永生化骨骺干细胞株的建立及Sox9基因诱导骨髓基质细胞定向分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的建立永生化大鼠骨骺干细胞株,并从中克隆Sox9基因,构建真核表达载体,进而转染骨髓基质细胞,探讨Sox9诱导骨髓基质细胞向骨骺干细胞分化并停留在该次分化状态的可能性。为研究骨骺干细胞的分化机制及临床应用奠定基础。
     方法将含有SV40T抗原基因的真核表达载体pCMVSV40T/PUR导入经免疫磁珠分选出的原代PSCs进行稳定表达,用嘌呤霉素筛选出阳性克隆并扩大培养,观察细胞形态及生长状况,绘制细胞生长曲线,用免疫细胞化学方法和RT-PCR鉴定SV40T抗原基因在转染细胞中的表达。提取永生化PSCs总RNA,以RT-PCR方法获得Sox9基因的全长,插入pGEM-T Easy克隆载体中进行序列测定,测序正确后将其亚克隆至表达载体pEGFP-IRES2构建重组复合质粒。然后复合质粒以脂质体法转染骨髓基质细胞,观察转染效率,Sox9基因、蛋白的表达,转化后第12天检测所转化细胞的FGFR-3的表达情况及II型胶原、X型胶原的表达。流式细胞检测细胞分群以及细胞周期。MTT法检测细胞增殖活性。
     结果分离获得转化细胞阳性克隆,用免疫组化证实FGFR-3表达阳性,提取RNA后用RT-PCR法成功扩增出588 bp的片段。转染细胞经扩大培养,命名为永生化骨骺干细胞。贴壁培养的转染细胞群体倍增时间为(22.98±2.77)h,传代、冻存和复苏对细胞形态及生长无明显影响。从永生化骨骺干细胞中提取总RNA经电泳可得28s、18s和5s共3条带,测吸光度值为0.2635,A260/A280为1.8741,说明提取的总RNA完整性较好,纯度高,符合RT-PCR的要求。PCR产物经电泳可得到约2000bp的特异性条带,与预期大小一致。经限制性内切酶酶切图谱分析DNA序列测定证实的目的基因已经插入重组质粒,成功地构建了Sox9质粒。经荧光显微镜下观察证实:成功地对骨髓基质质干细胞实现了Sox9基因的转染。计算转染效率约为50%,转染后的细胞稳定表达Sox9基因、Sox9蛋白。转染后的细胞免疫组化及Western blot检测显示FGFR-3表达阳性,而Ⅱ型胶、X型胶原的表达为阴性。流式细胞检查发现:从转染后一直到第30天,稳定的表现为大部分细胞处于第1象限,提示为FGFR-3阳性,为骨骺干细胞。MTT法检测其增殖活性与骨骺干细胞无异。
     结论在体外培养条件下,可以从新生大鼠干骺端中分离、培养出骨骺干细胞,pCMVSV40T/PUR转染能使其永生化。从IPSCs克隆出Sox9基因并成功构建了Sox9基因真核表达载体,并利用其成功转染了骨髓基质干细胞,转染后的骨髓基质细胞分化为骨骺干细胞并具有骨骺干细胞的特性,这为调控骨骺干细胞的分化及为再生骨骺、完成自体骨骺干细胞移植奠定了坚实的基础。
Objective To establish immortalized precartilaginous stem cells (IPSCs) from which we clone the Sox9 gene and construct its eukaryotic expression vector. Then we transfect the plasmid into the bone marrow stromal cells (MSCs). We study the possibility of MSCs differentiating to PSCs and remaining in the PSCs state for the further related research on the differentiation mechanism and clinic application of precartilaginous stem cells.
