道路交通状态多维多粒度获取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能交通系统的建设和发展是解决交通拥堵等交通问题的有效途径,而道路交通路网上的交通状态信息的实时准确获取是建设智能交通系统、提供交通信息服务、进行道路交通管理的基础,在道路交通系统运行管理控制中起着基础性和关键性的作用。道路交通状态的有效获取方法是提升道路交通系统运行和管理效率的核心问题。
     本论文以道路交通管理与控制的实际需求为背景,深入研究了道路交通状态多维多粒度的获取方法,基于不同层次的道路交通特性提出了不同的道路交通状态获取方法,并通过实例分析与应用,验证了提出的道路交通状态获取方法的有效性,形成了不同层次的、较为完整的道路交通状态获取方法体系。本论文的主要研究成果具体体现在以下几个方面:
     1)以道路交通的截面特性为基础,提出了基于交通信息模板的道路交通状态获耿方法。
     基于交通信息模板的道路交通状态获取方法是在有效历史数据的基础上进行。该方法首先根据不同的划分标识,将道路交通运行模态划分为不同的子模态;然后提取不同交通运行模态下的历史道路交通数据,进行相关的数据预处理,并对道路交通信息的规律性进行分析,利用道路交通信息的规律性信息获取不同交通运行模态下所对应的交通信息模板;最后判断当前时刻目标路段的交通运行模态,选取相对应的交通运行模态下的交通信息模板,利用道路交通状态信息的时间相关性的特点获得当前时刻的交通运行状态数据。
     2)以道路交通的路段特性为基础,提出了基于虚拟速度传感器节点的道路交通状态获取方法。
     基于虚拟速度传感器节点的道路交通状态获取方法是在对路段的交通状态进行软测量的基础上进行。该方法首先采用线性插值的方法在相邻的交通流传感器之间设定虚拟速度传感器节点序列;然后将交通流传感器节点时间序列的速度数据映射到空间序列上,并利用最小二乘法对权重矩阵进行训练(该权重矩阵与虚拟速度传感器节点的速度和交通流传感器检测的速度数据相关);最后利用权重矩阵和交通流传感器节点时间序列的速度数据,计算得到虚拟速度传感器节点的速度,从而获得整个路段的交通状态的空间分布。该方法可以有效获取未布设交通检测器的路段的交通状态。
     3)以道路交通的区域特性为基础,提出了基于区域交通吸引子匹配的道路交通状态获取方法。
     基于区域交通吸引子匹配的道路交通状态获取方法是在对交通区域特性分析的基础上进行。该方法首先根据不同的划分标识,将道路交通运行模态划分为不同的子模态,并提取不同交通运行模态下的道路交通状态数据,进行相关的数据预处理,获取不同交通运行模态下的道路交通状态信息并存入道路交通运行特征参考序列中;然后引入目标路段的区域交通吸引子的概念,提取不同交通运行模态下的区域内其它各路段的道路交通状态数据,进行相关的数据预处理,获取不同交通运行模态下的目标路段的区域交通吸引子信息并存入道路交通运行特征参考序列中;最后获取当前时刻的目标路段的区域交通吸引子信息,根据一定的规则与目标路段的历史区域交通吸引子进行匹配,选取区域交通吸引子最优匹配时所对应的目标路段的道路交通状态信息,并作为初始修复数据,进而通过对初始修复数据进行卡尔曼滤波,获得最终的修复数据。该方法能够实时有效地获取当前的道路交通状态。
     4)以道路交通的网络特性为基础,提出了基于压缩感知的道路交通状态获耿方法。
     基于压缩感知的道路交通状态获取方法是在对交通路网特性分析的基础上进行的。该方法首先利用交通状态信息矩阵奇异值分解和主成分分析的方法进行道路交通状态数据的结构性和可压缩性分析;然后在道路交通状态数据可压缩性分析的基础上,利用压缩感知的理论及方法进行道路交通状态估计,并对基于压缩感知进行道路交通状态获取的过程中所涉及的主要参数进行分析和设定;最后基于实例对基于压缩感知的道路交通状态获取算法的应用进行验证。该方法可以实现对交通路网大面积道路交通状态数据的估计。
The construction and development of Intelligent Transportation System (ITS) is an effective way to solve the traffic problems such as traffic jam. The real-time and accurate acquisition of the information of road traffic states is the basis of ITS construction, traffic information service and road traffic management. It plays a fundamental and critical role in the management and control in the operation of traffic system. The acquisition approaches of the road traffic states are the key problems to improve running and management efficiency of the urban traffic system.
     This paper takes the actual demand of the road traffic management and control as the background. The multi-dimensional and multi-granularity acquisition of road traffic states approaches are studied in this paper. Different methods for acquisition of road traffic states are put forward based on different levels of road traffic characteristics. The effectiveness of the proposed methods for obtaining traffic states is verified through analysis and application of examples. A relatively complete road traffic states acquisition system with different levels is formed. The main results of this paper are embodied in the following aspects:
     1) Based on the road traffic's section properties, the road traffic states estimation method based on the road traffic information templates is proposed.
     The road traffic states estimation method based on the road traffic information templates is carried on the basis of the effective historical data. Firstly, the road traffic modes are divided into several different sub-modes according to different partition identifications; then data from road traffic detectors under different traffic modes are abstracted to analyze the regularity characteristics of the road traffic information and the road traffic information templates are finally obtained based on this regularity characteristics; finally the current traffic mode of the target link is judged and the corresponding traffic information templates are selected to obtain the current traffic sates data through the road traffic states information's temporal correlation characteristics.
