production and intestinal lymphocyte subpopulation changes [J]. Infect. Immunol.2000,68(3):1282-1288.
    [26]Min W, Lillehoj HS, Kim S et al. Profiling local gene expression changes associated with Eimeria maxima and Eimeria acervulina using cDNA microarray. Appl. Microbiol. Biotechnol.2003,62:392-399.
    [27]Dalloul RA, Lillehoj HS, Shellem TA, Doerr JA. Enhanced mucosal immunity againstEimeria acervulina in broilers fed a Lactobacillus-based probiotic [J]. Poult. Sci.2003,82(1):62-66.
    [28]Lillehoj HS. Effects of immunosuppression on avian coccidiosis:cyclosporin A but not hormonal bursectomy abrogates host protective immunity [J]. Infect. Immunol.1987,55(7):1616-1621.
    [29]Girard F, Fort G, Yvore P, Quere P. Kinetics of specific immunoglobulin A, M and G production in the duodenal and caecal mucosa of chickens infected with Eimeria acervulina or Eimeria tenella [J]. Int. J. Parasitol.1997,27(7): 803-809.
    [30]West J, Anthony P., Herr AB, Bjorkman PJ. The chicken yolk sac IgY receptor, a functional equivalent of the mammalian MHC-related Fc receptor, is a phospholipase A2 receptor homolog [J]. Immunity,2004,20(5):601-610.
    [31]Lillehoj HS, Trout JM. Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites [J]. Clin. Microbiol. Rev.1996, 9(3):349-360.
    [32]Vervelde L, Vermeulen AN, Jeurissen SH. in situ characterization of leucocyte subpopulations after infection with Eimeria tenella in chickens [J]. Parasite Immunol.1996,18(5):247-256.
    [33]Guy-Grand D, Griscelli C, Vassalli P. The gut-associated lymphoid system: nature and properties of the large dividing cells [J]. Eur. J. Immunol.1974,4(6): 435-443.
    [34]Choi KD, Lillehoj HS. Role of chicken IL-2 on γδ T-cells and Eimeria acervulina-induced changes in intestinal IL-2 mRNA expression and γδ T-cells [J]. Vet. Immunol. Immunopathol.2000.73(3-4):309-321.
    [35]Bessay M, Le Vern Y, Kerboeuf D, Yvore P, Quere P. Changes in intestinal intra-epithelial and systemic T-cell subpopulations after an Eimeria infection in chickens:comparative study between E. acervulina and E. tenella [J]. Vet. Res.1996.27(4-5):503-514.
    [36]Breed DG, Dorrestein J, Schetters TP et al. Peripheral blood lymphocytes fromEimeria tenella infected chickens produce y-interferon after stimulation in vitro [J].Parasite Immunol.1997,19(3):127-135.
    [37]Chai JY, Lillehoj HS. Isolation and functional characterization of chicken intestinal intra-epithelial lymphocytes showing natural killer cell activity against tumour target cells [J]. Immunology,1988,63(1):111-117.
    [38]Kaspers B, Lillehoj HS, Lillehoj EP. Chicken macrophages and thrombocytes share a common cell surface antigen defined by a monoclonal antibody [J]. Vet. Immunol. Immunopathol.1993,36(4):333-346.
    [39]Dimier IH, Quere P, Naciri M, Bout DT. Inhibition of Eimeria tenella development in vitro mediated by chicken macrophages and fibroblasts treated with chicken cell supernatants with IFN-y activity [J]. Avian Dis.1998. 42(2):239-247.
    [40]Min W, Lillehoj HS, Ashwell CM et al. EST analysis of Eimeria-stimulated intestinal intraepithelial lymphocytes in chickens [J]. Mol. Biotechnol.2005, 30(2):143-150.
    [41]Lillehoj HS, Dalloul RA, Min W. Enhancing intestinal immunity to coccidiosis [J]. World Poult.2003,19:18-21.
    [42]Staeheli P, Puehler F, Schneider K, Gobel TW, Kaspers B. Cytokines of birds: conserved functions a largely different look [J].J. Interf. Cytok. Res.2001, 21(12):993-1010.
    [43]Avery S, Rothwell L, Degen WGJ et al. Characterization of the first nonmammalian T2 cytokine gene cluster:The cluster contains functional single-copy genes for IL-3, IL-4, IL-13, and GM-CSF, a gene for IL-5 that appears to be a pseudogene, and a gene encoding another cytokine like transcript, KK34 [J]. J. Interf. Cytok. Res.2004,24(10):600-610.
