小肠缺血再灌注后TNF-α诱导的Caspase-8与NF-κB在肺损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠道缺血再灌注可导致全身炎症反应综合征和多器官功能障碍综合征的发生。但肠道缺血再灌注所引起多器官功能障碍综合征例如肝、肺、肾等的发生机制至今仍尚未明确。缺血再灌注后产生大量氧自由基以及由其所引发的中性粒细胞激活、炎性介质的生成(如TNF-α)以及蛋白酶增多等导致一系列的连锁反应。生成的TNF-α可以使中性粒细胞聚集粘附于内皮细胞,引起肺损伤。其在作用于内皮细胞时又可激活Caspase-8,二者共同作用进一步加重肺内皮细胞损伤。而在再灌注期间大量无活性的NF-κB被激活,活化后的NF-κB正反馈调节于TNF-α,使TNF-α基因转录增强,数量增多,二者协同促使机体产生更多的氧自由基及炎性介质,其代谢产物大量堆积在肺泡内皮细胞上,导致肺组织结构改变和功能障碍,最终出现肺功能衰竭。
     目的:观察TNF-α诱导的Caspase-8和NF-KB在大鼠小肠缺血再灌注后肺上皮细胞中的表达。
     方法:健康雄性Wistar大鼠48只,清洁级,2-3月龄,体重200-250 g,随机分为正常组、假手术组、对照组和实验组,建立小肠缺血再灌注模型,于缺血1h后腹腔注射TNF-α,再灌注24h后取肺泡上皮细胞,HE染色法从组织学和形态学对肺损伤进行评价,采用免疫组织化学染色技术和Westren blottinf对Caspase-8和NF-κB的表达进行检测及定量分析。
     结果:Caspase-8的阳性表达位于肺泡上皮细胞胞浆,与正常组、对照组和假手术组相比,实验组中Caspase-8的表达有统计学意义(P<0.05)。NF-κB的阳性表达位于肺泡上皮细胞胞核和胞浆,与正常组、对照组和假手术组相比,实验组中NF-κB的表达有统计学意义(P<0.05)。
     结论:大鼠小肠缺血再灌注损伤后在TNF-α诱导的肺上皮细胞凋亡中Caspase-8与NF-κB共同参与此病理过程。肺损伤后肺组织湿干比值(W/D)升高,两组实验中实验组湿干比值(W/D)均显著高于正常组、假手术组和对照组,证明实验组大鼠肺损伤较重。我们的实验表明实验组大鼠肺组织高表达Caspase-8与NF-κB,说明二者被激活后,均参与到小肠缺血再灌注后TNF-α诱导的肺损伤中,是TNF-α细胞信号通路中的重要组成部分。抑制二者表达活性,可能减轻肠系膜血管缺血性疾病导致的急性呼吸窘迫综合征和多器官功能障碍综合征。
Intestine ischemia -reperfusion can cause systemic inflame- matory responses and multiple organ dysfunction syndromes. But the mechanism of multiple organ dysfunction syndrome damage such as lungs, liver, kidney is not clear so far induced by intestine ischemia reperfusion.Generating a great deal of oxidizing free radicals after intestine ischemia-reperfusion,and more neutrophile granulocyte being activated, inflammatory mediator created for example TNF-a and proteinase growing in number,all these can give rise to a series of chain reactions。TNF-αcan make neutrophile granulocyte gather together with lung endothelial cells, and this can lead to lung injury. On the same time, TNF-a can make Caspase-8 be activated, both of them can aggravate lung injury further more. During the time of ischemia -reperfusion a number of inactive NF-κB were activated. They can make positive feedback regulation with TNF-a, enhance its transcription and increase its number. Then they can cooperate with each other to urge generating a great deal of oxidizing free radicals and inflammatory mediator. The metabolites of them were accumulated in the lung alveolar epithelial cells, leading to appear lung structural modification and dysfunction, finally lung nonfunction.
     Objective:to observe the expression of Caspase-8 and NF-κB acted in lung type II alveolar epithelial cells induced by TNF-alpha after rat intestinal ischemia-reperfusion.
