大豆慢生根瘤菌分子进化学分析及土著大豆根瘤菌生物地理分布的高通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根瘤菌为土壤腐生细菌,在条件允许的情况下,与相匹配的豆科植物形成根瘤,建立共生固氮体系。根瘤菌剂在特定土壤条件下竞争结瘤能力差的现象严重制约了根瘤菌剂的推广应用。与大豆共生的慢生根瘤菌在世界范围广泛分布,市场上主要的大豆根瘤菌剂为这个属。
     本论文一方面用分子进化学和系统发育学方法研究了不同地理来源的大豆慢生根瘤菌(Bradyrhizobium)的遗传分化特征,为今后鉴别不同Bradyrhizobium根瘤菌剂打下了基础。(1)根据核心基因(SMc00019-truA-thrA)把东北、新疆、黄淮海和南方的76株大豆慢生根瘤菌代表菌株分为11个种群:B.japonicum, B.diazoefficiens, B. daqingense, B. elkanii, B. huanghuaihaiense, B. liaoningense, B. yuanmingense, Bradyrhizobium sp. Ⅰ, Bradyrhizobium sp. Ⅱ, Bradyrhizobium sp. Ⅲ和Bradyrhizobium sp. Ⅳ;(2) island基因(共生岛基因:nifA、nifH、 nodC、nodV、fixA、trpD和rhcC2)的核苷酸多态性和重组率显著低于off_island基因(共生岛外基因:SMc00019, thrA、truA、fabB、glyA、phyR、exoN和hsfA),除了B. elkanii、B. yuanmingense和Bradyrhizobium sp. Ⅱ的其它8个种群共有一个优势的island基因系统发育分支;(3) island基因在不同种群间的基因流水平与off_island基因的遗传分化水平有明显的相关性。
     另一方面,利用种水平的rpoB高通量测序方法,研究了我国三个大豆种植生态区(东北、黄淮海和南方)的土壤中土著大豆根瘤菌的生物地理分布特征,为针对不同土壤条件选择环境适应能力强的大豆根瘤菌剂提供了强有力的理论支持。(1)土壤微生物的α和β多样性均是按照不同生态区分布;(2)a多样性受到土壤环境因子pH, N、Orc、K, Na+、HCO3-、Cl-、P、 EC等的显著影响,p多样性与地理距离、土壤因子和地表植被(大豆或野大豆)具有明显的相关性;(3)不论土壤中还是根瘤中的根瘤菌均具有显著的生物地理分布特征,东北的优势种在土壤中是B.japonicum和Bradyrhizobium sp. Ⅲ,在根瘤中是Bradyrhizobium sp. Ⅲ;在南方,B.diazoefficiens在土壤和根瘤中均为优势种;黄淮海的土著大豆根瘤菌多样性最高(Bradyrhizobium sp. Ⅲ、B.japonicum、B. huanghuaihaiense、B. elkanii、S.sojae和S.fredii),根瘤中则仅有B. japonicum和S.fredii,其中S.fredii占优势;(4)土著大豆根瘤菌相对丰度的生物地理分布受到了土壤因子N、K、P、Orc和pH的影响,同时在不同生态区这种影响程度也不同。
     通过以上研究,可以很好地为不同生态区选择高效根瘤菌剂提供理论支持。例如:在东北选用Bradyrhizobium sp. Ⅲ和B.japonicum,在南方选用B. diazoefficiens,它们为各自生态区土壤中的优势种,且island基因都属于同一个优势island基因系统发育分支;在黄淮海则主要选择该区土壤中的优势快生大豆根瘤菌S.fredii。
Rhizobia are soil bacteria that fix nitrogen after becoming established inside root nodules of appropriate legumes. Rhizobial inoculants could be outcompeted by indigenous rhizobia in certain soil conditions and the application of inoculants in agriculture is therefore severely affected. The soybean rhizobia belong to Bradyrhizobium were widely distributed in the world and as a principal inoculant for soybeans.