     2) Based on the road traffic's link properties, the road traffic states estimation method based on virtual speed sensors is put forward.
     The road traffic states estimation method based on virtual speed sensors is carried on the basis of the soft measurement for the link's traffic state. First, virtual speed sensors are defined by linear interpolation between adjacent traffic flow sensors. Secondly, virtual speed sensors are designed. The weight matrix related with the speed of virtual speed sensors and the speed data from traffic flow sensors are trained by least square. The speed of virtual speed sensors are estimated with the weight matrix and the speed data from traffic flow sensors by multiple linear regressions. Thirdly, the traffic state spatial distribution of the link (the speed spatial distribution on the link) can be gained. This approach can effectively obtain the traffic state of links without any traffic detector.
     3) Based on the road traffic's region properties, the road traffic states estimation method based on matching of the regional traffic attracters is put forward.
     The road traffic states estimation method based on matching of the regional traffic attracters is carried on the basis of the analysis of road traffic's region properties. Firstly, the road traffic running modes are divided into several different sub-modes according to different partition identifications, and the historical road traffic data are abstracted and preprocessed to obtain the characteristic information of road traffic running states under different modes, which are stored in the reference sequences of characteristics of traffic running states. Then, the concept of the regional traffic attracters of the target link is introduced and the historical traffic data of links in the region are abstracted and preprocessed to obtain the regional traffic attracters of the target link under different traffic running modes, which are also stored in the reference sequences of characteristics of traffic running states. Finally, the data of the current regional traffic attracters of the target link are abstracted, which are matched with the historical regional traffic attracters of the target link through certain rules. The road traffic running states data of the target link corresponding to the optimal matching are selected as the initial data for recovery and the initial recovery data are processed with Kalman Filter and the final recovery data are obtained. This method can real-time and effectively reflect the current road traffic states.
     4) Based on the road traffic's network properties, the road traffic states estimation method based on compressive sensing is put forward.
     The road traffic states estimation method based on matching of the regional traffic attracters is carried on the basis of the analysis of road traffic's network properties. To make sure that the compressive sensing theory can be applied on the estimation of traffic states of the road traffic network, the compressibility analysis of the road traffic states data is discussed. Then the road traffic states estimation approach based on compressive sensing is presented and the parameters setting referred in this road traffic states estimation approach based on compressive sensing is discussed. Finally one typical road network in Beijing is adopted for verification of the application of this road traffic states estimation algorithm. This method can realize the estimation of large area's road traffic states of the road network.
引文
[1]於毅.城市道路交通状态判别方法研究[D].北京:北京交通大学,2007.
    [2]王春娥.基于数据融合的城市道路交通状态判别算法研究[D].长春:吉林大学,2008.
    [3]郭磷.基于信息融合的交通信息采集研究[D].安徽:中国科学技术大学,2007.
    [4]杨兆升.基础交通信息融合技术及其应用[M].北京:中国铁道出版社,2002.
    [5]李海峰.高速公路交通事件管理系统若干问题研究[D].吉林:吉林大学,2001.
    [6]牟瑛.交通量数据采集系统[J].辽宁省交通高等专科学校学报,2005,7(1):35-36.
    [7]刘勃,周西汉,周荷琴.混合交通场景中的车辆检测和识别[J].中国科学技术大学学报,2004,34(5):599-606.
    [8]董敬欣,吴建平,郭继孚.基于GPS/GIS数据的路网层次划分研究——北京的实践[J].城市规划,2005,29(10):70-74.
    [9]Boyce D E, Kirson A, Schofer J L. Design and implementation of ADVANCE:The Illinois dynamic navigation and route guidance demonstration program[C]. In:Vehicle Navigation and Information Systems Conference,1991:415-426.
    [10]Chung E, Sarvi M, Murakami Y, et al. Cleansing of probe car data to determine trip OD[C]. In: 21st ARRB Conference in Cairns, Austraria,2003:18-23.
    [11]唐汝磉,钱寒峰.智能交通信息采集中数据融合技术探讨[J].科技咨询导报,2007,26:17-18.
    [12]何恐.移动定位技术研究及其基于WAP的应用[D].四川大学,2004.
    [13]Caffery J J, Stuber G L. Overview of radiolocation in CDMA cellular systems[J]. Communications Magazine,1998,36(4):38-45.
    [14]Silventoinen M I, Rantalainen T. Mobile station emergency locating in GSM[C]. In:IEEE International Conference on Personal Wireless Communications,1996:232-238.
    [15]Caffery Jr J J. A new approach to the geometry of TO A location[C]. In:Vehicular Technology Conference,2000:1943-1949.
    [16]Spirito M A. On the accuracy of cellular mobile station location estimation[J]. Vehicular Technology,2001,50(3):674-685.
    [17]Fischer S, Kangas A. Time-of-arrival estimation for E-OTD location in GERAN[C]. In: Personal, Indoor and Mobile Radio Communications,2001:F-121-F-125.
    [18]Aso M, Saikawa T, Hattori T. Mobile station location estimation using the maximum likelihood method in sector cell systems[C]. In:Vehicular Technology Conference,2002,2:1192-1196.