     Methods:48 male Wistar rats (8-12 weeks) weighing 200-250g were randomly divided into normal group, sham group, control group and the experimental group; and then establishing small intestine ischemia -reperfusion model; extracting materials of the lung typeⅡepithelial cells at 24 hours after ischemia-reperfusion; using histotherapy and immunohistochemical staining techniques and image analysis technology, to observe histopathological changes and the expression of Caspase-8 and NF-κB.
     Results:The masculine Caspase-8 lies in alveolar epithelial cell cytolymph, and its expression strength in the experimental group is higher than the control group, the sham group and the normal group (P<0.05).Positive expression of NF- kB lies in alveolar epithelial cell nuclei or cytolymph and its expression strength in the experimental group is higher than the control group, the sham group and the normal group (P<0.05).
     Conclusion:Caspase-8 and NF-κB which took part in the process of pathological changes during the apoptosis of lung epithelial cells caused by TNF alpha after the rats'intestinal ischemia-reperfusion injury. After lung injury, the value of Wet Dry ratio (W/D) was up. Both in the two sets of experiments, the value of W/D in the experiment group show that was higher than the normal group, the sham group and the control group. All that can prove the rats of the experiment group were injured more heavily in the lung injury.Our experiments indicated that the Caspase-8 and NF-KB had a high expression in the experiment rats'lung organizes.Which explained the two after being activated, all took part in lung injury induced by TNF- alpha after rat intestinal ischemia-reperfusion. And this can indicate they would take an important part in TNF alpha cell signaling pathways. So inhibiting its expression activity may reduce acute respiratory distress syndrome and multiple organ dysfunction syndromes which were caused by the mesenteric vascular ischemic diseases. But whether Caspase-8 and NF-KB have a relationship with each other we have no idea, and this will still need a further research.
引文
[1]Koksal C, Bozkurt AK, Cangel U et al. Attenuation of ischemia/ reperfusion injury by nacetylcysteine in a rat hind limb model. [J].Surg Res,2003, 15,111(2):236-239.
    [2]周颖奇.术中肠系膜上动脉灌注谷氨酰胺预防小肠缺血再灌注损伤的实验研究[J].第二军医大学学报,1999,20(11):904.
    [3]YangZJ, BoscoG, MontanteA, et al. Hyperbaric O2reduces intestinal ischemia-reperfusion induced TNF-alpha production and lung neutrophil sequestration [J]. Eur J Appl Physiol,2001,85(1-2):96.
    [4]刘金保,冉丕鑫.粘附分子在缺血再灌注损伤中的作用[J].国外医学生理、病理科学与临床分册,1997,17(3):247.
    [5]吕艺,盛志勇,黎君友,等.肠缺血再灌注大鼠小肠血管内皮细。胞ICAM-1表达的变化及其与肠损伤的关系[J].中华普通外科杂志,2000,15(3):145.
    [6]孙诚谊.热休克蛋白73可保护鼠小肠热缺血再灌注损害[J].国外医学.外科学分册,2000,27(2):124.
    [7]张延龄.在鼠小肠缺血再灌注损伤中FK506和环孢菌素A抑制内皮素-1的生成[J].国外医学.创伤与外科基本问题分册,1999,20(3):187.
    [8]郑珊.上皮生长因子促进肠缺血再灌注损伤后粘膜修复的作用[J].中华小儿外科杂志,1999,20(3):167.
    [9]吕艺,盛志勇,侯晓霞,等.肠缺血再灌注大鼠不同组织TNF-α和IL-6mRNA表达的规律及意义[J].解放军医学杂志,1999,24(2):94.
    [10]颜光涛,郝秀华,辛宏,等.磷脂酶A2阻断剂对缺血再灌注损伤诱导细胞凋亡和坏死的影响[J].中国危重病急救医学,1999,11(12):709.
    [11]Grotz MR, Pape HC, van-Griensven M, et al. Glycine reduces the inflammatory response and organ damage in a two-hit sepsis model in rats [J].Shock,2001,16(2):116.
