Hedgehog-Gli信号通路对胶质瘤细胞增殖、凋亡和侵袭能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的最近研究发现脑胶质瘤中存在异常活化的Hedgehog(HH)-Gli信号通路,抑制该通路后肿瘤细胞出现生长缓慢、成瘤能力下降等改变。然而HH-Gli信号通路对胶质瘤细胞周期、凋亡和侵袭能力的影响,以及与临床病理特征的联系目前仍不清楚。
     方法选取2007-2009年在我科进行手术切除的原发胶质瘤标本110例,使用免疫组化的方法分析细胞核内Gli1表达与肿瘤级别、细胞增殖指数的关系。在体外实验中,我们使用免疫荧光染色和real-time PCR的方法检测胶质瘤细胞系U87、SHG-44、U251和A172中HH-Gli1信号通路的活性状态,然后使用药物环巴胺和小RNA干扰技术在不同水平上影响该信号通路的活性,观察一系列细胞生物学特性的变化,并使用real-time PCR的方法检测与这些细胞生物学特性密切相关的调控基因的改变。
     结果在各个级别胶质瘤中均存在异常活化的HH-Gli1信号通路,细胞核内Gli1蛋白的表达与肿瘤级别、细胞增殖状态有关。体外培养的四个胶质瘤细胞系具有不同活性的HH-Gli1通路。对于具有该通路活化的胶质瘤细胞U87、SHG-44和U251,环巴胺和siGli1显著地抑制了肿瘤细胞的增殖和侵袭能力,肿瘤细胞停滞于G0/G1期,细胞凋亡率增加。进一步研究结果显示抑制HH-Gli1信号通路后与细胞周期、凋亡和细胞侵袭能力相关的一系列基因的表达水平发生了显著的变化;对于HH-Gli1通路无活性的胶质瘤细胞系A172,针对HH-Gli1信号通路的干预措施未引起明显的细胞生物学行为改变。
     结论HH-Gli1信号通路可以作为治疗胶质瘤的一个新的靶点,抑制该信号通路的措施通过多种机制发挥治疗作用。
Objectives Recent studies have shown aberrant activation of Hedgehog(HH)-Gli signaling pathway exists in a fraction of human gliomas. Blocking the pathway leads to the decrease of tumor cell proliferation and tumorigenicity. However, little is known about the HH-Gli pathway's impact on glioma cell behavior regarding cell cycle, apoptosis and invasiveness. The relationship between the HH-Gli pathway and the clinicopathological features also remains to be elucidated.
     Methods 110 primary glioma samples were obtained from those patients who underwent surgical rection in our department from 2007 to 2009. Immunohistochemical staining was performed to analyze the relationship between Glil nuclear staining and pathological grades, and the relationship between Glil nuclear staining and the tumor proliferative index. In in vitro experiments, immunofluorescence staining and real-time PCR were used to detect the HH-Gli 1 activity in glioma cell lines U87, SHG-44, U251 and A172. Then cyclopamine and small RNA interference technique were used to inhibit the pathway activity in these glioma cell lines, and their phenotype changes were recorded. Furthermore, we measured the relative gene expressions by real-time PCR to clarify the molecular mechanisms behind the phenotype changes.
     Results Aberrant activation of the HH-Gli 1 pathway existed in all four grades of human glioma samples. The nuclear staining of Glil protein was associated with the pathological grades and proliferative index. The four glioma cell lines cultured in vitro harbored different activity of the HH-Gli1 pathway. As for glioma cells with an active pathway like U87, SHG-44 and U251, cyclopamine and siGlil significantly reduced the glioma cell growth and invasion. Cell cycle Go/Gi arrest and enhanced apoptosis were detected after blocking the HH-Gli1 pathway. Further analysis showed that a set of genes related to those phenotype changes saw a remarkable change in their mRNA levels. For A172 cells which have a silent HH-Gli1 pathway, neither cyclopamine nor siGlil produced marked cell behavior changes.
     Conclusions HH-Gli 1 pathway can serve as a new therapeutic target for human gliomas. Inhibition of the pathway takes its effect through multiple mechanisms.
引文
1. Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet,2002, 359(9311):1011-8.
    2. Blagosklonny MV. Teratogens as anti-cancer drugs. Cell Cycle,2005, 4(11):1518-21.
    3. Duman-Scheel M, Weng L, Xin SJ, et al. Hedgehog regulates cell growth and proliferation by inducing cyclin D and cyclin E. Nature,2002,417(6886):299-304.
    4. Hatton BA, Knoepfler PS, Kenney AM, et al. N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res, 2006,66(17):8655-61.