    [19]Roos T, Myllymaki P, Tirri H. A statistical modeling approach to location estimation[J]. Mobile Computing,2002,1(1):59-69.
    [20]Chu K M K, Leung K R P H, Ng J K Y, et al. Locating mobile stations with statistical directional propagation model[C]. In:Advanced Information Networking and Applications, 2004,1:230-235.
    [21]Ahonen S, Laitinen H. Database correlation method for UMTS location[C]. In:Vehicular Technology Conference,2003,4:2696-2700.
    [22]Borkowski J, Lempiainen J. Pilot correlation positioning method for urban UMTS networks[C]. In:Wireless Conference 2005-Next Generation Wireless and Mobile Communications and Services (European Wireless),2005:1-5.
    [23]Kemppi P, Nousiainen S. Database correlation method for multi-system positioning[C]. In: Vehicular Technology Conference,2006,2:866-870.
    [24]刘相莹.智能交通中的车辆检测技术及其发展[J].科技信息(学术版),2007,(28):263-264.
    [25]LAO Yun-teng, YUN Mei-ping, TANG shou-peng, et al. Evaluation Method for Accuracy of Road Traffic State Information[C]. In:American Society of Civil Engineers,2007.883-888.
    [26]CHEN Chao, KWON J, RICE J, et al. Detecting errors and imputing missing data for single loop surveillance systems[C]. In:Transportation Research Board of the National Academies, 2007:160-167.
    [27]邹海翔,乐阳,李清泉等.基于Kriging插值的无检测器路段交通数据插补方法[J].交通运输工程学报,2011,11(3):118-126.
    [28]GUO Min, LAN Jin-hui, LI Juan-juan, et al. Traffic Flow Data Recovery Algorithm Based on Gray Residual GM(1, N) Model[J]. Journal of Transportation Systems Engineering and Information Technology,2012,12(1):42-47.
    [29]MIN W, WYNTER L. Real-time road traffic prediction with spatio-temporal correlations[J]. Transportation Research Part C:Emerging Technologies,2011,19(4):606-616.
    [30]DONG Hong-hui, JIA Li-min, SUN Xiao-liang, et al. Traffic condition estimation with pre-selection space time model [J]. Journal of Central South University,2012,19(1):206-212.
    [31]HERRING R, HOFLEITNER A, AMIN S, et al. Using mobile phones to forecast arterial traffic through statistical learning[C]. In:Proc.89th Transportation Research Board Annual Meeting, Washington, DC,2010:10-14.
    [32]GUAN Hai-shuang, MA Wen-ge, MENG Yan-yu. Traffic Flow Prediction Based on Hierarchical Genetic Optimized Algorithm[C]. In:Innovative Computing Information and Control,2008:121-121.
    [33]SUN Zhan-quan, WANG Ying-long, PAN Jing-shan. Short-term traffic flow forecasting based on clustering and feature selection[C]. In:International Joint Conference on Neural Networks, 2008:577-583.
    [34]DONG Hong-hui, JIA Li-min, SUN Xiao-liang, et al. Road traffic state prediction with a maximum entropy method[C]. In:5th International Joint Conference on INC, IMS and IDC: IEEE Computer Society,2009:628-630.
    [35]徐健锐,李星毅,施化吉.处理缺失数据的短时交通流预测模型[J].计算机应用,2010,30(4):1117-1120.
    [36]VAN LINT J W C, HOOGENDOORN S P, VAN ZUYLEN H J. Accurate freeway travel time prediction with state-space neural networks under missing data[J]. Transportation Research Part C:Emerging Technologies,2005,13(5):347-369.
    [37]SUN Jian, ZHANG Lun. Vehicle actuation based short-term traffic flow prediction model for signalized intersections[J]. Journal of Central South University of Technology,2012,19(1): 290-301.
    [38]TAN Hua-chun, FENG Jian-shuai, FENG Guang-dong, et al. Traffic Volume Data Outlier Recovery via Tensor Model[J]. Mathematical Problems in Engineering,2013,1151(10):1-8.
    [39]Zhong, M., S. Sharma, Z. Liu. Assessing robustness of imputation models based on data from different jurisdictions:examples of Alberta and Saskatchewan, Canada[J]. Transportation Research Record:Journal of the Transportation Research Board,2005,1917(1):116-126.
    [40]Yin, W., P. Murray-Tuite, H. Rakha. Imputing erroneous data of single-station Loop detectors for nonincident conditions:comparison between temporal and spatial methods[J]. Journal of Intelligent Transportation Systems:Technology, Planning, and Operations,2012,16(3):159-176.
    [41]Haworth, J., T. Cheng. Non-parametric regression for space-time forecasting under missing data[J]. Computers, Environment and Urban Systems,2012,36 (6):538-550.
    [42]Smith, T. M., R. W. Reynolds, R. E. Livezey, et al. Reconstruction of historical sea surface temperatures using empirical orthogonal functions[J]. Journal of Climate,1996,9(6): 1403-1420.
    [43]Qu, L., L. Li, Y. Zhang, J. Hu. PPCA-based missing data imputation for traffic flow volume:a systematical approach[J]. IEEE Transactions on Intelligent Transportation Systems,2009:10 (3):512-522.