    [12]Kalia N, Pockley AG, Wood RF, et al. Effects of FK409 on intestinal ischemia-reperfusion injury and ischemia-induced changes in the ratmu cosal villus microcirculation [J]. Trans-plantation,2001,72(12):1875.
    [13]杨栓平,郝一彬,吴毓秀,等.KATP通道激活介导大鼠小肠的缺血预处理[J].中国药理学报,1999,20(4):341.
    [14]Liu T, Clark R, Yong PR. Tumor necrosis factor in ischemia neurons.[J].stroke,1994,25:1481-1488.
    [15]Mecarron RM, Doron DA, Siren AL, et al. Agonist-stimulated release of von Willebrand factor and procoagulant factorⅧin rat with and without risk factors for stroke. [J].Brain Res,1994,647:265-272.
    [16]Pelleglilli M, Bath S, Marsden VS, et al. FADD and Caspase-8 are required for cytokine-induced proliferation of hemepoietic pro-genitor cells. [J]. Blood,2005,106(5):1581-1589.
    [17]Fearnandest AT, Armstrong RC, Krebs J, et al. In vitroa-ctivation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains [J]. Proc Natl Acad Sci USA,1996,93(15):7464-7469.
    [18]Grenet J, Teitz T, Weit, et al. Structure and chromosome localization of the humanCASP8 gene [J].Gene,1999,226 (2):225-232.
    [19]Carrington PE, Sandu C, Wei Y, et al. The structure of FADD and its mode of interaction with proCaspase-8 [J].Mol Cell,2006,22(5):599-610.
    [20]Cohen GM. Caspases:the executioners of apoptosis [J]. Biochem J,1997, 326:1-16.
    [21]Scaffidi C, Medema JP, Krammer PH, et al. Flice is predominantly expressed as two functionally active is of orms, Caspase-8a/b [J]. Biochem J,1997, 272:26953-26958.
    [22]Liedtke C, Grogern, Mannsm P, et al. The human Caspase-8 promoter sustains basal activity through SP1 and ETS-like transcription factors and can be up-regulated by a p53-dependent mechanism.[J].Biol Chem,2003,278 (30):27593-27604.
    [23]Deambrosisa, Casciano I, Crocem. An interferon-sensitive response element is involved in constitutive Caspase-8 gene expression in neuroblastoma cells. [J]. Int J Cancer,2007,120(1):39-47.
    [24]Muscata, Hawkins C, Ashley DM. Caspase-8 levels correlate with the expression of signal transducer and activator of transcription 1 in high-grade but not lower grade neural a stoma [J].Cancer,2006,107(4):824-831.
    [25]Liedtke C, Groger N, Mannsm P, et al. Interferon-alpha enhances TRAIL-mediated apoptosis by up-regulating Caspase-8 transcription in human hepatoma cells [J]. Hepatol,2006,44(2):342-349.
    [26]Chang DW, Xing Z, Pany, et al. c-FLIP (L) is a dual function regulator for Caspase-8 activation andCD95-mediated apoptosis [J]. Embo J,2002,21(14): 3704-3714.
    [27]Deveraux QL, Stennickehr, Salveseng S, et al. Endogenous inhibitors of Caspases [J].Clin Immunol,1999,19:388-398.
    [28]He L, Wu X, Siegelr, et al. TRAF6 regulates cell fate decisions by inducingCaspase8-dependent apoptosis and the activation of NF-kappa B. [J].Biol Chem,2006,281(16):11235-11249.
    [29]Horiuchit, Himejid, Tsukamoto H, et al. Dominant expression of a novel splice variant of Caspase-8 in human peripheral blood lymphocyte [J]. Bio chem Biophys Res Commun,2000,272(3):877-881.
    [30]Himejid, Horiuchit, Tsukamoto H, et al. Characterization of Caspase -8L: a novel isoform of Caspase-8 that behaves as an inhibitor of the Caspase cascade [J]. Blood,2002,99(11):4070-4078.
    [31]Cursi S, Rufinia, Stagniv, et al. Epub 2006 Apr 13 Srckinase phosphorylates Caspase-8 on Tyr380:a novel mechanism of apoptosis suppression [J].Embo J,2006,25(9):1895-1905.