    5. Hallikas O, Palin K, Sinjushina N, et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell,2006, 124(1):47-59.
    6. Stecca B, Ruiz IAA. Context-dependent Regulation of the GLI Code in Cancer by HEDGEHOG and Non-HEDGEHOG Signals. J Mol Cell Biol,2010.
    7. Xu Q, Yuan X, Liu G, et al. Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas. Stem Cells,2008,26(12):3018-26.
    8. Stecca B, Mas C, Clement V, et al. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA,2007,104(14):5895-900.
    9. Lauth M, Toftgard R. Non-canonical activation of GLI transcription factors: implications for targeted anti-cancer therapy. Cell Cycle,2007,6(20):2458-63.
    10. Schnidar H, Eberl M, Klingler S, et al. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res,2009,69(4):1284-92.
    11. Ruiz i Altaba A, Mas C, Stecca B. The Gli code:an information nexus regulating cell fate, sternness and cancer IF13. Trends Cell Biol,2007,17(9):438-47.
    12. Altaba ARI, Palma V, Dahmane N. Hedgehog-Gli signalling and the growth of the brain. Nature Reviews Neuroscience,2002,3(1):24-33.
    13.Maity T, Fuse N.Beachy PA. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Proc Natl Acad Sci U S A,2005,102(47):17026-17031.
    14. Palma V, Lim DA, Dahmane N, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development,2005,132(2):335-344.
    15. Machold R, Hayashi S, Rutlin M, et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron,2003,39(6):937-950.
    16. Lai K, Kaspar BK, Gage FH, et al. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci,2003,6(1):21-7.
    17. Dahmane N, Sanchez P, Gitton Y, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development,2001,128(24):5201-5212.
    18. Berman DM, Karhadkar SS, Hallahan AR, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science,2002,297(5586):1559-61.
    19. Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells,2007, 25(10):2524-2533.
    20. Clement V, Sanchez P, de Tribolet N, et al. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol,2007, 17(2):165-72.
    21. Balordi F, Fishell G. Hedgehog signaling in the subventricular zone is required for both the maintenance of stem cells and the migration of newborn neurons. J Neurosci,2007, 27(22):5936-47.
    1. Palma V, Lim DA, Dahmane N, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development,2005,132(2):335-344.
    2. Blagosklonny MV. Teratogens as anti-cancer drugs. Cell Cycle,2005, 4(11):1518-21.
    3. Maity T, Fuse N.Beachy PA. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Proc Natl Acad Sci U S A,2005,102(47):17026-17031.
    4. Duman-Scheel M, Weng L, Xin SJ, et al. Hedgehog regulates cell growth and proliferation by inducing cyclin D and cyclin E. Nature,2002,417(6886):299-304.
    5. Hatton BA, Knoepfler PS, Kenney AM, et al. N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res, 2006,66(17):8655-61.
    6. Hallikas O, Palin K, Sinjushina N, et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell,2006, 124(1):47-59.
    7. Stecca B, Ruiz IAA. Context-dependent Regulation of the GLI Code in Cancer by HEDGEHOG and Non-HEDGEHOG Signals. J Mol Cell Biol,2010.
    8. McDermott A, Gustafsson M, Elsam T, et al. Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development,2005, 132(2):345-357.
    9. Varjosalo M, Bjorklund M, Cheng F, et al. Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell,2008,133(3):537-48.
    10. Pan Y, Bai CB, Joyner AL, et al. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol,2006, 26(9):3365-77.
    11. Xu Q, Yuan X, Liu G, et al. Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas. Stem Cells,2008,26(12):3018-26.
    12. Stecca B, Mas C, Clement V, et al. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA,2007,104(14):5895-900.
    13.Lauth M, Toftgard R. Non-canonical activation of GLI transcription factors: implications for targeted anti-cancer therapy. Cell Cycle,2007,6(20):2458-63.
    14. Schnidar H, Eberl M, Klingler S, et al. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res,2009,69(4):1284-92.
    15. Stecca B, Ruiz i Altaba A. A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J,2009,28(6):663-76.
    16. Ruiz i Altaba A, Mas C, Stecca B. The Gli code:an information nexus regulating cell fate, sternness and cancer IF13. Trends Cell Biol,2007,17(9):438-47.
    17. Velcheti V, Govindan R. Hedgehog signaling pathway and lung cancer. J Thorac Oncol,2007,2(1):7-10.
    18. Xie J. Hedgehog signaling in prostate cancer. Future Oncol,2005, 1(3):331-8.
    19. Kubo M, Nakamura M, Tasaki A, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res,2004,64(17):6071-4.
    20. Yanai K, Nagai S, Wada J, et al. Hedgehog signaling pathway is a possible therapeutic target for gastric cancer. J Surg Oncol,2007,95(1):55-62.