    [44]Schneider, T. Analysis of incomplete climate data:Estimation of mean values and covariance matrices and imputation of missing values[J]. Journal of Climate,2001,14(5):853-871.
    [45]Smith, R. L., S. Kolenikov, L. H. Cox. Spatio-temporal modeling of PM2.5 data with missing values[J]. Journal of Geophysical Research-Atmospheres,2003,128:10-1029.
    [46]Li, L., Y. B. Li, Z. H. Li. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence[J]. Transportation Research Part C:Emerging Technologies, 2013:34:108-120.
    [47]Whitlock, M. E., C. M. Queen. Modelling a traffic network with missing data[J]. Journal of Forecasting,2000,19(7):561-574.
    [48]van Lint, J.W.C., S. P. Hoogendoorn, H. J. van Zuylen. Accurate freeway travel time prediction with states-space neural networks under missing data[J]. Transportation'Research Part C: Emerging Technologies,2005,13 (5-6):347-369.
    [49]Min W, Wynter L, Amemiya Y. Road traffic prediction with spatio-temporal correlations[R]. IBM Research Report RC24275 (W0706-018).2007.
    [50]Kamarianakis Y, Prastacos P. Space-time modeling of traffic flow[J]. Comp Geotec,2005,31(2): 119-133.
    [51]Pfeifer P E, Deutsch S J. A threestage iterative procedure for spacetime modeling[J]. Technometrics,1980,22(1):35-47.
    [52]Giacomini R, Granger C W J. Aggregation of space time processes[J]. Journal of Econometrics, 2004,118(1):7-26.
    [53]张赫,杨兆升,李贻武.无检测器交叉口交通流量预测方法综合研究[J].公路交通科技,2002,19(1):91-95.
    [54]杨兆升,张赫,李娟.逐步回归法在无检测器交叉口交通流量预测中的应用[J].吉林大学学报(工学版),2002,32(4):16-19.
    [55]Zhang He. Application of cluster analysis and stepwise regression in predicting the traffic volume of lanes[J]. Journal of Southeast University.2005,21(3):359-362.
    [56]韩卫国,王劲峰,高一鸽等.区域交通流的时空预测与分析[J].公路交通科技,2007,24(6):92-96.
    [57]韩卫国,王劲峰,胡建军.交通流量数据缺失值的插补方法[J].交通与计算机,2005,23(1):39-42.
    [58]孙燕,陈森发,周振国.灰色系统理论在无检测器交叉口交通流量预测中的应用[J].东南大学学报(自然科学版),2002,32(2):151-153.
    [59]陈新全,侯志祥,吴义虎等.无检测器交叉口交通流量预测的灰色神经网络模型[J].系统仿真学报,2004,16(12):2655-2656.
    [60]HAN C, SONG S. A review of some main models for traffic flow forecasting[C]. In: Proceedings of International IEEE Conference on Intelligent Transportation Systems. Shanghai: IEEE,2003:216-219.
    [61]董春娇,邵春福,诸葛承祥.混合状态下城市快速路交通流短时预测[J].物理学报,2012,61(1):1-9.
    [62]李星毅.基于相似性的交通流分析方法[D].北京交通大学,2010.
    [63]高慧,赵建玉,贾磊.短时交通流预测方法综述[J].济南大学学报:自然科学版,2008,22(1):88-94.
    [64]Stathopoulos A, Karlaftis M G. A multivariate state space approach for urban traffic flow modeling and prediction[J]. Transportation Research Part C:Emerging Technologies,2003, 11(2):121-135.
    [65]Vlahogianni E I, Karlaftis M G, Golias J C. Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume[J]. Transportation Research Part C:Emerging Technologies,2006,14(5):351-367.
    [66]Sun S, Yu G, Zhang C. Short-term traffic flow forecasting using sampling Markov Chain method with incomplete data[C]. In:Intelligent Vehicles Symposium,2004:437-441.
    [67]Lin Y, Wang F Y. Predicting chaotic time series using adaptive wavelet-fuzzy inference system[C]. In:Intelligent Vehicles Symposium,2005:888-893.
    [68]Yao Z, Shao C, Xiong Z. A Multivariate Chaotic Time Series Approach for Road Network Short-Term Traffic State Forecasting[C]. In:International Conference on Transportation Engineering 2007,2007:2435-2440.
    [69]Okutani I, Stephanedes Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B:Methodological,1984,18(1):1-11.
    [70]Whittaker J, Garside S, Lindveld K. Tracking and predicting a network traffic process[J]. International Journal of Forecasting,1997,13(1):51-61.
    [71]Ross P. Exponential filtering of traffic data[J]. Transportation Research Record,1982,869: 43-49.
    [72]Altman N S. An introduction to kernel and nearest-neighbor nonparametric regression[J]. The American Statistician,1992,46(3):175-185.
    [73]宫晓燕,汤淑明.基于非参数回归的短时交通流量预测与事件检测综合算法[J].中国公路学报,2003,16(1):82-86.
    [74]Smith B L, Williams B M, Oswald R K. Parametric and nonparametric traffic volume forecasting[C]. In:Transportation Research Board Meeting, Washington, DC,2000.
    [75]Smith B L, Williams B M, Oswalsd R K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transp Res Part C,2002,10(4):303-321.
    [76]Kim T, Kim H, Lovell D J. Traffic flow forecasting:overcoming memoryless property in nearest neighbor non-parametric regression[C]. In:Intelligent Transportation Systems,2005: 965-969.