    [44]Choi KD, Lillehoj HS, Zalenga DS. Changes in local IFN-y and TGF-β4 mRNA expression and intraepithelial lymphocytes following Eimeria acervulina infection.Vet. Immunol. Immunopathol.1999,71(3-4):263-275.
    [45]Farner NL. Hank JA, Sondel PM. Interleukin-2:molecular and clinical aspects [M]. In:Cytokines in Health and Diseases. Remick DG, Friedland JS (Eds), Marcel Dekker, NY, USA 1997,29-40.
    [46]Lillehoj HS, Min W, Choi KD et al. Molecular, cellular, and functional characterization of chicken cytokines homologous to mammalian IL-15 and IL-2 [J]. Vet. Immunol. Immunopathol.2001,82(3-4):229-244.
    [47]Min W, Lillehoj HS, Burnside J et al. Adjuvant effects of IL-1β, IL-2, IL-8, IL-15, IFN-α, IFN-γ TGF-β4 and lymphotactin on DNA vaccination against Eimeria acervulina [J]. Vaccine,2001,20(1-2):267-274.
    [48]Zhang S, Lillehoj HS, Ruff MD. Chicken tumor necrosis-like factor. I. In vitroproduction by macrophages stimulated with Eimeria tenella or bacterial lipopolysaccharide [J]. Poult. Sci.1995.74(8):1304-1310.
    [49]Robinson P, Okhuysen PC, Chappell CL et al. Transforming growth factor β1 is expressed in the jejunum after experimental Cryptosporidium parvum infection in humans [J]. Infect. Immunol.2000.68(9):5405-5407.
    [50]Hunter CA, Bermudez L, Beernink H, Waegell W, Remington JS. Transforming growth factor-β inhibits interleukin-12-induced production of interferon-y by natural killer cells:a role for transforming growth factor-β in the regulation of T-cell-independent resistance to Toxoplasma gondii [J]. Eur. J. Immunol.1995, 25(4):994-1000.
    [51]Schneider K, Klaas R, Kaspers B, Staeheli P. Chicken interleukin-6. cDNA structure and biological properties [J]. Eur. J. Biochem.2001, 268(15):4200-4206.
    [52]Lynagh GR, Bailey M, Kaiser P. Interleukin-6 is produced during both murine and avian Eimeria infections. Vet. Immunol. Immunopathol.2000,76(1-2): 89-102.
    [53]Laurent F, Mancassola R. Lacroix S. Menezes R, Naciri M. Analysis of chicken mucosal immune response to Eimeria tenella and Eimeria maxima infection by quantitative reverse transcription-PCR [J]. Infect. Immunol.2001,69(4): 2527-2534.
    [54]Sick C, Schneider K, Staeheli P, Weining KC. Novel chicken CXC and CC chemokines [J]. Cytokine,2000,12(3):181-186.
    [55]Lowenthal JW, York JJ, O'Neil TE et al. In vivo effects of chicken interferon-γ during infection with Eimeria [J]. J. Interf. Cytok. Res.1997,17(9):551-558.
    [56]Gazzinelli R, Wysocka M, Hieny S et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T-cells and accompanied by overproduction of IL-12. IFN-γ and TNF-α [J]. J. Immunol.1996,157(2):798-805.
    [57]Weber FH, Genteman KC, LeMay MA, Lewis DO Sr, Evans NA Immunization of broiler chicks by in ovo injection of infective stages of Eimeria [J]. Poult. Sci. 2004,83(3):392-399.
    [58]Lillehoj HS. Ding X. Quiroz MA, Bevensee E,Lillehoj EP. Resistance to intestinal coccidiosis following DNA immunization with the cloned 3-1 EEimeria gene plus IL-2, IL-15, and IFN-y [J]. Avian Dis.2005, 49(1):112-117.
    [59]Seto F, Albright JF. An analysis of host and donor contributions to splenic enlargement in chick embryos inoculated with adult chicken spleen cells [J]. Dev. Biol.1965,11:1-24.
    [60]Janse EM, Jeurissen SH. Ontogeny and function of two non-lymphoid cell populations in the chicken embryo. Immunobiology 182(5),472-481 (1991).
    [61]Johnston PA, Liu H, O'Connell T et al. Applications in in ovo technology. Poult. Sci.1997,76(1):165-178.