    [32]Cagnol S, Van Obberghen-schilling E. Prolonged activation of ERK1,2 induces FADD-independent Caspase8 activation and cell death [J].Apoptosis, 2006,11(3):337-346.
    [33]Tamagikuy, Sonoday, Kunisawam, et al. Down-regulation of pro Caspase-8 expression by focal adhesion kinas protects HL-60 cells from TRAIL-induced apoptosis [J]. Bio chem Biophys ResCommun,2004,323(2): 445-452.
    [34]Yao Z, Duan S, Hou D, et al. Death effect or domain DEDa, a self-cleaved product of Caspase-8 /Mch5, Tran locates to the nucleus by binding to ERK1/2 and up regulates proCaspase-8 expression via a p53-dependen-节 tmechanism [J]. EMBO J,2007,26 (4):1068-1080.
    [35]Besnault-Mascard L, Leprince C, Auffredoum T, et al. Caspase-8 sumoylation is associated with nuclear localization [J]. Oncogene,2005,24(20): 3268-3273.
    [36]Han LH, Zhao YS, Jia XQ. Mathematical modeling identified c-FLIP as an apoptotic switch in death receptor induced apoptosis [J]. Apoptosis,2008,13: 1198-1204.
    [37]Sohd D, Schulze OK, Janicke RU, et al. Caspase8 can be activated by inters chain proteolysis without receptor-triggered dimerization during drug-induced apoptosis [J]. J BiolChem,2005,280(7):5267-5273.
    [38]Granger DN. Role of xanthine oxidase and granulocytes in ischemia rerperfusion.[J].Am J Physiol,1988,255 (HeartCire.Physio.24):H1 269 -H1275.
    [39]Cicalese L, Lee K, Sehraut W.Pyruvate prevents is chemia reperfusion mueosal injury of rat small intestine. [J]. AmJSurg1996,171:17-101.
    [40]Nilsson L,Schoenberg MH,Aneman A. Free radicals and pathogensis during ischemia and reperfusion of the rat small intestine, [J]. Gastroenterology, 1994,106:629-636.
    [41]Colletli LM, Remick DG, Burteh GD. Role of tumor necrosis factor a in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. [J]. Clin Invest,1990,85:1936-1943.
    [42]Yao YM, Sheng ZY, Yu Y. The potential etiology role of tumor necrosis factor in mediating multiple organ dysfunctions in rats following intestinal-ischemia- reperfusion injury. [J]. Resuscitation,1995,29:157-68.
    [43]PatriekS, Arik S, Pinhas H. Soluble tumor necrosis factor receptors reduce bowel ischemia induced Lung permeability and neutrophil sequestration. [J]. Crit CareMed,1995,23:1377-1381.
    [44]Benjami OA, James MB, Denis DB. Reversible lung neutrophile accumulation can cause lung injury by cllastase mediated mechanisms. [J]. Surgery,1990,108:26-28.
    [45]Prusanski W, Vadas P. Phospholipase A2-a mediator between proximal and distal effectors of inflammation. [J].Immunology Today,1991,12:143-146.
    [46]Karou K, Moore EE. Gut phospholipase A2-a mediate neutrophil priming and lung injury after mesenteric, ischemia reperfusion. [J]. Am Physiol,1995,268 (Gastrointest. Liver Physiol.31):G397-403.
    [47]Turnage RH, Kadesky KM, Bartula L. Pulmonary thromboxane release following intestinal reperfusion. [J]. Surg Res,1995,58:552-557.
    [48]Kaszaki J, Boros M, Szabbo A, et al. Role of histamine in the intestinal flow response following mesenteric ischemia. [J].Shock.1994,2:413-420.
    [49]Cater MB, Wilson MA, Wead WB. Platelet-activating factor mediates pulmonary macromolecular leak following intestinal ischemia-reperfusion, [J]. Surg Res,1996,60:403-408.
    [50]吴朝晖,金惠铭.NF-κB与细胞凋亡[J].中国病理生理杂志,1999,15(11):1045-1048.