    [77]Stathopoulos A, Karlaftis M. Temporal and spatial variations of real-time traffic data in urban areas[J]. Transportation Research Record:Journal of the Transportation Research Board,2001, 1768(1):135-140.
    [78]Lin W H. A Gaussian maximum likelihood formulation for short-term forecasting of traffic flow[C]. In:Intelligent Transportation Systems,2001:150-155.
    [79]Herring R, Hofleitner A, Amin S, et al. Using mobile phones to forecast arterial traffic through statistical learning[C]. In:Proc.89th Transportation Research Board Annual Meeting, Washington, DC,2010:10-14.
    [80]Wang J, Shi Q X. Review of Application of Neural Network Based Models in Short-Term Traffic Flow Forecasting[J]. Journal of Henan University of Science and Technology(Natural Science),2005,26(2),22-26.
    [81]Ledoux C. An urban traffic flow model integrating neural networks[J]. Transportation Research Part C:Emerging Technologies,1997,5(5):287-300.
    [82]Chen H B, Grant-Muller S, Mussone L, et al. A study of hybrid neural network approaches and the effects of missing data on traffic forecasting[J]. Neural Computing & Applications,2001, 10(3):277-286.
    [83]Tan G Z, Yuan W J. Traffic flow forecasting based on parallel neural network[C]. In:Advances in Neural Networks-ISNN 2004, Springer Berlin Heidelberg,2004:937-942.
    [84]Kalyoncuoglu S F, Tigdemir M. An alternative approach for modelling and simulation of traffic data:artificial neural networks[J]. Simulation Modelling Practice and Theory,2004,12(5): 351-362.
    [85]Ji T, Pang Q, Liu X Y. Study of traffic flow forecasting based on genetic neural network[C]. In: Intelligent Systems Design and Applications,2006,1:960-965.
    [86]Jin F, Sun S L. Neural network multitask learning for traffic flow forecasting[C]. In:Neural Networks,2008:1897-1901.
    [87]Huang Y F. Short-term traffic flow forecasting based on wavelet network model combined with pso[C]. In:Intelligent Computation Technology and Automation (ICICTA),2008,1:249-253.
    [88]Guan W, Cai X L. A practical model of dynamic forecasting of urban ring road traffic flow[C]. In:Intelligent Transportation Systems,2005:284-289.
    [89]Wang X H, Xiao J M. A radial basis function neural network approach to traffic flow forecasting[C]. In:Intelligent Transportation Systems,2003,1:614-617.
    [90]Chen H, Grant-Muller S. Use of sequential learning for short-term traffic flow forecasting[J]. Transportation Research Part C:Emerging Technologies,2001,9(5):319-336.
    [91]Pushkar A, Hall F L, Acha-Daza J A. Estimation of speeds from single-loop freeway flow and occupancy data using cusp catastrophe theory model[J]. Transportation Research Record 1457, 1994:149-157.
    [92]Wang F, Tan G Z, Deng C, et al. Real-time traffic flow forecasting model and parameter selection based on ε-SVR[C]. In:Intelligent Control and Automation,2008:2870-2875.
    [93]Guan H S, Ma W G, Meng Y Y. Traffic flow prediction based on hierarchical genetic optimized algorithm[C]. In:Innovative Computing Information and Control,2008:121-121.
    [94]Sun Z Q, Wang Y L, Pan J S. Short-term traffic flow forecasting based on clustering and feature selection[C]. In:Neural Networks,2008:577-583.
    [95]Wang J, Shi Q X, Lu H P. The study of short-term traffic flow forecasting based on theory of chaos[C]. In:Intelligent Vehicles Symposium,2005:869-874.
    [96]Dimitriou L, Tsekeris T, Stathopoulos A. Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow[J]. Transportation Research Part C:Emerging Technologies,2008,16(5):554-573.
    [97]Kuhne R D. Traffic data detection using artificial intelligence techniques[C]. In:Traffc technology international'94,1994:160-162.
    [98]Kuhne R D, Nabel D. Sectio related traffic data detection using pattern techniques for inductive loop signature analysis[C]. In:International conference to transport system,1995
    [99]Kuhne R D. Section-Related Measures of Traffic System Performance[M]. Transportation Research Board,1997.
    [100]Kuhne R D, Palen J, Garder C, et al. Loop-based travel time measurement:Fast incident detection using traditional loops[C]. In:Traffic technology international,1997:157-161.
    [101]Bohnke P, Pfannerstill E. System for the automatic surveillance of traffic situations[J]. ITE Journal,1986,56(1):41-45.
    [102]Dailey D J. Travel time estimates using a series of single loop volume and occupancy measurements[C].76th annual meeting of Transportation research board,1997.
    [103]Coifman B. Vehicle re-identification and travel time measurement in real-time on freeways using existing loop detector infrastructure[J]. Transportation Research Record:Journal of the Transportation Research Board,1998,1643(1):181-191.
    [104]Coifman B. Estimating travel times and vehicle trajectories on freeways using dual loop detectors[J]. Transportation Research Part A:Policy and Practice,2002,36(4):351-364.
    [105]Lint J W C, Zjipp N J. An improved travel-time estimation algorithm using dual loop detectors[C]. In:TRB 2003 annual meeting,2003.