    [62]Negash T, al-Garib SO, Gruys E. Comparison of in ovo and post-hatch vaccination with particular reference to infectious bursal disease [J]. A review. Vet. Q.2004,26(2),76-87.
    [63]Dalloul R A,Lillehoj H S. Poultry coccidiosis:recent advancements in control measures and vaccine development [J]. Expert Rev,2006, Vaccines,5:143-163.
    [64]Danforth H D. Use of live oocyst vaccines in the control of avian coccidiosis: experimental studies and field trials [J]. Int J Parasitol,1998,28:1099-1109.
    [65]Allen P C, Fetterer R H. Advances in biology and immunobiology of eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry [J]. Clin Microbiol Rev,2002,15(1):58-65.
    [66]索勋,李国清.鸡球虫病学[M].北京:中国农业大学出版社,1998.
    [67]谢明权,李国清.现代寄生虫学[M].广州:广东科技出版社,2003.
    [68]闫鸿斌,田广孚,贾万忠,等.鸡球虫苗(LCV-2号)安全性和免疫效果研究[J].中国预防兽医学报,2007,29(5):368-371.
    [69]Kopko S H, Martin D S, Barta J R. Responses of chickens to a recombinant refractile body antigen of Eimeria tenella administered using various immunizing strategies [J]. Poult Sci,2000,79(3):336-342.
    [70]Wu S Q, Wang M, Liu Q, et al. Construction of DNA vaccines and their induced protective immunity against experimental Eimeria tenella infection [J]. Parasitol Res,2004,94(5):332-336.
    [71]Lillehoj H S, Ding X, Quiroz M A, et al. Resistance to intestinal coccidiosis following DNA immunization with the cloned 3-1E Eimeria gene plus IL-2, IL-15 and IFN-y [J]. Avian Dis,2005,49(1):112-117.
    [72]杜爱芳,王素华,胡松华.减毒沙门氏菌为载体传递鸡球虫DNA疫苗的安全性、稳定性与免疫原性[J].中国兽医学报,2006,26(2):147-150.
    [73]张莉,秦泽荣,崔尚金,等.柔嫩艾美耳球虫TA4抗原基因cDNA在乳酸乳球菌中的克隆与表达[J].中国预防兽医学报,2006,28(3):271-274.
    [74]Wallach M.The development of CoxAbic a novel vaccine against coccidiosis [J]. World Poul,2004.18:2-4.
    [75]Labbe M, de Venevelles P, Girard-Misguich F, et al. Eimeria tenella microneme protein EtMIC3:identification,localization and role in host cell infection [J].Mol Biochem Parasitol,2005,140(1):43-53.
    [76]Talebi A, Mulcahy G. Partial protection against Eimeria acervulina and Eimeria tenella induced by synthetic peptide vaccine [J]. Exp Parasitol,2005,110(4): 342-348.
    [77]Miska K B, Fetterer R H, Min W, et al. Heat shock protein 90 genes of two species of poultry Eimeria:expression and evolutionary analysis [J]. J Parasitol, 2005,91(2):300-306.
    [78]Dalloul R A, Lillehoj H S, Klinman D M, et al. In ovo administration of CpG oligodeoxy-nucleotides and the recombinant microneme protein MIC2 protects against Eimeria infections [J]. Vaccine,2005,23(24):3108-3113.
    [79]Min W, Kim J K, Lillehoj H S, et al. Characterization of recombinant ScFv antibody reactive with an apical antigen of Eimeria acervulina [J].Biotech Lett, 2001,23(12):949-955.
    [80]Guo F C, Kwakkel R P. Williams B A, et al. Coccidiosis immunization:effects of mushroom and herb polysaccharides on immune responses of chickens infected with Eimeria tenella [J]. Avian Dis,2005,49(1):70-73.
    [81]Eisen MB, Brown PO. DNA arrays for analysis of gene expression [J]. Methods Enzymol.1999,303:179-205.
    [82]Urban S, Lee JR, Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases [J]. Cell,2001,107:173-182.
    [83]Urban S. Rhomboid proteins:conserved membrane proteases with divergent biological functions [J]. Genes,2006,20(22):3054-3068.
    [84]Urban S, Freeman M. Intramembrane proteolysis controls diverse signalling pathways throughout evolution [J]. Curr Opin Genet Dev,2002,12:512-518.
    [85]Shilo BZ. Signaling by the Drosophila epidermal growth factor receptor pathway during development [J]. Exp Cell Res,2003,284:140-149.