     Methods pCMVSV40T/PUR was transfected into the primary cultured PSCs isolated by immuniomagnetic beads select system. Colonies were isolated by puromycin selection and expanded by many passages. Investigate the capability of differentiation of the transfected cells. The expression of SV40Tag in expanded cell lines was identified by immunocytochemistry method and RT-PCR. The total RNA was extracted from immortalized PSCs (IPSCs) after identification and the Sox9 gene was obtained by RT-PCR and be inserted into pGEM-T Easy cloning vector. After the sequencing was confirmed, the gene was subcloned to pEGFP-IRES2 to construct recombinant eukaryotic expression vector pEGFP-IRES2. After that, we transfected the plasmid into MSCs by liposome. We observed the transfection efficiency and expression of Sox9 gene and Sox9 protein, then we detected the transfected cell's expression of FGFR-3 and expression of collagen type II and collagen type X after 12 days after transfection. Detecting the grouping of cells by flow cytometry was applied. Proliferation was determined by MTT.
     Results A particular anti-puromycin cell clone was acquired, which was confirmed as fibroblast growth factor receptor-3(FGFR-3) positive PSCs. The total RNA were isolated from the positive cell clones, and a 588 bp fragment, which was specific for the SV40T antigene gene, was amplified. The transfected cells were expanded to immortalized cell strain, named as immortalized precartilaginous stem cells(IPSCs). The population doubling time of IPSCs was 22.98±2.77 h, no significant effect of subculture, freezing and recovering had been found. The total RNA extracted from IPSCs through electrophoresis can get 28s、18s、3s three bands. The OD value is 0.2635 and the A260/A280 is 1.8741 which shows that the total RNA extracted has a good integrity and purity, and accord with the request of RT-PCR.The PCR product through electrophoresis can get a 2000bp specificity electrophoretic band which is accord with anticipation. Enzyme digestion analysis and DNA sequencing showed that the target gene had been cloned into recombinant plasmids。The Sox9 recombinant plasmids were constructed successfully. Observing under fluorescence microscope confirmed that the Sox9 gene has transfected the bone marrow stromal stem cells successfully. The transfection efficiency is about 50%. The transfected cells expressing Sox9 gene and protein Sox9 stably. Immunohistochemistry and Western blot tests showed that the transfected cells express of FGFR-3 but notⅡtype of collagen and X type of collagen. Flow cytometry revealed:The majority of cells is in the first quadrant 1 after transfection from 1 day to 40 days, which hint FGFR-3 positive and the cells are PSCs, whose proliferation activity was similar to precartiliaginous stem cells (PSCs) in cells proliferation curve derived from MTT.
     Conclusion Precartilaginous stem cells could be isolated from neonatal SD rats, cultured in vitro, and immortalized through the transfection of pCMVSV40T/PUR.The Sox9 gene was cloned successfully from IPSCs. The eukaryotic expression plasmid containing Sox9 gene was successfully constructed. The bone marrow stromal stem cells were transfected by Sox9 gene eukaryotic expression vector successfully. The MSCs transfected by Sox9 gene eukaryotic expression vector differentiate to PSCs and have the characteristics of PSCs.Which may be a promising solid foundation for artificially controlling the differentiation of PSCs and regeneration of epiphyseal、autologous stem cell transplantation.
引文
1. Grande DA, Breitbart AS, Mason J, et al. Cartilage tissue engineering:current limitations and solutions. Clin Orthop,1999, (367Suppl):176-185.
    2. Robinson D, Hasharoni A, Cohen N, et al. Fibroblast growth factor receptor-3 as a marker for precartilaginous stem cells. Clin Orthop,1999,357(Suppl):163-175.
    3. Friedenstein A, Chailakhyan R, Gerasimov U. Bone marrow osteogenic stems cells:in vitro cultivation an d transplan tation in diffusion chambets [J]. Cell Tissue Kinet,1987,20:263-272.
    4. Pittenger F, Mackay A, Beck S et al. Muhilineage potential of adult human mesenchymal stem cells [J].Science.1999,284:143-147.
    5. Hanada K. Stimulatory effects of basic fibroblast growth factors and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells [J]. J Bone Miner Res,1997,12:1606.1641.
    6. Douncis I S, Groomer E R. Chondrogenic phenotype of perichondrium-derivered chondroprogenitor cells is influenced by transforming growth factor β1 [J]. J Orthop Res,1998,15:803.
    7. Arnold I C, Scott P B. Mesenchymal stem cell:building blocks for molecular medecine in the 21st century [J]. Trends in Molecular Medicine,2001,7 (6): 259-264.