    21. Varnat F, Duquet A, Malerba M, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med,2009, 1(6-7):338-51.
    22. Thayer SP, di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature,2003,425(6960):851-856.
    23. Mahindroo N, Punchihewa C.Fujii N. Hedgehog-Gli signaling pathway inhibitors as anticancer agents. J Med Chem,2009,52(13):3829-45.
    24. Sanchez P, Hernandez AM, Stecca B, et al. Inhibition of prostate cancer proliferation by interference with SONICHEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA,2004,101(34):12561-12566.
    25. Yuan Z, Goetz JA, Singh S, et al. Frequent requirement of hedgehog signaling in non-small cell lung carcinoma. Oncogene,2007,26(7):1046-55.
    26. Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases:a new paradigm for combination therapy in solid cancers. Cancer Res,2007,67(5):2187-96.
    27. Clement V, Sanchez P, de Tribolet N, et al. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol,2007, 17(2):165-72.
    28. Stecca B, Mas C, Clement V, et al. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA,2007,104(14):5895-900.
    29. Zurawel RH, Allen C, Chiappa S, et al. Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer,2000,27(1):44-51.
    30. Hatton BA, Villavicencio EH, Tsuchiya KD, et al. The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res,2008,68(6):1768-76.
    31. Moraes RC, Zhang X, Harrington N, et al. Constitutive activation of smoothened (SMO) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Development,2007,134(6):1231-42.
    32. Kinzler KW, Bigner SH, Bigner DD, et al. Glil identification of an amplified, highly expressed gene in a human glioma. Science,1987,236(4797):70-73.
    33. Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells,2007, 25(10):2524-2533.
    34. Chen XJ, Horiuchi A, Kikuchi N, et al. Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation:It's inhibition leads to growth suppression and apoptosis. Cancer Science,2007,98(1):68-76.
    35. Xuan YH, Jung HS, Choi YL, et al. Enhanced expression of hedgehog signaling molecules in squamous cell carcinoma of uterine cervix and its precursor lesions. Mod Pathol,2006,19(8):1139-1147.
    36. Becher OJ, Hambardzumyan D, Fomchenko EI, et al. Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res,2008, 68(7):2241-9.
    37. Yoshikawa R, Nakano Y, Tao L, et al. Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy. Br J Cancer,2008, 98(10):1670-4.
    38. ten Haaf A, Bektas N, von Serenyi S, et al. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer,2009,9:298.
    39. Scholzen T, Gerdes J. The Ki-67 protein:from the known and the unknown. J Cell Physiol,2000,182(3):311-22.
    40. Zolota V, Tsamandas AC, Aroukatos P, et al. Expression of cell cycle inhibitors p21, p27, p14 and p16 in gliomas. Correlation with classic prognostic factors and patients' outcome. Neuropathology,2008,28(1):35-42.
    41. Donato V, Papaleo A, Castrichino A, et al. Prognostic implication of clinical and pathologic features in patients with glioblastoma multiforme treated with concomitant radiation plus temozolomide. Tumori,2007,93(3):248-256.
    1. Chen JK, Taipale J, Cooper MK, et al. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev,2002,16(21):2743-2748.
    2. Ruiz i Altaba A, Mas C, Stecca B. The Gli code:an information nexus regulating cell fate, sternness and cancer IF13. Trends Cell Biol,2007,17(9):438-47.
    3. Machold R, Hayashi S, Rutlin M, et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron,2003,39(6):937-950.
    4. Altaba ARI, Palma V, Dahmane N. Hedgehog-Gli signalling and the growth of the brain. Nature Reviews Neuroscience,2002,3(1):24-33.
    5. Maity T, Fuse N.Beachy PA. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Proc Natl Acad Sci U S A,2005,102(47):17026-17031.
    6. Palma V, Lim DA, Dahmane N, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development,2005,132(2):335-344.
    7. Lai K, Kaspar BK, Gage FH, et al. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci,2003,6(1):21-7.
    8. Clement V, Sanchez P, de Tribolet N, et al. HEDGEHOG-G I1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol,2007, 17(2):165-72.
    9. Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells,2007, 25(10):2524-2533.
    10. Owa T, Yoshino H, Yoshimatsu K, et al. Cell cycle regulation in the G1 phase:A promising target for the development of new chemotherapeutic anticancer agents. Curr Med Chem,2001,8(12):1487-1503.
    11. Deshpande A, Sicinski P.Hinds PW. Cyclins and cdks in development and cancer: a perspective. Oncogene,2005,24(17):2909-2915.
    12. Kenney AM, Rowitch DH. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol,2000, 20(23):9055-67.
    13. Duman-Scheel M, Weng L, Xin SJ, et al. Hedgehog regulates cell growth and proliferation by inducing cyclin D and cyclin E. Nature,2002,417(6886):299-304.