     This study which investigated genetic divergence levels among Bradyrhizobium strains nodulating soybeans in China using phylogenetics and evolutionary genetics, can lay a solid foundation for screening for effective inoculant for soybeans.(1) Based on three useful phylogenetic and taxonomic markers (SMc00019-thrA-truA),76representative Bradyrhizobium strains were identified as eleven genospecies:B. japonicum, B. diazoefficiens, B. daqingense, B. elkanii,B. huanghuaihaiense, B. liaoningense, B. yuanmingense, Bradyrhizobium sp. I, Bradyrhizobium sp. Ⅱ, Bradyrhizobium sp. Ⅲ and Bradyrhizobium sp. IV;(2) Seven genes inside the symbiosis island (island genes:nifA, nifH, nodC, nodV,fixA, trpD and rhcC2) showed contrasting lower level of nucleotide diversity and recombination rate than off_island genes (SMc00019, thrA, truA,fabB, glyA,phyR, exoN and hsfA). Moreover, eight genospecies (including B. japonicum, B. diazoefficiens, B. daqingense, B. huanghuaihaiense, B. liaoningense, Bradyrhizobium sp. I, Bradyrhizobium sp. Ⅲ and Bradyrhizobium sp. Ⅳ) formed a clade in the phylogeny of island genes.(3) There was a potential relationship between the gene flow of island genes and the divergence of off_island genes.
     On the other hand, we applied the pyrosequencing of rpoB amplicon to study biogeography and biodiversity of indigenous soybean rhizobia in three ecoregions of China (Northeast China, South China and HuangHuangHuai), which can offer theoretical guidance for selecting suitable strains as inoculant for soybeans.(1) The variation of bacterial diversity (a diversity) and community dissimilarities (β diversity) were attributable to spatial distribution.(2) a diversity of soil bacterial communities was significantly related to soil factors such as pH, N, Orc, K, Na+, HCO3-, Cl-, P, EC, and community dissimilarities was largely dependent of geographic distance, soil chemistry and aboveground plant.(3) soybean rhizobia, both in soil and root nodule, exhibit patterns of biogeography, the soybean rhizobia of most abundance in Northeast China was B. japonicum and Bradyrhizobium sp. Ⅲ in soil, whereas Bradyrhizobium sp. Ⅲ in root nodule; In South China, B. diazoefficiens was the dominant group both in soil and root nodule; The diversity of indigenous soybean rhizobia in soil of HuangHuaiHai was shown a high degree, including Bradyrhizobium sp.Ⅲ, B. japonicum, B. huanghuaihaiense, B. elkanii, S. sojae and S.fredii. B. japonicum and S.fredii were isolated from root nodule in HuangHuaiHai, and S.fredii was the main microsymbionts of soybean.(4) There were soil factors like N, P, K, Ore, and pH, that may affect the biogeographic distribution of indigenous soybean rhizobia, though the key factor may be different among three ecoregions.
     Taken together, these results could provide helpful guidance in selecting efficient rhizobial inoculants for different ecoregions. For example, Bradyrhizobium sp. Ⅲ and B. japonicum in Northeast China, and B. diazoefficiens in South China, these strains were dominant groups in each corresponding ecoregion, respectively and belong to the same epidemic clade in the phylogeny of island genes; S. fredii, the dominant group in HuangHuaiHai, can be a suitable inoculant strain in this ecoregion.
引文
Abaidoo, R., Keyser, H., Singleton, P., Dashiell, K., and Sanginga, N. (2007). Population size, distribution, and symbiotic characteristics of indigenous Bradyrhizobium spp. that nodulate TGx soybean genotypes in Africa. Appl. Soil Ecol.35,57-67.
    Abd-Elsalam, K. A. (2003). Bioinformatic tools and guideline for PCR primer design. Afr. J. Biotechnol.2,91-95.
    Acosta-Martinez, V., Dowd, S., Sun, Y., and Allen, V. (2008). Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol. Biochem.40,2762-2770.