    8. Foster JW, Dominguez- Steglich M, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY- related gene [J].Nature,1994, 372(6506):525-530.
    9. Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY—related gene SOX9 [J]. Cell,1994, 79(6):1111-1120.
    10. Smits P, Dy P, Mitra S, et al.Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate [J]. J Cell Biol 2004; 164(5):747-758
    11. Sekiya I, Vuoristo JT, Larson BL,et al. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis [J]. Proc Natl Acad Sci U S A 2002; 99 (7):4397-4402
    12. Lefebvre V, Behringer RR, de Crombrugghe B. L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation path-way [J]. Osteoarthritis and cartilage,2001, S9A:s69-75.
    13. De Crombrugghe. Transcriptional mechanisms of chondrocyte differentiation [J]. Matrix Biol,2000,19:389-394.
    1. Galois L, Freyria AM, Herbage D, Mainard D. Cartilage tissue engineering: state-of-the-art and future approaches, Pathol Biol (Paris).2005 Dec;53(10):590-8.
    2. Robinson D, Hasharoni A, Cohen N, et al. Fibroblast growth factor receptor-3 as a marker for precartilaginous stem cells. Clin Orthop,1999, (367Suppl):163-175.
    3. Freed LE, Martin I, Vunjak-Novakovic G. Frontier in tissue engineering:in vitro modulation of chondrogenesis. Clin Orthop,1999, (367Suppl):46-58.
    4. O'Driscoll SW. Articular cartilage regeneration using periosteum.. Clin Orthop Relat Res.1999 Oct;(367 Suppl):S 186-203.
    5. Aviezer D, Golembo M, Yayon A. Fibroblast growth factor receptor-3 as a therapeutic target for Achondroplasia-genetic short limbed dwarfism. Curr Drug Targets.2003 Jul;4(5):353-65.
    6. Millon R, Jacqmin D, Muller D, Guillot J, Eber M, Abecassis J. Detection of prostate-specific antigen-or prostate-specific membrane antigen-positive circulating cells in prostatic cancer patients:clinical implications..Eur Urol.1999 Oct;36(4):278-85.
    7. Mul FP, Knol EF, Roos D. An improved method for the purification of basophilic granulocytes from human blood. J Immunol Methods.1992 May 18;149(2):207-14.
    8. Tabuchi Y, Toyama Y, Toshimori K, Komiyama M, Mori C, Kondo T. Functional characterization of a conditionally immortalized mouse epididymis caput epithelial cell line MEPC5 using temperature-sensitive simian virus 40 large T-antigen. Biochem Biophys Res Commun.2005 Apr 15;329(3):812-23.
    9. Eaton MJ, Martinez M, Karmally S, Lopez T, Sagen J. Initial characterization of the transplant of immortalized chromaffin cells for the attenuation of chronic neuropathic pain. Cell Transplant.2000 Sep-Oct;9(5):637-56.
    10. Xu L, Flynn B.J, Ungar S, Pass HI, Linnainmaa K, Mattson K, Gerwin BI. Asbestos induction of extended lifespan in normal human mesothelial cells:interindividual susceptibility and SV40 T antigen. Carcinogenesis.1999 May;20(5):773-83.
    11. Kobayashi N, Fujiwara T, Westerman KA, et al. Prevention of acute liver failure in rat s with reversibly immortalized human hepatocytes. Science,2000,287 (5456): 1258-1262.
    12. Chang CC, Sun W, Cruz A, Saitoh M, Tai MH, Trosko JE. A human breast epithelial cell type with stem cell characteristics as target cells for carcinogenesis..Radiat Res. 2001 Jan;155(1 Pt2):201-207.
    13. Freed WJ, Zhang P, Sanchez JF, Dillon-Carter O, Coggiano M, Errico SL, Lewis BD, Truckenmiller ME. Truncated N-terminal mutants of SV40 large T antigen as minimal immortalizing agents for CNS cells. Exp Neurol.2005 Feb;191 Suppl 1:S45-59.