    [86]Ruohola-Baker H, Grell E, Chou TB, Baker D, Jan LY, Jan YN. Spatially localized rhomboid is required for establishment of the dorsal-ventralaxis in Drosophila oogenesis [J]. Cell,1993,73:953-965.
    [87]Sturtevant MA, Roark M, Bier E. The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway [J]. Genes Dev,1993,7:961-973.
    [88]Freeman M. The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor [J]. Mech Dev,1994.48: 25-33.
    [89]Golembo M, Raz E, Shilo BZ. The Drosophila embryonic midline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm [J]. Development,1996,122:3363-3370.
    [90]zur Lage P, Jan YN, Jarman AP. Requirement for EGF receptor signalling in neural recruitment during formation of Drosophila chordotonal sense organ clusters [J]. Current Biology,1997,7:166-175.
    [91]Guichard A, Biehs B, Sturtevant MA, Wickline L, Chacko J, Howard K et al. rhomboid and Star interact synergistically to promote EGFR/MAPK signaling during Drosophila wing vein development [J]. Development,1999,126: 2663-2676.
    [92]Bang AG. Kintner C. Rhomboid and Star facilitate presentation and processing of the Drosophila TGF-alpha homolog Spitz [J]. Genes Dev,2000,14:177-186.
    [93]Wasserman JD, Urban S, Freeman M. A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signalling [J]. Genes Dev,2000,14:1651-1663.
    [94]Rutledge BJ. Zhang K. Bier E, Jan YN, Perrimon N. The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsalventral axis formation and neurogenesis [J]. Genes Dev,1992,6:1503-1517.
    [95]Schweitzer R, Shaharabany M, Seger R, Shilo B-Z. Secreted Spitz triggers the DER signalling pathway and is a limiting component in embryonic ventral ectoderm determination [J]. Genes Dev,1995,9:1518-1529.
    [96]Lee JR, Urban S, Garvey CF. Freeman M. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila [J]. Cell. 2001.107:161-171.
    [97]Pascall JC, Luck JE, Brown KD. Expression in mammalian cell cultures reveals interdependent, but distinct, functions for Star and Rhomboid proteins in the processing of the Drosophila transforming-growth-factoralpha homologue Spitz [J]. Biochem J,2002.363:347-352.
    [98]Tsruya R, Schlesinger A, Reich A, Gabay L, Sapir A. Shilo BZ. Intracellular trafficking by Star regulates cleavage of the Drosophila EGF receptor ligand Spitz [J]. Genes Dev,2002,16:222-234.
    [99]Kolodkin AL, Pickup AT, Lin DM, Goodman CS, Banerjee U. Characterization of Star and its interactions with sevenless and EGF receptor during photoreceptor cell development in Drosophila [J]. Development,1994,120:1731-1745.
    [100]Pickup AT, Banerjee U. The role of Star in the production of an activated ligand for the EGF receptor signaling pathway [J]. Dev. Biol,1999.205:254-259.
    [101]Waters CM, Bassler BL. Quorum sensing:cell-to-cell communication in bacteria [J]. Annu Rev Cell Dev Biol.2005,21:319-346.
    [102]Urban S, Schlieper D, Freeman M. Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids [J]. Curr Biol,2002,12:1507-1512.
    [103]Stevenson LG, Strisovsky K, Clemmer KM, Bhatt S, Freeman M, Rather PN. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase [J]. Proc Natl Acad Sci U S A, 2007,104:1003-1008.
    [104]Herlan M, Vogel F, Bornhovd C, Neupert W, Reichert AS. Processing of Mgm1 by the rhomboid-type protease Pcpl is required for maintenance of mitochondrial morphology and of mitochondrial DNA [J]. J Biol Chem,2003,278: 27781-27788.
    [105]McQuibban GA, Saurya S, Freeman M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease [J]. Nature,2003,423:537-541.
    [106]Herlan M, Bornhovd C, Hell K, Neupert W, Reichert AS. Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor [J]. J Cell Biol,2004,165:167-173.
    [107]McQuibban GA, Lee JR, Zheng L, Juusola M, Freeman M. Normal mitochondrial dynamics requires rhomboid-7 and affects Drosophila lifespan and neuronal function [J]. Curr Biol,2006,16:982-989.
    [108]Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OP A1-dependent cristae remodeling [J]. Cell,2006,126:163-175.