    Adekambi, T., Shinnick, T. M., Raoult, D., and Drancourt, M. (2008). Complete rpoB gene sequencing as a suitable supplement to DNA-DNA hybridization for bacterial species and genus delineation. Int. J. Syst. Evol. Microbiol.58,1807-1814.
    Adhikari, D., Kaneto, M., Itoh, K., Suyama, K., Pokharel, B. B., and Gaihre, Y. K. (2012). Genetic diversity of soybean-nodulating rhizobia in Nepal in relation to climate and soil properties. Plant Soil 357,131-145.
    Alland, A. (2000). Darwin's Ghost:The Origin of Species Updated. Nature Medicine 6,621-622.
    Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A., and Sherlock, R. R. (2011a). Biochar induced soil microbial community change:implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54,309-320.
    Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., and Davies, K. F. (2011b). Navigating the multiple meanings of β diversity:a roadmap for the practicing ecologist. Ecol. Lett.14,19-28.
    Anisimova, M., and Gascuel, O. (2006). Approximate likelihood-ratio test for branches:A fast, accurate, and powerful alternative. Syst. Biol.55,539-552.
    Ansari, P. G., Rao, D. L. N., and Pal, K. K. (2014). Diversity and phylogeny of soybean rhizobia in central India. Ann. Microbiol.2,1-13.
    Appunu, C., Angele, N., and Laguerre, G. (2008). Genetic diversity of native bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural-ecological-climatic regions of India. Appl. Environ. Microbiol.74,5991-5996.
    Avise, J.C. (2000). Phylogeography:the history and formation of species (Harvard University Press).
    Avise, J.C. (2009). Phylogeography:retrospect and prospect. J. Biogeogr.36,3-15.
    Bailly, X., Olivieri, I., Brunel, B., Cleyet-Marel, J.C., and Bena, G. (2007). Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species. J Bacteriol.189,5223-5236.
    Bates, S. T., Clemente, J. C., Flores, G. E., Walters, W. A., Parfrey, L. W., Knight, R., and Fierer, N. (2013). Global biogeography of highly diverse protistan communities in soil. ISME J.7, 652-659.
    Beals, E. W. (1984). Bray-Curtis ordination:an effective strategy for analysis of multivariate ecological data. Adv. Ecol. Res.14,55.
    Bird, C. E., Karl, S. A., Smouse, P. E., and Toonen, R. J. (2011). Detecting and measuring genetic differentiation. Phylogeography and population genetics in Crustacea 19,31-55.
    Blankenberg, D., Kuster, G. V., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., Nekrutenko, A., and Taylor, J. (2010). Galaxy:a web-based genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol.19.10.11-19.10.21.
    Bonett, D. G., and Wright, T. A. (2000). Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65,23-28.
    Bontemps, C., Elliott, G. N., Simon, M. F., Dos Reis Junior, F. B., Gross, E., Lawton, R. C, Neto, N. E., M., De Faria, S. M., and Sprent, J. I. (2010). Burkholderia species are ancient symbionts of legumes. Mol. Ecol.19,44-52.
    Bowman, J., Larose, C., Vogel, T. M., and Deming, J. W. (2013). Selective occurrence of Rhizobiales in frost flowers on the surface of young sea ice near Barrow, Alaska and distribution in the polar marine rare biosphere. Environ. Microbiol. Rep.5,575-582.
    Braak, C. T., and Smilauer, P. (2002). CANOCO reference manual and CanoDraw for Windows user's guide:software for canonical community ordination (version 4.5). Section on Permutation Methods Microcomputer Power, Ithaca, New York.
    Bray, J. R., and Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr.27,325-349.
    Campbell, B. J., Yu, L., Heidelberg, J. F., and Kirchman, D. L. (2011). Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl. Acad. Sci. U.S.A.108,12776-12781.