    1. Hunter W. Of the structure an diseases of articulating cartilages [J]. Clin Orthop 1995,317:3-6.
    2.黄仕龙,陈安民,郭风劲,等.鼠骨骺增殖区细胞的分离鉴定和克隆构建PTHrp基因真核表达载体[J].中国矫形外科杂志,2005,13(19):1489-1491
    3. Smits P, Lefebvre V. Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. [J]. Development.2003 Mar; 130(6):1135-48.
    4.程浩,陈安民,游洪波骨骺干细胞的分离培养及其鉴定[J].中国康复,2004,19(4):198-200
    5.游洪波陈安民程浩免疫磁性细胞分选技术分离纯化新生大鼠骨骺干细胞[J].中华创伤杂志,2004,20(10):606-608
    6. 张树威,郭风劲,陈安民.骨骺干细胞相关研究进展[J].国际骨科学杂志,2007,28(3):165-166
    7. Loveridge N. Bone:more than a stick [J]. J Anim Sci 1999; 177:190-196
    8. Aviezer D, Golembo M, Yayon A. Fibroblast growth factor receptor-3 as a therapeutic target for Achondroplasia-genetic short limbed dwarfism. Curr Drug Targets.2003 Jul;4(5):353-65
    9. Martinez ME, Garcia-Ocana A, Sanchez M, Medina S, del Campo T, Valin A, Sanchez-Cabezudo MJ, Esbrit P. C-terminal parathyroid hormone-related protein inhibits proliferation and differentiation of human osteoblast-like cells. [J]. J Bone Miner Res.1997 May;12(5):778-85
    10. Schrier L, Ferns SP, Barnes KM, Emons JA, Newman EI, Nilsson O, Baron J. Depletion of resting zone chondrocytes during growth plate senescence. [J]. J Endocrinol.2006 Apr; 189(1):27-36.
    11. Ouyang YS, Jia CY, Qi KM, Fu XB. The involvement of ERK pathway in the cellular phenotype conversion in human mesenchymal stem cells cocultured with human sweat gland cells [J]. Zhonghua Shao Shang Za Zhi.2006 Oct;22(5):347-50.
    12. Tare RS, Townsend PA, Packham GK, Inglis S, Oreffo RO. Bcl-2-associated athanogene-1 (BAG-1):a transcriptional regulator mediating chondrocyte survival and differentiation during endochondral ossification. [J]. Bone.2008 Jan;42(1):113-28. Epub 2007 Sep 4.
    13.张衣北,陈安民,郭风劲,等.Notchl信号系统对骨骺干细胞增殖与分化调控作用的初步观察[J].中华医学杂志,2005,85(48):3430-3434
    14. Koopman P. SRY and Sox9:mammalian testis-determining genes. [J]. Cell Mol Life Sci.1999 Jun;55(6-7):839-856.
    15. Foster JW.Mutations in SOX9 cause both autosomal sex reversal and campomelic dysplasia. [J]. Acta Paediatr Jpn.1996 Aug;38(4):405-411.
    16. Horton WA. In vitro chondrogenesis in human chondrodysplasias. [J]. Am J Med Genet.1993 Jan 15;45(2):179-182
    17. Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type Ⅱ collagen gene. [J]. EMBO J.1998 Oct 1;17(19):5718-5733.
    18. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. [J]. Growth Factors.2004 Dec;22(4):233-41
    1. Hunter W. Of the structure an d diseases of articulating cartilages [J]. Clin Orthop, 1995,317:3-6.
    2. Zhang S, Chen A, Hu W, et al. Immunological purification of rat precartilaginous stem cells and construction of the immortalized cell strain.Arch Orthop Trauma Surg,2008, 128(11):1339-1344
    3. Wright E, Hargrave MR, Christiansen J, et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos [J]. Nat Genet,1995,9(1):15-20
    4. Y. Shi and J. Massague, Mechanisms of TGF-β signaling from cell membrane to the nucleus, Cell 113 (2003), pp.685-700
    5. Smits P, Lefebvre V. Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. [J]. Development.2003 Mar;130(6):1135-48
    6. Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. [J] Nat Med.2003 Oct;9(10):1293-9. Epub 2003 Aug 31.