    [109]Chao JR, Parganas E, Boyd K, Hong CY, Opferman JT, Ihle JN. Haxl-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons [J]. Nature,2008,452:98-102.
    [110]A W, McQuibban A. Rhomboid-7 and Omi/HtrA2 act in a common pathway with the Parkinson disease factors Pinkl and Parkin [C]. Disease Models and Mechanisms,2008.
    [111]Dowse TJ, Soldati D. Rhomboid-like proteins in Apicomplexa:phylogeny and nomenclature [J]. Trends Parasitol,2005,21(6):254-258.
    [112]Sibley LD. Intracellular parasite invasion strategies [J]. Science.2004.304: 248-253.
    [113]Brossier F, Starnes GL, Beatty WL, Sibley LD. The microneme rhomboid protease TgROM1 is required for efficient intracellular growth of Toxoplasma gondii [J]. Eukaryot Cell 2008.
    [114]Baxt LA, Baker RP, Singh U, Urban S. An Entamoeba histolytica rhomboid protease with atypical specificity cleaves a surface lectin involved in phagocytosis and immune evasion [J]. Genes Dev,2008,22:1636-1646.
    [115]Maegawa S, Ito K, Akiyama Y. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane [J]. Biochemistry,2005,44: 13543-13552.
    [116]Lemieux MJ, Fischer SJ, Cherney MM, Bateman KS, James MN. The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis [J]. Proc Natl Acad Sci U S A,2007,104: 750-754.
    [117]Freeman M. Structural biology:Enzyme theory holds water [J]. Nature,2006, 444:153-155.
    [118]Lohi O, Urban S. Freeman M. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids [J]. Curr Biol, 2004,14:236-241.
    [119]Lemberg MK, Freeman M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases [J]. Genome Res,2007,17:1634-1646.
    [120]Page DR, Grossniklaus U. The art and design of genetic screens:Arabidopsis thaliana [J]. Nat Rev Genet,2002,3:124-136.
    [121]Karakasis K, Taylor D, Ko K. Uncovering a Link between a Plastid Translocon Component and Rhomboid Proteases Using Yeast Mitochondria-Based Assays [J]. Plant Cell Physiol,2007,48:655-661.
    [122]Akiyama Y, Maegawa S. Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease [J]. Mol Microbiol.2007,64: 1028-1037.
    [123]Del Rio A, Dutta K, Chavez J, Ubarretxena-Belandia I, Ghose R. Solution Structure and Dynamics of the N-terminal Cytosolic Domain of Rhomboid Intramembrane Protease from Pseudomonas aeruginosa:Insights into a Functional Role in Intramembrane Proteolysis [J]. J Mol Biol,2007,365:109-122.
    [124]Lemberg MK, Freeman M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases [J]. Genome Res,2007,17:1634-1646.
    [125]Yan Z, Zou H, Tian F, Grandis JR, Mixson AJ, Lu PY et al. Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth [J]. Mol Cancer Ther,2008,7:1355-1364.
    [126]Petry, F. and Harris, J.R. Ultrastructure, fractionation and biochemical analysis of Cryptosporidium parvum sporozoites [J]. Int. J. Parasitol,1999,29:1249-1260.
    [127]Achbarou, A. et al. Characterization of microneme proteins of Toxoplasma gondii [J]. Mol. Biochem. Parasitol,1991,47:223-233.
    [128]Miller, L.H. et al. Identification of Plasmodium knowlesi erythrocyte binding proteins [J]. Mol. Biochem. Parasitol,1988,31:217-222.
    [129]Brydges, S.D. et al. Molecular characterization of TgMIC5, a proteolytically processed antigen secreted from the micronemes of Toxoplasma gondii [J]. Mol. Biochem. Parasitol,2000,111:51-66.
    [130]Entzeroth, R. et al. Microneme secretion in Coccidia:confocal laser scanning and electron microscope study of Sarcocystis muris in cell culture [J]. Eur. J. Cell Biol,1992,59:405-413.
    [131]Bumstead, J.M. et al. Induction of secretion and surface capping of microneme proteins in Eimeria tenella [J]. Mol. Biochem. Parasitol,2000,110:311-321.
    [132]Carruthers, V.B. and Sibley, L.D. Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii [J]. Mol. Microbiol,1999, 31:421-428.
    [133]Carruthers. V.B. et al. Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells [J]. Cell. Microbiol,1999,1:225-235.