    14. Ohta M, Tateishi K, Kanai F, et al. p53-Independent negative regulation of p21/cyclin-dependent kinase-interacting protein 1 by the sonic hedgehog-glioma-associated oncogene 1 pathway in gastric carcinoma cells. Cancer Res,2005,65(23):10822-10829.
    15. Liu J, Xu XF.Yang WJ. The effects of Hedgehog-Gli 1 signaling pathway on proliferation and apoptosis of hepatic stellate cells. Zhonghua Gan Zang Bing Za Zhi,2009, 17(1):33-7.
    16. Charrier JB, Lapointe F, Le Douarin NM, et al. Anti-apoptotic role of Sonic hedgehog protein at the early stages of nervous system organogenesis. Development,2001, 128(20):4011-20.
    17. Ma X, Sheng T, Zhang Y, et al. Hedgehog signaling is activated in subsets of esophageal cancers. Int J Cancer,2006,118(1):139-48.
    18. Patil MA, Zhang J, Ho C, et al. Hedgehog signaling in human hepatocellular carcinoma. Cancer Biol Ther,2006,5(1):111-7.
    19. Warzecha J, Bonke L, Koehl U, et al. The hedgehog inhibitor cyclopamine induces apoptosis in leukemic cells in vitro. Leuk Lymphoma,2008,49(12):2383-6.
    20. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene,2008, 27(50):6398-406.
    21. Julien T, Frankel B, Longo S, et al. Antisense-mediated inhibition of the bcl-2 gene induces apoptosis in human malignant glioma. Surg Neurol,2000,53(4):360-8; discussion 368-9.
    22. Chen XL, Cao LQ, She MR, et al. Gli-1 siRNA induced apoptosis in Huh7 cells. World J Gastroenterol,2008,14(4):582-9.
    23. Liu J, Xu XF, Yang WJ. The effects of Hedgehog-Gli 1 signaling pathway on proliferation and apoptosis of hepatic stellate cells. Zhonghua Gan Zang Bing Za Zhi,2009, 17(1):33-7.
    24. Blagosklonny MV. Teratogens as anti-cancer drugs. Cell Cycle,2005, 4(11):1518-21.
    25. Zhang X, Harrington N, Moraes RC, et al. Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo). Breast Cancer Res Treat,2009, 115(3):505-21.
    26. Dahmane N, Sanchez P, Gitton Y, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development,2001,128(24):5201-5212.
    27. Sanchez P, Hernandez AM, Stecca B, et al. Inhibition of prostate cancer proliferation by interference with SONICHEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA,2004,101(34):12561-12566.
    28. Becher OJ, Hambardzumyan D, Fomchenko El, et al. Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res,2008, 68(7):2241-9.
    29. Stecca B, Ruiz IAA. A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J,2009.
    1. Burger PC. Pathologic anatomy and CT correlations in the glioblastoma multiforme. Appl Neurophysiol,1983,46(1-4):180-7.
    2. Ware ML, Berger MS.Binder DK. Molecular biology of glioma tumorigenesis. Histol Histopathol,2003,18(1):207-16.
    3. de Bouard S, Christov C, Guillamo JS, et al. Invasion of human glioma biopsy specimens in cultures of rodent brain slices:a quantitative analysis. J Neurosurg,2002, 97(1):169-76.
    4. Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J Neurooncol,2004,70(2):217-28.
    5. Altaba ARI, Palma V, Dahmane N. Hedgehog-Gli signalling and the growth of the brain. Nature Reviews Neuroscience,2002,3(1):24-33.
    6. Dahmane N, Sanchez P, Gitton Y, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development,2001,128(24):5201-5212.
    7. Balordi F, Fishell G. Hedgehog signaling in the subventricular zone is required for both the maintenance of stem cells and the migration of newborn neurons. J Neurosci,2007, 27(22):5936-47.
    8. Cheng WT, Xu K, Tian DY, et al. Role of Hedgehog signaling pathway in proliferation and invasiveness of hepatocellular carcinoma cells. Int J Oncol,2009, 34(3):829-836.
    9. Yoo YA, Kang MH, Kim JS, et al. Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis,2008,29(3):480-490.
    10. Mori Y, Okumura T, Tsunoda S, et al. Gli-1 expression is associated with lymph node metastasis and tumor progression in esophageal squamous cell carcinoma. Oncology, 2006,70(5):378-389.
    11. Kameda C, Tanaka H, Yamasaki A, et al. The Hedgehog Pathway Is a Possible Therapeutic Target for Patients with Estrogen Receptor-negative Breast Cancer, in 11th Annual Meeting of the Society-of-Biotherapeutic-Approaches.2007. Tokyo, JAPAN.