    [106]Yokota T, Inoue T, Nagai T, et al. Travel time measuring system based on platoon matching:a field study[C]. In:Intelligent Transportation:Realizing the Benefits. Proceedings of the 1996 Annual Meeting of ITS America.1996:576-580.
    [107]Dubuisson M P, Jain A K, Taylor W C. Segmentation and matching of vehicles in road images[M].1993.
    [108]Dermer K D, Lall B K. Wide Area Surveillance of Freeways Using Video Image Processing Techniques[C]. In:Transportation congress:civil engineers--key to the world infrastructure,1995:245-256.
    [109]Kreeger K A, McConnell R. Structural range image target matching for automated link travel time computation[C]. In:Intelligent Transportation:Realizing the Future. Abstracts of the Third World Congress on Intelligent Transport Systems.1996.
    [110]Kong Q J, Zhao Q, Wei C, et al. Efficient Traffic State Estimation for Large-Scale Urban Road Networks[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2013,14(1):398-407.
    [111]Cortes C E, Lavanya R, Oh J S, et al. A general purpose methodology for link travel time estimation using multiple point detection of traffic[C]. In:TRB 2003 annual meeting,2003.
    [112]Nam D H, Drew D R. Traffic dynamics:Method for estimating freeway travel times in real time from flow measurements[J]. Journal of Transportation Engineering,1996,122(3): 185-191.
    [113]Nam D H, Drew D R. Automatic measurement of traffic variables for intelligent transportation systems applications[J]. Transportation Research Part B:Methodological,1999, 33(6):437-457.
    [114]Oh J S, Jayakrishnan R, Recker W. Section travel time estimation from point detection data[C].82th annual meeting of Transportation research board,2003.
    [115]Dailey D J. Travel-time estimation using cross-correlation techniques[J]. Transportation Research Part B:Methodological,1993,27(2):97-107.
    [116]Guo H, Jin J J. Travel time estimation using correlation analysis of single loop detector data[C]. In:TRB2006 annual meeting:48109-2117.
    [117]Petty K F, Bickel P, Ostland M, et al. Accurate estimation of travel times from single-loop detectors[J]. Transportation Research Part A:Policy and Practice,1998,32(1):1-17.
    [118]Zhang X, Rice J, Bickel P. Empirical comparison of travel time estimation methods[J]. Online Working Paper of California PATH Project,1999.
    [119]Zhang M, Wu T Q, Kwon E, et al. Arterial link travel time estimation using loop detector data[R]. Public policy center, University of Iowa,1997.
    [120]Gipps P G. The estimation of a measure of vehicle delay from detector output[R]. Research report 25. Newcastle, England:University of Newcastle upon Tyne, Transport Operation research Group,1977.
    [121]Gault H E, Taylor I G. The use of the output from vehicle detectors to assess delay in computer-controlled area traffic control systems[R]. Research report 31. University of Newcastle upon Tyne, Transport Operation Research Group,1981.
    [122]Gault H E. An on-line measure of delay in road traffic computer-controlled systems[J]. Traffic Engineering & Control,1981,22(7):384-389.
    [123]Rouphail N M, Sisiopiku V. Travel Time and Loop Detector Output Analysis on Dundee Road Closed-Loop Signal System[R]. ADVANCE Working Paper Series,1993.
    [124]Sisiopiku V P, Rouphail N M, Santiago A. Analysis of correlation between arterial travel time and detector data from simulation and field studies[M]. USA:Transportation Research Board Business Office,1994:166-173.
    [125]Sisiopiku V P. Travel time estimation from loop detector data for advanced traveler information systems applications[R]. Illinois University Transportation research consortium, 1994.
    [126]Virginia P.Sisiopiku. Travel time estimation from loop detector data for advanced traveler information systems applications[D]. USA:University of Illinois at Chicago,1994
    [127]Zhang H M. Link-journey-speed model for arterial traffic[J]. Transportation Research Record:Journal of the Transportation Research Board,1999,1676(1):109-115.
    [128]Strobel H. Traffic control systems analysis by means of dynamic state and input output models[C]. In:Laxenburg, Austria:International institute for applied systems analysis,1977.
    [129]Takaba S, Morita T, Hada T, et al. Estimation and measurement of travel time by vehicle detectors and license plate readers[C]. In:Vehicle Navigation and Information Systems Conference,1991,2:257-267.
    [130]Youngtae S, Jaehwan O. Estimating arterial link travel time using loop detector output[C]. In:5th ITS world congress, Seoul,1998.
    [131]Xie C, Cheu R L, Lee D H. Calibration-free arterial link speed estimation model using loop data[J]. Journal of Transportation Engineering,2001,127(6):507-514.
    [132]Lin W H, Kulkarni A, Mirchandani P. Arterial travel time estimation for advanced traveler information systems[C]. In:Proceedings of the 82th Annual Meeting of the Transportation Research Board, Washington DC, USA,2003.
    [133]Liu H, Ma W T. Time-dependent travel time estimation model for signalized arterial network[C]. In:Proceedings of the 86th Annual Meeting of the Transportation Research Board, 2007.
    [134]Frechette L A, Khan A M. Bayesian regression-based urban traffic models[J]. Transportation Research Record:Journal of the Transportation Research Board,1998,1644(1): 157-165.