    [134]Klein, H. et al. In vitro biosynthesis and in vivo processing of the major microneme antigen of Sarcocystis muris cyst merozoites [J]. Parasitol. Res,1996, 82:468-474.
    [135]Carruthers, V.B. et al. The Toxoplasma adhesive protein MIC2 is proteolytically processed at multiple sites by two parasitederived proteases [J]. J. Biol. Chem,2000,275:14346-14353.
    [136]Ngo, H.M. et al. Differential sorting and post-secretory targeting of proteins in parasitic invasion [J]. Trends Cell Biol,2000,10:67-72.
    [137]Di Cristina, M. et al. Two conserved amino acid motifs mediate protein targeting to the micronemes of the apicomplexan parasite Toxoplasma gondii [J]. Mol. Cell. Biol,2000,20:7332-7341.
    [138]Joe, A. Attachment of Cryptosporidium parvum sporozoites to human intestinal epithelial cells [J]. Infect. Immun,1998,66:3429-3432.
    [139]Ortega-Barria, E. and Boothroyd, J.C. A Toxoplasma lectin-like activity specific for sulfated polysaccharides is involved in host cell infection [J]. J. Biol. Chem, 1999,74:1267-1276.
    [140]Muller, H.M. el al. Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum binds specifically to sulfated glycoconjugates and to HepG2 hepatoma cells suggesting a role for this molecule in sporozoite invasion of hepatocytes [J]. EMBO J,1993,12:2881-2889.
    [141]Jakobsen, P.H. et al. Identification of an erythrocyte binding peptide from the erythrocyte binding antigen, EBA-175, which blocks parasite multiplication and induces peptide-blocking antibodies [J]. Infect. Immun,1998,66:4203-4207.
    [142]Hettmann, C. et al. A dibasic motif in the tail of an apicomplexan myosin is an essential determinant of plasma membrane localization [J]. Mol. Biol. Cell.2000, 11:1385-1400.
    [143]Sultan, A.A. et al. TRAP is necessary'for gliding motility and infectivity of plasmodium sporozoites [J]. Cell,1997.90:511-522.
    [144]Dessens, J.T. CTRP is essential for mosquito infection by malaria ookinetes [J]. EMBO J,1999,18:6221-6227.
    [145]Kappe, S. (1999) Conservation of a gliding motility and cell invasion machinery in apicomplexan parasites [J]. J. Cell Biol,1999,147:937-944.
    [146]Fields S. and Song O.K. A novel genetic system to detect protein-protein interactions [J]. Nature,1989,340:245-246.
    [147]Gyuris J., et al. Cdi, a human G1 and S phase protein phosphatase that associated with Cdk2 [J]. Cell,1993,75:791-803.
    [148]Nagpal S., et al. Identification of nuclear-receptor-interacting proteins using yeast two-hybrid technology [J]. Applications to drug discovery. Methods Mol. Biol.,2001,176:359-376.
    [149]Chumakov I., et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia [J]. Proc. Natl. Acad. Sci.,2002,99:13675-13680.
    [150]Grossfield J., et al. An all-liquid format for the yeast two-hybrid assay [M]. In: M. Weiner and Q. Lu, Editors, Cloning and Expression Technologies, Eaton Press, 2002,527-535.
    [151]Vidal M and Legrain P. Yeast forward and reverse'n'-hybrid systems [J]. Nucleic Acids Re,1999,27:919-929.
    [152]Urquiza A.M. De and Perlmann T. In vivo and in vitro reporter systems for studying nuclear receptor and Iigand activities [J]. Methods Enzymol,2003,364: 463-474.
    [153]Licitra E and Liu J.O. A three-hybrid system for detecting small ligand-protein receptor interactions [J]. Proc. Natl. Acad. Sci.,1996,93:12817-12821.
    [154]Vidal M., et al. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein interactions [J]. Proc. Natl. Acad. Sci.,1996,93: 10315-10320.
    [155]Young K., et al. Identification of a calcium channel modulator using a high throughput yeast two-hybrid screen [J]. Nat. Biotechnol,1998,16:946-950.
    [156]Stagljar I and Fields S. Analysis of membrane protein interactions using yeast-based technologies [J]. Trends Biochem. Sci,2002,27:559-563.
    [157]Fearon E.R., et al.. Karyoplasmic interaction selection strategy:a general strategy to detect protein-protein interactions in mammalian cells [J]. Proc. Natl. Acad. Sci.1992.89:7958-7962.