    12. Zhou BP, Deng J, Xia W, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol,2004, 6(10):931-40.
    13.Fendrich V, Waldmann J, Esni F, et al. Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum. Endocrine-Related Cancer,2007,14:865-74.
    14. Shida T, Furuya M, Nikaido T, et al. Sonic hedgehog-Glil signaling pathway might become an effective therapeutic target in gastrointestinal neuroendocrine carcinomas. Cancer Biology & Therapy,2006,5(11):1530-1538.
    15. Liao X, Siu MK, Au CW, et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers:effect on prognosis, cell invasion and differentiation. Carcinogenesis, 2009,30(1):131-40.
    16. Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases:a new paradigm for combination therapy in solid cancers. Cancer Res,2007,67(5):2187-96.
    17. Liotta LA, Tryggvason K, Garbisa S, et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature,1980,284(5751):67-8.
    18. Nakagawa T, Kubota T, Kabuto M, et al. Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain tumors. J Neurosurg,1994, 81(1):69-77.
    19. Forsyth PA, Wong H, Laing TD, et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer,1999, 79(11-12):1828-35.
    20. Uhm JH, Dooley NP, Villemure JG, et al. Glioma invasion in vitro:regulation by matrix metalloprotease-2 and protein kinase C. Clin Exp Metastasis,1996,14(5):421-33.
    21. Kondraganti S, Mohanam S, Chintala SK, et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res,2000,60(24):6851-5.
    22. Arato-Ohshima T, Sawa H. Over-expression of cyclin Dl induces glioma invasion by increasing matrix metalloproteinase activity and cell motility. Int J Cancer,1999, 83(3):387-92.
    23. Stecca B, Ruiz i Altaba A. A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J,2009,28(6):663-76.
    24. Toschi E, Rota R, Antonini A, et al. Wild-type p53 gene transfer inhibits invasion and reduces matrix metalloproteinase-2 levels in p53-mutated human melanoma cells. J Invest Dermatol,2000,114(6):1188-94.
    25. Liu J, Zhan M, Hannay JA, et al. Wild-type p53 inhibits nuclear factor-kappaB-induced matrix metalloproteinase-9 promoter activation:implications for soft tissue sarcoma growth and metastasis. Mol Cancer Res,2006,4(11):803-10.
    1. di Magliano MP, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer,2003,3(12):903-11.
    2. Altaba AR, Sanchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer,2002,2(5):361-72.
    3. Hooper JE, Scott MP. Communicating with Hedgehogs. Nat Rev Mol Cell Bio, 2005,6(4):306-17.
    4. Altaba ARI. Gli proteins encode context-dependent positive and negative functions:implications for development and disease. Development,1999, 126(14):3205-16.
    5. Brewster R, Mullor JL, Altaba AR. Gli2 functions in Fgf signaling during antero-posterior patterning. Development,2000,127:4395-405.
    6. Eggenschwiler JT, Espinoza E, Anderson KV. Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature,2001,412:194-8.
    7. Soula C, Danesin C, Kan P, et al. Distinct sites of origin of oligodendrocytes and somatic motoneurons in the chick spinal cord:oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development,2001, 128(8):1369-79.
    8. Maity T, Fuse N, Beachy PA. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Proc Natl Acad,2005,102(47):17026-31.
    9. Altaba ARI, Palma V, Dahmane N. Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci,2002,3(1):24-33.
    10. Palma V, Lim DA, Dahmane N, Sanchez P, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development,2005,132(2):335-44.
    11. Machold R, Hayashi S, Rutlin M, et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron,2003, 39(6):937-50.
    12. Lai K, Kaspar BK, Gage FH, et al. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci,2003,6(1):21-7.
    13. Goodrich LV, Milenkovic L, Higgins KM, et al. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science,1997,277(5329):1109-13.
    14. Kinzler KW, Bigner SH, Bigner DD, et al. Identification of an amplified, highly expressed gene in a human glioma. Science,1987,236(4797):70-3.
    15. Dahmane N, Sanchez P, Gitton Y, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development,2001,128(24):5201-12.
    16. Berman DM, Karhadkar SS, Hallahan AR, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science,2002,297(5586):1559-61.
    17. Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet,2002,31(3):306-10.
    18. Lee Y, Kawagoe R, Sasai K, et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene,2007,26(44):6442-6447.
    19. Di Marcotullio L, Ferretti E, De Smaele E, et al. REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. P Natl Acad Sci USA,2004,101(29):10833-8.
    20. Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature,2003, 425(6960):846-51.