    7.张树威,郭风劲,陈安民.骨骺干细胞相关研究进展[J].国际骨科学杂志,2007,28(3): 165-166
    8. Loveridge N. Bone:more than a stick [J]. J Anim Sci 1999; 177:190-196
    9. Aviezer D, Golembo M, Yayon A. Fibroblast growth factor receptor-3 as a therapeutic target for Achondroplasia—genetic short limbed dwarfism. Curr Drug Targets.2003 Jul;4(5):353-65
    10. Anderson PJ, Cox TC, Roscioli T, Elakis G, Smithers L, David DJ, Powell B. Somatic FGFR and TWIST mutations are not a common cause of isolated nonsyndromic single suture craniosynostosis. J Craniofac Surg.2007 Mar; 18(2):312-4.
    11. Robinson D, Hasharoni A, Evron Z, Segal M, Nevo Z. Synovial chondromatosis:the possible role of FGF 9 and FGF receptor 3 in its pathology.. Int J Exp Pathol.2000
    Jun;81(3):183-9.
    12. Oji GS, Gomez P, Kurriger G, Stevens J, Morcuende JA. Indian hedgehog signaling pathway differences between swarm rat chondrosarcoma and native rat chondrocytes..Iowa Orthop J.2007;27:9-16.
    13. Martinez ME, Garcia-Ocana A, Sanchez M, Medina S, del Campo T, Valin A, Sanchez-Cabezudo MJ, Esbrit P. C-terminal parathyroid hormone-related protein inhibits proliferation and differentiation of human osteoblast-like cells. [J]. J Bone Miner Res.1997 May;12(5):778-85
    14. Schrier L, Ferns SP, Barnes KM, Emons JA, Newman El, Nilsson O, Baron J. Depletion of resting zone chondrocytes during growth plate senescence. [J]. J Endocrinol.2006 Apr;189(1):27-36.
    15. Ouyang YS, Jia CY, Qi KM, Fu XB. The involvement of ERK pathway in the cellular phenotype conversion in human mesenchymal stem cells cocultured with human sweat gland cells [J]. Zhonghua Shao Shang Za Zhi.2006 Oct;22(5):347-50
    16. Tare RS, Townsend PA, Packham GK, Inglis S, Oreffo RO. Bcl-2-associated athanogene-1 (BAG-1):a transcriptional regulator mediating chondrocyte survival and differentiation during endochondral ossification. [J]. Bone.2008 Jan;42(1):113-28. Epub 2007 Sep 4
    17.张衣北,陈安民,郭风劲,等.Notchl信号系统对骨骺干细胞增殖与分化调控作用的初步观察[J].中华医学杂志,2005,85(48):3430-3434
    18. Foster JW, Dominguez-Steglich M, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene[J].Nature,1994, 372(6506):525-530.
    19. Foster JW. Mutations in SOX9 cause both autosomal sex reversal and campomelic dysplasia. [J]. Acta Paediatr Jpn.1996 Aug;38(4):405-411.
    20. Horton WA. In vitro chondrogenesis in human chondrodysplasias. [J]. Am J Med Genet.1993 Jan 15;45(2):179-182
    21. Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type Ⅱ collagen gene. [J], EMBO J.1998 Oct 1;17(19):5718-5733
    22. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. [J]. Growth Factors.2004 Dec;22(4):233-41
    23. Yoshimoto T, Yamamoto M, Kadomatsu H, Sakoda K, Yonamine Y, Izumi Y. Recombinant human growth/differentiation factor-5 (rhGDF-5) induced bone formation in murine calvariae. J Periodontal Res.2006 Apr;41(2):140-7.
    24. Shibata S, Suda N, Suzuki S, Fukuoka H, Yamashita Y. An in situ hybridization study of Runx2, Osterix, and Sox9 at the onset of condylar cartilage formation in fetal mouse mandible. J Anat.2006 Feb;208(2):169-77.
    25. Aigner T, Gebhard PM, Schmid E, Bau B, Harley V, Poschl E.. SOX9 expression does not correlate with type Ⅱ collagen expression in adult articular chondrocytes. Matrix Biol.2003 Jun;22(4):363-72.