    [135]Skabardonis A, Geroliminis N. Real-time estimation of travel times on signalized arterials[C]. In:Proceedings of the 16th International Symposium on Transportation and Traffic Theory,2005:1-21.
    [136]Kim Y, Kim D. Estimation of Link Travel Time Using Vehicular Detection Devices in TRACS (TRaffic Adaptive Control System)[C]. In:Proceedings of the 5th world congress on transport systems,1998.
    [137]Palacharla P V, Nelson P C. Application of fuzzy logic and neural networks for dynamic travel time estimation[J]. International Transactions in Operational Research,1999,6(1): 145-160.
    [138]Cherrett T, McLeod F, Bell H, et al. Journey time estimation using single inductive loop detectors on non-signalised links[J]. Journal of the Operational Research Society,2002,53: 610-619.
    [139]Robinson S, Polak J W. Modeling urban link travel time with inductive loop detector data by using the k-NN method [J]. Transportation Research Record:Journal of the Transportation Research Board,2005,1935(1):47-56.
    [140]Robinson S P. The development and application of an urban link travel time model using data derived from inductive loop detectors[D]. United Kingdom:University of London,2006.
    [141]Sanwal K K, Walrand J. Vehicles As Probes[R]. Institute of Transportation Studies, UC Berkeley,1995.
    [142]Chen M, Chien S I J. Dynamic freeway travel-time prediction with probe vehicle data: Link based versus path based[J]. Transportation Research Record:Journal of the Transportation Research Board,2001,1768(1):157-161.
    [143]Dailey D J, Cathey F W. Virtual speed sensors using transit vehicles as traffic probes[C]. In:Intelligent Transportation Systems,2002:560-565.
    [144]Cathey F W, Dailey D J. Transit vehicles as traffic probe sensors[J]. Transportation Research Record:Journal of the Transportation Research Board,2002,1804(1):23-30.
    [145]Rohini B. Predicting speeds on urban streets using real-time GPS data[D]. The University of Texas at Arlington,2002.
    [146]Li Y, McDonald M. Link travel time estimation using single GPS equipped probe vehicle[C]. In:Intelligent Transportation Systems,2002:932-937.
    [147]Faria D A. A Framework to Transform Real-time GPS Data Derived from Transit Vehicles to Determine Speed-flow Characteristics of Arterials[D]. University of Texas at Arlington, 2003.
    [148]Wang R. A study on the methodology of expressway travel time estimation utilizing probe vehicle technologies[D]. Nagoya University,2004
    [149]董均宇.基于GPS浮动车的城市路段平均速度估计技术研究[D].重庆:重庆大学,2006.
    [150]张存保.基于浮动车的交通信息采集与处理理论及方法研究[D].上海:同济大学博士学位论文,2006.
    [151]王力.移动交通流检测系统信息处理关键问题研究[D].北京:北京航空航天大学,2006.
    [152]王力,张海,范耀祖.基于探测车技术的路段平均速度估计模型[J].交通运输系统工程与信息,2006,6(4):29-33.
    [153]朱鲤.基于低采样频率浮动车的行程车速信息采集关键技术研究[D].同济大学博士学位论文,2007.
    [154]Hellinga B R, Fu L. Reducing bias in probe-based arterial link travel time estimates[J]. Transportation Research Part C:Emerging Technologies,2002,10(4):257-273.
    [155]Berka S, Tarko A, Rouphail N M, et al. Data fusion algorithm for ADVANCE Release 2.0[R]. Urban Transportation Center, University of Illinois at Chicago,1995.
    [156]Yamane K, Fushiki T, Furuta M, et al. Development of travel time estimation system combining license plate Recognition AVI and ultrasonic vehicle detectors[C]. In:Proceedings of 6th world congress on intelligent transport systems, Canada,1999.
    [157]Sano Y, Furukawa S, Takamura F, et al. Travel-time Measuring System for Efficient Traffic Information Service[J]. Hitachi Review,2000,49(3):135.
    [158]Wang R, Goto M, Nakamura H. Validation of an Improved Method to Estimate Expressway Travel Time by the Combination of Detector and Probe Data[J]. Journal of the Eastern Asia Society for Transportation Studies,2003,5:2003-2014.
    [159]钱寒峰.先进的交通信息系统数据采集与融合的理论与方法[D].上海:同济大学博士学位论文,2007.
    [160]Nanthawichit C, Nakatsuji T, and Suzuki H. Application of probe vehicle data for real-time traffic state estimation and short-term travel time prediction on a freeway[C]. In:82nd Annual Meeting Preprint CD-ROM. Washington DC:Transport Res Board,2003.49-59.
    [161]Xu T D, Tomeh O, Sun L J. Urban expressway real-time traffic state estimation and travel time prediction within ekf framework[C]. In:Transportation and Development Innovative Best Practices:ASCE,2008.192-197.
    [162]Padiath A S, Vanajakshi L, Subramanian S C. Estimating Spatial Traffic States with Location-Based Data Under Heterogeneous Conditions[J]. Transportation Research Record: Journal of the Transportation Research Board,2012,2291(1):72-79.
    [163]Kong Q J, Li Z, Chen Y, et al. An approach to urban traffic state estimation by fusing multisource information[J]. IEEE Transactions on Intelligent Transportation Systems,2009, 10(3):499-511.