    21. Sanchez P, Hernandez AM, Stecca B, et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. P Natl Acad Sci USA,2004,101(34):12561-6.
    22. Sanchez P, Altaba ARI. In vivo inhibition of endogenous brain tumors through systemic interference of Hedgehog signaling in mice. Mech Dev,2005,122(2):223-30.
    23. Di Marcotullio L, Ferretti E, Greco A, et al. Numb is a suppressor of Hedgehog signalling and targets Glil for Itch-dependent ubiquitination. Nat Cell Biol,2006, 8(12):1415-23.
    24. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res,2003,63(18):5821-8.
    25. Singh SK, Clarke ID, Hide T, et al. Cancer stem cells in nervous system tumors. Oncogene,2004,23(43):7267-73.
    26. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature,2006, 444(7120):756-60.
    27. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer,2006,5:67.
    28. Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys,2007,67(1):1-5.
    29. Rubio D, Garcia-Castro J, Martin MC, et al. Spontaneous human adult stem cell transformation. Caner Res,2005,65(8):3035-9.
    30. Shiras A, Chettiar S, Shepal V, et al. Spontaneous transformation of human adult non-tumorigenic stem cells to cancer stem cells is driven by Genomic Instability in a human model of Glioblastoma. Stem Cells,2007,25(6):1478-89.
    1. Hooper JE, Scott MP. Communicating with Hedgehogs. Nature Reviews Molecular Cell Biology,2005,6(4):306-317.
    2. Kasper M, Regi G, Frischauf AM, et al. GLI transcription factors:Mediators of oncogenic Hedgehog signalling. Eur J Cancer,2006,42(4):437-445.
    3. Hallikas O, Palin K, Sinjushina N, et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell,2006, 124(1):47-59.
    4. Stecca B, Ruiz i Altaba A. A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J,2009,28(6):663-76.
    5. Varjosalo M, Bjorklund M, Cheng F, et al. Dyrk2 和 Gli2,3 Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell,2008,133(3):537-48.
    6. Pan Y, Bai CB, Joyner AL, et al. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol,2006, 26(9):3365-77.
    7. Cheng SY, Bishop JM. Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci U S A,2002, 99(8):5442-7.
    8. Kise Y, Morinaka A, Teglund S, et al. Sufu recruits GSK3beta for efficient processing of Gli3. Biochem Biophys Res Commun,2009,387(3):569-74.
    9. Svard J, Heby-Henricson K, Persson-Lek M, et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell,2006,10(2):187-97.
    10. Yue S, Chen Y.Cheng SY. Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene,2009,28(4):492-9.
    11. Nguyen V, Chokas AL, Stecca B, et al. Cooperative requirement of the Gli proteins in neurogenesis. Development,2005,132(14):3267-79.
    12. Endoh-Yamagami S, Evangelista M, Wilson D, et al. The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol,2009,19(15):1320-6.
    13. Cheung HO, Zhang X, Ribeiro A, et al. The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal,2009, 2(76):ra29.
    14. Liem KF, Jr., He M, Ocbina PJ, et al. Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci U S A,2009, 106(32):13377-82.
    15. Maloverjan A, Piirsoo M, Michelson P, et al. Identification of a novel serine/threonine kinase ULK3 as a positive regulator of Hedgehog pathway. Exp Cell Res, 316(4):627-37.
    16. Asaoka Y, Kanai F, Ichimura T, et al. Identification of a suppressive mechanism for Hedgehog signaling through a novel interaction of Gli with 14-3-3. J Biol Chem, 285(6):4185-94.
    17. Ferretti E, De Smaele E, Miele E, et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J,2008, 27(19):2616-27.
    18. Uziel T, Karginov FV, Xie S, et al. The miR-17-92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci U S A,2009, 106(8):2812-7.
    19. Ruiz i Altaba A, Mas C, Stecca B. The Gli code:an information nexus regulating cell fate, stemness and cancer IF 13. Trends Cell Biol,2007,17(9):438-47.
    20. Cai C, Thorne J, Grabel L. Hedgehog serves as a mitogen and survival factor during embryonic stem cell neurogenesis. Stem Cells,2008,26(5):1097-108.
    21. Ruiz i Altaba A. Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development,1998,125(12):2203-12.
    22. Persson M, Stamataki D, te Welscher P, et al. Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev,2002,16(22):2865-78.
    23. Bai CB, Stephen D.Joyner AL. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell,2004, 6(1):103-15.
    24. Stamataki D, Ulloa F, Tsoni SV, et al. A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev,2005,19(5):626-41.
    25. Cayuso J, Ulloa F, Cox B, et al. The Sonic hedgehog pathway independently controls the patterning, proliferation and survival of neuroepithelial cells by regulating Gli activity. Development,2006,133(3):517-28.