    26. Brunt KR, Hall SR, Ward CA, Melo LG. Endothelial progenitor cell and mesenchymal stem cell isolation, characterization, viral transduction.. Methods Mol Med. 2007;139:197-210.
    1. Isogai N, Kusuhara H, Ikada Y, Ohtani H, Jacquet R, Hillyer J, Lowder E, Landis WJ.: Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng.2006 Apr; 12(4):691-703.
    2. Wakitani S, Goto T, Young RG, Mansour JM, Goldberg VM, Caplan AI.:Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng.1998 Winter;4(4):429-44.
    3. Podskubka A, Povysil C, Kubes R, Sprindrich J, Sedlacek R.:Treatment of deep cartilage defects of the knee with autologous chondrocyte transplantation on a hyaluronic Acid ester scaffolds (Hyalograft C). Acta Chir Orthop Traumatol Cech. 2006 Aug;73(4):251-63.
    4. Vacanti CA, Kim W, Upton J, Mooney D, Vacanti JP. The efficacy of periosteal cells compared to chondrocytes in the tissue engineered repair of bone defects. Tissue Eng. 1995 Fall;1(3):301-8..
    5. Puelacher WC, Wisser J, Vacanti CA, Ferraro NF, Jaramillo D, Vacanti JP.: Temporomandibular joint disc replacement made by tissue-engineered growth of cartilage. J Oral Maxillofac Surg.1994 Nov;52(11):1172-7; discussion 1177-8..
    6. van Susante JLC, Pieper J, Buma P, van Kuppevelt TH, van Beuningen H, van Der Kraan PM, Veerkamp JH, van den Berg WB, Veth RPH.:Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro. Biomaterials.2001 Sep;22(17):2359-69.
    7. El-Amin SF, Lu HH, Khan Y, Burems J, Mitchell J, Tuan RS, Laurencin CT.: Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering. Biomaterials.2003 Mar;24(7):1213-21.
    8. Mok SS, Masuda K, Hauselmann HJ, Aydelotte MB, Thonar EJ:Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J Biol Chem.1994 Dec 30;269(52):33021-7.
    9. King A, Lau J, Nordin A, Sandler S, Andersson A.:The effect of capsule composition in the reversal of hyperglycemia in diabetic mice transplanted with microencapsulated allogeneic islets. Diabetes Technol Ther.2003;5(4):653-63.
    10. Sams AE, Nixon AJ:Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage.1995 Mar;3(1):47-59..
    11. Sims CD, Butler PE, Cao YL, Casanova R, Randolph MA, Black A, Vacanti CA, Yaremchuk MJ.:Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg.1998 May;101(6):1580-5.
    12. Caterson EJ, Li WJ, Nesti LJ, Albert T, Danielson K, Tuan RS:Polymer/alginate amalgam for cartilage-tissue engineering. Ann N Y Acad Sci.2002 Jun;961:134-8.
    13. Cohen SB, Meirisch CM, Wilson HA, Diduch DR:The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials.2003 Jul;24(15):2653-60.
    14. Xu C, Inai R, Kotaki M, Ramakrishna S.:Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng.2004 Jul-Aug; 10(7-8):1160-8.
    15. Li WJ, Jiang YJ, Tuan RS.:Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng.2006 Jul;12(7):1775-85.
    16. Martin I, Shastri VP, Padera RF, Yang J, Mackay AJ, Langer R, Vunjak-Novakovic G, Freed LE:Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res.2001 May;55(2):229-35.
    17. Chen G, Sato T, Ushida T, Hirochika R, Shirasaki Y, Ochiai N, Tateishi T:The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res A.2003 Dec 15;67(4):1170-80.
    18. Lindahl A, Brittberg M, Peterson L. Cartilage repair with chondrocytes:clinical and
    cellular aspects [J]. Novartis Found Symp.2003;249:175-86; discussion 186-9,234-8, 239-41
    19. Pelled G, G T, Aslan H, Gazit Z, Gazit D:Mesenchymal stem cells for bone gene therapy and tissue engineering. Curr Pharm Des.2002;8(21):1917-28.