    [164]Ajitha T, Vanajakshi L, Subramanian S C. Real Time Traffic Density Estimation without Reliable Side Road Data[J]. Journal of Computing in Civil Engineering,2013,1061(10): 1943-5487.
    [165]Nanthawichit C, Nakatsuji T, Suzuki H. Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway[J]. Transportation Research Record:Journal of the Transportation Research Board,2003,1855(1):49-59.
    [166]Nanthawichit C, Nakatsuji T, Suzuki H. Dynamic estimation of traffic states on a freeway using probe vehicle data[C]. In:Proceedings-Japan society of civil engineers,2003:43-54.
    [167]Chu L, Recker W. Micro-simulation Modeling Approach to Applications of On-line Simulation and Data Fusion[R]. Institute of Transportation Studies, UC Berkeley,2004.
    [168]Cheu R L, Lee D H, Xie C. An arterial speed estimation model fusing data from stationary and mobile sensors[C]. In:Intelligent Transportation Systems,2001:573-578.
    [169]Park T, Lee S. A Bayesian approach for estimating link travel time on urban arterial road network[C]. In:Computational Science and Its Applications -ICCSA 2004,2004:1017-1025.
    [170]Zou L, Zhu L X. Link Travel Time Estimation Model Fusing Data from Mobile and Stationary Detector Based on BP Neural Network[C]. In:IEEE conference on Intelligent Transportation System,2006,3:2146-2149.
    [171]邹亮,徐建闽,朱玲湘等.基于浮动车移动检测与感应线圈融合技术的行程时间估计模型[J].公路交通科技,2007,24(6):114-117.
    [172]张存保,严新平.固定检测器和移动检测器的交通信息融合方法[J].交通与计算机,2007,25(3):14-17.
    [173]Choi K, Chung Y. Travel time estimation algorithm using GPS probe and loop detector data fusion[C]. In:Transportation Research Board 80th Annual Meeting [CD-ROM], Washington, DC,2001.
    [174]Choi K, Chung Y S. A data fusion algorithm for estimating link travel time[J]. ITS journal, 2002,7(3-4):235-260.
    [175]Horiguchi R, Akahane H, Koide K. Data fusion of VICS and probe to reduce uncertainty oftravel time information[C]. In:The 2nd International Symposium on Transportation Network Reliability, Christchurch,2004.
    [176]Van Lint J W C, Hoogendoorn S P. A robust and efficient method for fusing heterogeneous data from traffic sensors on freeways[J]. Computer-Aided Civil and Infrastructure Engineering, 2010,25(8):596-612.
    [177]Tarko A, Rouphail N. Travel time data fusion in ADVANCE[C]. In:Pacific Rim TransTech Conference,1993.
    [178]Westerman M, Litjens R, Linnartz J. Integration Of Probe Vehicle And Induction Loop Data:Estimation Of Travel Times And Automatic Incident Detection[R]. Institute of Transportation Studies, UC Berkeley,1996.
    [179]Hellinga B, Gudapati R. Estimating link travel times for advanced traveler information systems[C]. In:Proceedings of the Canadian Society of Civil Engineers,3rd Transportation Specialty Conference,2000.
    [180]Shen W, Wynter L. Real-time road traffic fusion and prediction with GPS and fixed-sensor data[C]. In:15th International Conference on Information Fusion (FUSION),2012:1468-1475.
    [181]姜桂艳,道路交通状态判别技术与应用[M],北京:人民交通出版社,2004.
    [182]裴玉龙,马骥.实时交通数据的筛选与恢复研究[J].土木工程学报,2007,36(7):79-80.
    [183]钱仲侯,王成斌,孟玉列.多元质量控制[M].北京:中国铁道出版社.1995:27-35.
    [184]Lakhina A, Papagiannaki K, Crovella M, et al. Structural analysis of network traffic flows[J]. ACM SIGMETRICS Performance Evaluation Review,2004,32(1):61-72.
    [185]Candes E J, Romberg J. Practical Signal Recovery from Random projections[J]. Proceedings of SPIE Computational Imaging Ⅲ,2005,5674:76-86.
    [186]Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on pure and applied mathematics,2006,59(8):1207-1223.
    [187]Candes E J, Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions[J]. Foundations of Computational Mathematics,2006,6(2):227-254.
    [188]Candes E J, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. Information Theory, IEEE Transactions on, 2006,52(2):489-509.
    [189]Candes E J, Wakin M B. An introduction to compressive sampling[J]. Signal Processing Magazine, IEEE,2008,25(2):21-30.
    [190]Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory,2006, 52(4):1289-1306.
    [191]Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory,2001,47(7):2845-2862.
    [192]Candes E J, Romberg J. Sparsity and incoherence in compressive sensing[J]. Inverse Problems,2007,23(3):969-985.
    [193]Candes E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique,2008,346(9):589-592.
    [194]Candes E J, Recht B. Exact matrix completion via convex optimization[J]. Foundations of Computational mathematics,2009,9(6):717-772.
    [195]Recht B, Fazel M, Parrilo P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM review,2010,52(3):471-501.
    [196]Recht B, Xu W, Hassibi B. Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization[C]. In:47th IEEE Conference on Decision and Control, 2008:3065-3070.
    [197]Zhang Y, Roughan M, Willinger W, et al. Spatio-temporal compressive sensing and internet traffic matrices[J]. ACM SIGCOMM Computer Communication Review. ACM,2009, 39(4):267-278.