    26. Mullor JL, Calleja M, Capdevila J, et al. Hedgehog activity, independent of decapentaplegic, participates in wing disc patterning. Development,1997,124(6):1227-37.
    27. Litingtung Y, Dahn RD, Li Y, et al. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature,2002,418(6901):979-83.
    28. Furimsky M, Wallace VA. Complementary Gli activity mediates early patterning of the mouse visual system. Dev Dyn,2006,235(3):594-605.
    29. Dahmane N, Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development,1999,126(14):3089-100.
    30. Chiang C, Litingtung Y, Lee E, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature,1996,383(6599):407-13.
    31. Litingtung Y, Chiang C. Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nat Neurosci,2000,3(10):979-85.
    32. Lee J, Platt KA, Censullo P, et al. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development,1997,124(13):2537-52.
    33. Park HL, Bai C, Platt KA, et al. Mouse Glil mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development,2000,127(8):1593-605.
    34. Bai CB, Joyner AL. Glil can rescue the in vivo function of Gli2. Development, 2001,128(24):5161-72.
    35. Karlstrom RO, Tyurina OV, Kawakami A, et al. Genetic analysis of zebrafish glil and gli2 reveals divergent requirements for gli genes in vertebrate development. Development,2003,130(8):1549-64.
    36. Tyurina OV, Guner B, Popova E, et al. Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling. Dev Biol,2005,277(2):537-56.
    37. Kinzler KW, Bigner SH, Bigner DD, et al. Gli1Identification of an amplified, highly expressed gene in a human glioma. Science,1987,236(4797):70-73.
    38. Zurawel RH, Allen C, Wechsler-Reya R, et al. Evidence that haploinsufficiency of Ptch leads to medulloblastoma in mice. Genes Chromosomes Cancer,2000,28(1):77-81.
    39. Crawford JR, Rood BR, Rossi CT, et al. Medulloblastoma associated with novel PTCH mutation as primary manifestation of Gorlin syndrome. Neurology,2009, 72(18):1618.
    40. Hutchin ME, Kariapper MS, Grachtchouk M, et al. Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival:conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev,2005,19(2):214-23.
    41. Dahmane N, Lee J, Robins P, et al. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature,1997,389(6653):876-81.
    42. Ehtesham M, Sarangi A, Valadez JG, et al. Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene,2007,26(39):5752-61.
    43. Clement V, Sanchez P, de Tribolet N, et al. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol,2007, 17(2):165-72.
    44. Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells,2007, 25(10):2524-2533.
    45. Peacock CD, Wang QJ, Gesell GS, et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci U S A,2007, 104(10):4048-4053.
    46. Brewster R, Mullor JL.Ruiz i Altaba A. Gli2 functions in FGF signaling during antero-posterior patterning. Development,2000,127(20):4395-405.
    47. Palma V, Lim DA, Dahmane N, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development,2005,132(2):335-44.
    48. Ruiz i Altaba A, Stecca B.Sanchez P. Hedgehog-Gli signaling in brain tumors: stem cells and paradevelopmental programs in cancer. Cancer Lett,2004,204(2):145-57.
    49. Wellbrock C, Karasarides M.Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol,2004,5(11):875-85.
    50. Stecca B, Mas C, Clement V, et al. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA,2007,104(14):5895-900.
    51. Ji Z, Mei FC, Xie J, et al. Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem,2007,282(19):14048-55.
    52. Seto M, Ohta M, Asaoka Y, et al. Regulation of the hedgehog signaling by the mitogen-activated protein kinase cascade in gastric cancer. Mol Carcinog,2009, 48(8):703-12.
    53.Nolan-Stevaux O, Lau J, Truitt ML, et al. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev,2009,23(1):24-36.
    54. Morton JP, Mongeau ME, Klimstra DS, et al. Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci U S A,2007,104(12):5103-8.
    55. Hingorani SR, Wang L, Multani AS, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell,2005,7(5):469-83.
    56. Northcott PA, Nakahara Y, Wu X, et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet,2009,41(4):465-72.
    57. Kasper M, Schnidar H, Neill GW, et al. Selective modulation of Hedgehog/GLI target gene expression by epidermal growth factor signaling in human keratinocytes. Mol Cell Biol,2006,26(16):6283-98.
    58. Schnidar H, Eberl M, Klingler S, et al. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res,2009,69(4):1284-92.
    59. Laner-Plamberger S, Kaser A, Paulischta M, et al. Cooperation between GLI and JUN enhances transcription of JUN and selected GLI target genes. Oncogene,2009, 28(13):1639-51.