    [51]Depraetere V, Golstein P. Fas and other cells death signaling pathways [J]. Semin Immunol,1997,9(2):93-107.
    [52]Richardson BC, Lalwani ND, Johnson KJ. Fas ligation triggers apoptosis in macrophages but not endothelial cells [J].Eur J Immunol,1994,24(11): 2640-2645.
    [53]Suhara T, Fukuo K, Sugimoto T. Hydrogen peroxide induces up-regulation of Fas in human endothelial cells [J]. J Im-munol,1998,160(8): 4042-4047.
    [54]Li D, Yang B, Mehta JL, et al. Ox-LDL induces apoptosis in human coronary artery endothelial cells:role of PKC, PTK, bcl-2, and Fas [J]. Am J Physiol,1998,275(2 Pt2):H568-576.
    [55]Sanchez I, Xu CJ, Juo P, et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats [J].Neuron,1999,22(3):623-633.
    [56]庄心良,曾因明,陈伯銮,主编.现代麻醉学[M].第3版.北京:人民卫生出版社,2003:1544-1553.
    [57]刘杰,阚丹.IKK/IκB/NF-κB信号通路阻断及临床应用[J].实用医学杂志,2008,24(23):4147-4149.
    [58]王亮,吕传真.糖尿病加重大鼠脑缺血再灌注损伤的研究[J].中国临床康复2004,8:60-63.
    [59]Koksal C, Bozkurt AK,Cangel U et al. Attenuation of ischemia/ reperfusion injury by nicety lcysteine in a rat hind limb model [J]. SurgRes,2003, 15,111(2):236-239.
    [60]金惠明主编,病理生理学[M].第四版.人民卫生出版社,2000:146-150
    [61]Liu T, Clark R, Yong PR. Tumor necrosis factor in ischemia neurons. [J].stroke,1994,25:1481-1488.
    [62]Collins T, Read MA, Neish AS, et al. Transcriptional regulation of endothelial cell adhesion molecules:NF-kappa B and cytokine-inducible enhancers [J]. Faseb J,1995,9(10):899-909.
    [63]Ross SD, Kron IL, Gangemi JJ, et al. Attenuation of lung reperfusion injury after transplantation using an inhibitor of nuclear factor-KB [J]. Am J Physiol Lung Cell Mol Physiol,2000,279(3):528-536.
    [64]Mehrad B, Strieter RM, Standiford TJ. Role of TNF-alpha in Pulmonary Host Defense in MurineInvasive Aspergillosis. [J]. The Journal of Immunology, 1999,162:1633-1640.
    [65]Roilides, E, A. Dimitriadou-Georgiadou, T. Sein, I. Kadiltsoglou, and T.J.Walsh.1998.Tumor necrosis factor alpha enhances antifungal activities of polymorphnuclear and mononuclear phagocytes against Aspergillus fumigatus. [J].Infect.Immun.66:5999-6003.
    [66]Mehrad, B, R.M.Strieter, and T.J.Standiford.1999.Role of TNF-alpha in pulmonary host defense in murine invasive aspergillosis. [J]. Immunol.162: 1633-1640.
    [67]Berlanga J, Prats P,Remirez D, et al. Prophylactic use of epidermal growth factor reduces ischemia-reperfusion intestinal damage [J].Am J Patbol, 2001,161 (2):373-379.
    [68]An S, Hishikawa Y, Liu J, et al. Lung injury after ischemia-reperfusion of small intestine in rats involves apoptosis of type II alveolar epithelial cells mediated by TNF-alpha and activation of Bid pathway [J]. Apoptosis,2007, 12(11):1989-2001.
    [69]DiMango E, Zar HJ, Bryan R, et al. Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8[J].Clin Invest,1995,6(5):2204-2210.
    [70]Aggarwal BB.Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappaB [J].Ann Rheum Dis,2000,59:6-16.
    [71]Abe Y, Watanabe Y, Kimura S. The role of tumor necrosis factor receptors in cell signaling and the significance of soluble form levels in the serum [J].Surg today,1994,24(3):197-202.