    20. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo [J]. Transplantation.1974 Apr; 17(4):331-40..
    21. Jackson DW, Lalor PA, Aberman HM, Simon TM.:Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am.2001 Jan;83-A(1):53-64.
    22. Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM, Caplan AI.:Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res.2000 Sep;18(5):773-80.
    23. Berner A, Siebenlist S, Reichert JC, Hendrich C, Noth U.:Reconstruction of osteochondral defects with a stem cell-based cartilage-polymer construct in a small animal model. Z Orthop Unfall.2010 Jan;148(1):31-8. Epub 2010 Feb 11.
    24. Osyczka AM, Noth U, O'Connor J, Caterson EJ, Yoon K, Danielson KG, Tuan RS: Multilineage differentiation of adult human bone marrow progenitor cells transduced with human papilloma virus type 16 E6/E7 genes. Calcif Tissue Int.2002 Nov;71(5):447-58. Epub 2002 Sep 18.
    25. Caterson EJ, Nesti LJ, Danielson KG, Tuan RS:Human marrow-derived mesenchymal progenitor cells:isolation, culture expansion, and analysis of differentiation. Mol Biotechnol.2002 Mar;20(3):245-56
    26. Olin A, Creasman C, Shapiro F.. Free physeal transplantation in the rabbit. An experimental approach to focal lesions. J Bone Joint Surg Am.1984 Jan;66(1):7-20
    27. Rudolph RD, Dallek M, Jungbluth KH. Behavior of artificially produced defects in the
    epiphyseal plate of rabbits after transplantation of autologous and homologous rib cartilage. Unfallchirurgie.1987 Jun;13(3):123-8.
    28. Moskalewski S, Malejczyk J.. Bone formation following intrarenal transplantation of isolated murine chondrocytes:chondrocyte-bone cell transdifferentiation. Development. 1989 Nov;107(3):473-80.
    29. Aston JE, Bentley G. Repair of articular surfaces by allografts of articular and growth-plate cartilage. J Bone Joint Surg Br.1986 Jan;68(1):29-35.
    30. Siemionow MZ, Izycki DM, Zielinski M. Donor-specific tolerance in fully major histocompatibility major histocompatibility complex-mismatched limb allograft transplants under an anti-alphabeta T-cell receptor monoclonal antibody and cyclosporine A protocol. Transplantation.2003 Dec 27;76(12):1662-8.
    31. Barr SJ, Zaleske DJ, Mankin HJ. Physeal replacement with cultured chondrocytes of varying developmental time:failure to reconstruct a functional or structural physis. J Orthop Res.1993 Jan;11(1):10-9.
    32. Osiecka-Iwan A, Hyc A, Moskalewski S. Immunosuppression and rejection of cartilage formed by allogeneic chondrocytes in rats. Cell Transplant.1999 Nov-Dec;8(6):627-36.
    33. Shapiro F. Epiphyseal and physeal cartilage vascularization:a light microscopic and tritiated thymidine autoradiographic study of cartilage canals in newborn and young postnatal rabbit bone. Anat Rec.1998 Sep;252(1):140-8.
    34.李晓光,邢国强,邢岩.胚胎骨骺移植修复关节面缺损的实验研究.白求恩医科大学学报,1997,23(2):160.
    35. Weise M, De-Levi S, Barnes KM, Gafni RI, Abad V, Baron J. Effects of estrogen on growth plate senescence and epiphyseal fusion. Proc Natl Acad Sci U S A.2001 Jun 5;98(12):6871-6. Epub 2001 May 29.
    36. Xian CJ, Foster BK, Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther. 2006 May;1(2):213-29.
    37. Mehls O, Himmele R, Homme M, Kiepe D, Klaus G. The interaction of glucocorticoids with the growth hormone-insulin-like growth factor axis and its effectson growth plate chondrocytes and bone cells.. J Pediatr Endocrinol Metab. 2001;14 Suppl 6:1475-82.
    38. Hardingham T, Tew S, Murdoch A:Tissue engineering:chondrocytes and cartilage. Arthritis Res.2002;4 Suppl 3:S63-8. Epub 2002 May 9.