    60. Dennler S, Andre J, Alexaki I, et al. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Glil expression in vitro and in vivo. Cancer Res,2007,67(14):6981-6.
    61.Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer,2003,3(11):807-21.
    62. Liu F, Massague J.Ruiz i Altaba A. Carboxy-terminally truncated Gli3 proteins associate with Smads. Nat Genet,1998,20(4):325-6.
    63. Artavanis-Tsakonas S, Rand MD.Lake RJ. Notch signaling:cell fate control and signal integration in development. Science,1999,284(5415):770-6.
    64. Nicolas M, Wolfer A, Raj K, et al. Notchl functions as a tumor suppressor in mouse skin. Nat Genet,2003,33(3):416-21.
    65. Joo J, Christensen L, Warner K, et al. GLI1 is a central mediator of EWS/FLI1 signaling in Ewing tumors. PLoS ONE,2009,4(10):e7608.
    66. Nakashima H, Nakamura M, Yamaguchi H, et al. Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer. Cancer Res,2006,66(14):7041-9.
    67. Karin M, Cao Y, Greten FR, et al. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer,2002,2(4):301-10.
    68. Maeda O, Kondo M, Fujita T, et al. Enhancement of GLI1-transcriptional activity by beta-catenin in human cancer cells. Oncol Rep,2006,16(1):91-6.
    69. Ulloa F, Itasaki N.Briscoe J. Inhibitory Gli3 activity negatively regulates Wnt/beta-catenin signaling. Curr Biol,2007,17(6):545-50.
    70. Groszer M, Erickson R, Scripture-Adams DD, et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science,2001, 294(5549):2186-9.
    71.Teng DH, Hu R, Lin H, et al. MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res,1997,57(23):5221-5.
    72. Abe Y, Oda-Sato E, Tobiume K, et al. Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2. Proc Natl Acad Sci U S A,2008,105(12):4838-43.
    73. Wallingford JB, Seufert DW, Virta VC, et al. p53 activity is essential for normal development in Xenopus. Curr Biol,1997,7(10):747-57.
    74. Meletis K, Wirta V, Hede SM, et al. p53 suppresses the self-renewal of adult neural stem cells. Development,2006,133(2):363-9.
    75. Ho L, Stojanovski A, Whetstone H, et al. Gli2 and p53 cooperate to regulate IGFBP-3- mediated chondrocyte apoptosis in the progression from benign to malignant cartilage tumors. Cancer Cell,2009,16(2):126-36.
    76. Di Marcotullio L, Ferretti E, De Smaele E, et al. REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. Proc Natl Acad Sci U S A, 2004,101(29):10833-8.
    77. Argenti B, Gallo R, Di Marcotullio L, et al. Hedgehog antagonist REN(KCTD11) regulates proliferation and apoptosis of developing granule cell progenitors. J Neurosci, 2005,25(36):8338-46.
    78. Di Marcotullio L, Ferretti E, Greco A, et al. Multiple ubiquitin-dependent processing pathways regulate hedgehog/gli signaling:implications for cell development and tumorigenesis. Cell Cycle,2007,6(4):390-3.
    79. Colaluca IN, Tosoni D, Nuciforo P, et al. NUMB controls p53 tumour suppressor activity. Nature,2008,451(7174):76-80.
    80. Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature,2009,458(7239):776-9.
    81. Varnat F, Duquet A, Malerba M, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med,2009, 1(6-7):338-51.
    82. Ruiz i Altaba A, Brand AH. Entity versus property: tracking the nature, genesis and role of stem cells in cancer. Conference on Stem cells and cancer. EMBO Rep,2009, 10(8):832-6.
    83. Yuan Z, Goetz JA, Singh S, et al. Frequent requirement of hedgehog signaling in non-small cell lung carcinoma. Oncogene,2007,26(7):1046-55.
    84. Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases:a new paradigm for combination therapy in solid cancers. Cancer Res,2007,67(5):2187-96.
    85. Sanchez P, Hernandez AM, Stecca B, et al. Inhibition of prostate cancer proliferation by interference with SONICHEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA,2004,101(34):12561-12566.
    86. Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res,2006, 66(12):6063-71.
    87. Yauch RL, Gould SE, Scales SJ, et al. A paracrine requirement for hedgehog signalling in cancer. Nature,2008,455(7211):406-10.
    88. de Oliveira MS, Cechim G, Braganhol E, et al. Anti-proliferative effect of the gastrin-release peptide receptor antagonist RC-3095 plus temozolomide in experimental glioblastoma models. J Neurooncol,2009.
    89. Sanchez P, Ruiz i Altaba A. In vivo inhibition of endogenous brain tumors through systemic interference of Hedgehog signaling in mice. Mech Dev,2005,122(2):223-30.