    [158]Walhout A.J.M. and Vidal M. Protein interaction maps for model organisms [J]. Nat. Rev. Mol. Cell Biol,2001,2:55-62.
    [159]Dowse TJ, Pascall JC, Brown KD, Soldati D. Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion [J]. Int J Parasitol,2005,35:747-756.
    [160]Brossier F, Jewett TJ, Sibley LD, et al. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma [J]. Proc Natl Acad Sci USA,2005,102(11):4146-4151.
    [161]Li J. Zhang X. Liu Q. et al. Eimeria tenella:Cloning of a novel Eimeria tenella cDNA encoding a protein related to rhomboid family from F2 hybrid strain [J]. Exp Parasitol,2006.113:215-220.
    [162]Xiao H, Hrdlicka LA. Nambu JR. Alternate functions of the single-minded and rhomboid genes in development of the Drosophila ventral neuroectoderm [J]. Mech Dev.1996,58:65-74
    [163]Herra A, Mckenzie L, Suryadinata R, Sadowski M, Parsons LM, Sarcevic B, Richardson HE. Geminin and Brahma act antagonistically to regulate EGFR-Ras-MAPK signaling in Drosophila [J]. Dev Biol.2010,2:7-9
    [164]Urban S, Shi Y. Core principles of intramembrane proteolysis:comparison of rhomboid and site-2 family proteases [J]. Curr Opin Struct Biol,2008,18: 432-441
    [165]Dowse TJ, Soldati D. Rhomboid-like proteins in Apicomplexa:phylogeny and nomenclature [J]. Trends Parasitol,2005.21:254-258
    [166]Urban S. Leea JR. Freeman M. A family of Rhomboid intramembrane proteases activates all Drosophila membranetethered EGF ligands. EMBO J 2002,.21: 4277-4286
    [167]张广海. E.tenella扁菱形蛋白抗原定位及免疫保护性研究[D].长春:吉林大学,2007.
    [168]O'Donnell RA, Blackman MJ. The role of malaria merozoite proteases in red blood cell invasion[J]. Curr Opin Microbiol,2005,8(4):422-427.
    [169]O'Donnell RA, Hackett F, Ho well SA, et al. Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite[J]. J Cell Biol,2006,174(7):1023-1033.
    [170]Opitz, C. et al. Intramembrane cleavage of microneme proteins at the surface of the apicomplexan parasite Toxoplasma gondii [J]. EMBO J.2002,21: 1577-1585.
    [171]Zhou, X.W. et al. Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex [J]. Mol. Cell. Proteomics,2004,3:565-576.
    [172]孙柏欣,刘长远,陈彦,等.基因表达系统研究进展[J].现代农业科技,2008.2:205-207.
    [173]刘红.利用免度共沉旋技术睑证拟南莽中BAG蛋合与热激蛋白H义70间的相互作用[D].武汉:华中师范大学,2008.
    [174]Suzuki Y, Adachi Y, Naohito O, et al.Th1/Th2-balancing immunomodulating activity of gel forming (1-3)β-glucans from fungi [J].Biological Phamacological Bulletin,2001,24:811-819.
    [175]Bohn JA, BeMiller JN. (1→3)-β-d-Glucans as biological response modifiers:a review of structure-functional activity relationships [J].Carbohydr Polym,1995, 28:3-14.
    [176]Paulovicova E, Bystricky S, Masarova J, et al. Immune response to Saccharomyces cerevisiae mannan conjugate in mice [J]. International Immunopharmacology,2005,12(5):1693-1698.
    [177]Lehman J M, Streck M R, Tyagi A S, et al. Immunoregulatory Effects of Saccharomyces(S.) cerevisiae Mannan via Th2/Th3 Polarization in Mice [J]. Journal of Allergy and Clinical Immunology,2006,117(2):S278
    [178]Zhang A, Lee B, Lee S, Lee K, An G. Song K. Effeets of Yeast(Saccharomyces cerevisiae)Cell ComPonents on Growth Performance, Meat Quality and Ileal Mueosa DeveloPment of Broiler Chieks [J]. Poultry Science,2005,84: 1015-1021.
    [179]ShashidharaR.G, Devegowda D. Effect of Dietary Mannan Oligosaeeharide on Broiler Breeder Production Traits and Immunity [J]. Poultry Science,2003,82: 1319-1325.