    [72]Hsu H, Shu HB, Pan MG, et al. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways [J].Cell,1996,84 (2):299-308.
    [73]Grell M, Becke FM, Wajant H, et al. TNF receptor type 2 mediates thymocyte proliferation independently of TNF receptor type1[J].Eur J Immunol, 1998,28 (1):257-263.
    [74]Idriss HT, Naismith JH.TNF alpha and the TNF receptor superfamily: structure-function relationship(s) [J].Microsc Res Tech,2000,50(3):184-195.
    [75]Das UN.Critical advances in septicemia and septic shock [J].Crit Care, 2000,4(5):290-296.
    [76]Pereda J, Sabater L, Aparisi L,et al.Interaction between cytokines and oxidative stress in acute pancreatitis[J].Curr Med Chem,2006,13 (23):2775-2787.
    [77]Villa P, Ghezzi P.Animal models of endotoxic shock [J].Methods Mol Med,2004,98:199-206.
    [78]Shen HM, Pervaiz S.TNF receptor superfamily-induced cell death: redox-dependent execution [J].Faseb J,2006,20(10):1589-1598.
    [79]Warren JS, Ward PA, Johnson KJ.Tumor necrosis factor:a plurifunctional mediator of acute inflammation [J]. Mod Pathol,1988,1(3):242-247.
    [80]Barnhart BC, Lee JC, Alappat EC,et al.The death effector domain protein family[J].Oncogene,2003,22:8634-8644.
    [81]Degterev A, Boyce M, Yuan J. A decade of Caspases [J]. Oncogene,200 3,22:8543-8567.
    [82]Peter ME, Krammer PH.The CD95 (APO-1/Fas) DISC and beyond [J].Cell Death Differ,2003,10:26-35.
    [83]Fulda S, Debatin KM.Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy [J].Oncogene,2006,25:4798-4811.
    [84]Ashkenazi A.Targeting the extrinsic apoptosis pathway in cancer [J].Cytokine Growth Factor Rev,2008,19:325-331.
    [85]Adams JM, Cory S.The Bcl-2 apoptotic switch in cancer development and therapy [J].Oncogene,2007,26:1324-1337.
    [86]Kroemer G,Galluzzi L,Brenner C.Mitochondrial membrane permeabi-lization in cell death[J].Physiol Rev,2007,87:99-163.
    [87]Ghosh S, Karin M.Missing pieces in the NF-kappaB puzzle [J].Cell, 2002,109 Suppl:S81-S96.
    [88]Rahman I, Marwick J, Kirkham P.Redox modulation of chromatin remodeling:impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression [J].Biochem Pharmacol,2004,68:1255-1267.
    [89]Rahman I, Marwick J, Kirkham P.Redox modulation of chromatin remodeling:impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression [J]. Biochem Pharmacol,2004,68:1255-1267.
    [90]Repine JE, Bast A, Lankhorst I.Oxidative stress in chronic obstructive pulmonary disease Oxidative Stress Study Group. [J].Am J Respir Crit Care Med, 1997,156:341-357.
    [91]Bast A, Haenen GR, Doelman CJ.Oxidants and antioxidants:state of the art [J].Am J Med,1991,91:2S-13S.
    [92]Rahman I.Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases [J]. Biochem Mol Biol,2003, 36:95-109.
    [93]Pantano C,Reynaert NL,van der Vliet A,et al.Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway[J].Antioxid Redox Signal,2006,8: 1791-1806.
    [94]Bowie A, O'Neill LA.Oxidative stress and nuclear factor-kappaB activation:a reassessment of the evidence in the light of recent discoveries [J].Biochem Pharmacol,2000,59:13-23.
    [95]Liu G, Park YJ, Tsuruta Y, et al. p53 Attenuates lipopol ysaccharide-induced NF-B activation and acute lung injury [J]. Immunol,2009,182: 5063-5071.
    [96]Yang LL,Ji XP, Liu Z. Effects of hypercapnia on nuclear factor-kappa B and tumor necrosis factor-alpha in acute lung injury models[J].Chin Med J(Engl),2004,117(12):1859-1861.