    [180]王福传,韩一超,赵洪恩,等.复方中草药免疫增强剂对鸡免疫器官组织形态学影响的研究[J].中国预防兽医学报,2001,23(6):419-421.
    [181]李志清.日粮中酵母细胞壁及β-葡聚糖对肉仔鸡生长及免疫力的影响[D].北京:中国农业大学,2003.
    [182]廖冰麟.酵母细胞壁对免疫抑制状态下肉仔鸡生长性能和免疫功能的影响[D].武汉:华中农业大学,2009.
    [183]Murata Y, Shimamura T, Tagami T, Kobayashi T, Takatsuki F. Hamuro J. The skewing to Thl by lentinan is direeted through the distinctive eytokine Produetion by maerophages with elevated intraeellula glutathione eontent. International Immunopharmacology,2002,2:673-689.
    [184]Frio A, Martin C. D'Souza D, Monis D. Tan A. Effeets of MTB-100(?) on sow Performance. Alltech's Annual Symposium on Nutritional Biotechnologies in the Feed and Food Industries. Poster,2006.
    [185]Dowse. T. and Soldati, D. Host cell invasion by the apicomplexans:the significance of microneme protein proteolysis [J]. Curr. Opin. Microbiol,2004,7: 388-396.
    [186]陈超.柔嫩艾美耳球虫ET-Rho-2基因在原核和真核细胞中的表达及免疫保护性研究[D].长春:吉林大学,2005.
    [187]Yang G, Li J, Zhang X, et al. Eimeria tenella:construction of a recombinant fowlpox virus expressing rhomboid gene and its protective efficacy against homologous infection[J]. Exp Parasitol.2008,119:30-36.
    [188]Qiuyue Wang, Jianhua Li, Xichen Zhang, et al. Protective immunity of recombinant Mycobacterium bovis BCG expressing rhomboid gene against Eimeria tenella challenge [J]. Veterinary Parasitology,2009,160(3-4):198-203.
    [189]王花欣.弓形虫基因疫苗SAG1-MIC4免疫小鼠的实验研究[D].济南:山东大学,2009.
    [190]Periz J, Gill AC, Knott V, et al. Calcium binding activity of the epidermal growth factor-like domains of the apicomplexan microneme protein EtMIC4[J]. Mol Biochem Parasitol,2005,110:311-321.
    [191]杜爱芳,王素华,索勋.中国畜牧兽医学会.第八次学术研讨会论文集[C].桂林:2004.
    [192]陈俊峰.柔嫩艾美耳球虫抗原基因TA4和EtMIC4的克隆与原核表达载体的构建[D].重庆:西南大学,2006.
    [193]Harper J.W., Hemmi K. and Powers J.C. Reaction of serine proteases with substituted isocoumarins:discovery of 3,4-dichloroisocoumarin, a new general mechanism based serine protease inhibitor [J]. Biochemistry,1985,24: 1831-1841.
    [194]Wang Y. and Ha Y. Open-cap conformation of intramembrane protease GlpG. Proc Natl Acad Sci U S A,2007,104:2098-2102.
    [195]Carruthers, V.B., Sherman, G.D., Sibley, L.D. The Toxoplasma adhesive protein MIC2 is proteolytically processed at multiple sites by two parasite-derived proteases [J]. J. Biol. Chem.2000,275:14346-14353.
    [196]Urban S, Wolfe MS. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity [J]. Proc Natl Acad Sci U S A,2005,102:1883-1888.
    [197]费正华,姜藻.蛋白酶体抑制剂DCI对胃癌细胞增殖的影响[J].东南大学学报,2007,26(3):202-205.
    [198]刘飞,姜藻,顾晓怡,等.3,4-二氯异香豆素对胃癌细胞Smadl和PTEN基因的影响[J].东南大学学报,2008,27(3):184-187.
    [199]谢宏料,谢明权,吴惠贤等.不同培养基成分在球虫细胞培养中的作用[J]. 动物学报,1996,42(3),316-323.
    [200]Xie M.Q., Wu H.X.,Zhang X.Y., et al. Effect of different sera on activity and development of E.tenella sporozoites in cell culture [C]. Proc. Fisrst Asian Conf. Avian Coc. Otsu, Japan,71-78.
    [201]Doran D.J. and Augustine P.C. E. tenella:Comparative oocysts produmtion in primary cultures of chicken kidney cells maintained in various media systems [J]. Proc. Helminth. Soc. Wash.43:126-128.