    Case, R. J., Boucher, Y., Dahllof, I., Holmstrom, C., Doolittle, W. F., and Kjelleberg, S. (2007). Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl. Environ. Microbiol.73,278-288.
    Castro-Silva, C., Ruiz-Valdiviezo, V. M., Valenzuela-Encinas, C., Alcantara-Hernandez, R. J., Navarro-Noya, Y. E., Vazquez-Nunez, E., Luna-Guido, M., Marsch, R., and Dendooven, L. (2013). The bacterial community structure in an alkaline saline soil spiked with anthracene. Electron. J. Biotechnol.16,10-10.
    Ceja-Navarro, J. A., Rivera-Orduna, F. N., Patino-Zuniga, L., Vila-Sanjurjo, A., Crossa, J., Govaerts, B., and Dendooven, L. (2010). Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl. Environ. Microbiol.76,3685-3691.
    Chaparro, J. M., Badri, D. V., and Vivanco, J. M. (2013). Rhizosphere microbiome assemblage is affected by plant development. ISME J.8,790-803.
    Chen, L. S., Figueredo, A., Pedrosa, F. O., and Hungria, M. (2000). Genetic characterization of soybean rhizobia in Paraguay. Appl. Environ. Microbiol.66,5099-5103.
    Chen, W., Li, G., Qi, Y., Wang, E., Yuan, H. L., and Li, J. (1991). Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int. J. Syst. Bacteriol.41,275-280.
    Chen, W., Wang, E., Wang, S., Li, Y., Chen, X., and Li, Y. (1995). Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int. J. Syst. Bacteriol.45, 153-159.
    Chen, W., Yan, G., and Li, J. (1988). Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int. J. Syst. Bacteriol. 38,392-397.
    Cho, J. C., and Tiedje, J. M. (2000). Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol.66,5448-5456.
    Chu, H., Fierer, N., Lauber, C. L., Caporaso, J., Knight, R., and Grogan, P. (2010). Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol.12,2998-3006.
    Collavino, M. M., Tripp, H. J., Frank, I. E., Vidoz, M. L., Calderoli, P. A., Donato, M., Zehr, J. P., and Aguilar, O. M. (2014). nifH pyrosequencing reveals the potential for location-specific soil chemistry to influence N2-fixing community dynamics. Environ. Microbiol. DOI: 10.1111/1462-2920.12423.
    Colloff, M., Wakelin, S., Gomez, D., and Rogers, S. (2008). Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management. Soil Biol. Biochem.40, 1637-1645.
    Cooper, J. (2007). Early interactions between legumes and rhizobia:disclosing complexity in a molecular dialogue. J. Appl. Microbiol.103,1355-1365.
    Crutzen, P. J., Mosier, A., Smith, K., and Winiwarter, W. (2007). N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7,11191-11205.
    Daniel, R. (2005). The metagenomics of soil. Nat. Rev. Microbiol.3,470-478.
    Delamuta, J. R. M., Ribeiro, R. A., Ormeno-Orrillo, E., Melo, I. S., Martinez-Romero, E., and Hungria, M. (2013). Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group la strains as Bradyrhizobium diazoefficiens sp. nov. Int. J. Syst. Evol. Microbiol. 63,3342-3351.
    Delmont, T. O., Robe, P., Cecillon, S., Clark, I. M., Constancias, F., Simonet, P., Hirsch, P. R., and Vogel, T. M. (2011). Accessing the soil metagenome for studies of microbial diversity. Appl. Environ. Microbiol.77,1315-1324.
    den Camp, R. O., Streng, A., De Mita, S., Cao, Q., Polone, E., Liu, W., Ammiraju, J. S., Kudrna, D., Wing, R., and Untergasser, A. (2011). LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331,909-912.
    Denison, R. F. (2000). Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am. Nat.156,567-576.
    Didelot, X., and Falush, D. (2007). Inference of bacterial microevolution using multilocus sequence data. Genetics 175,1251-1266.
    Dixon, R., and Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol.2,621-631.
    Dobrindt, U., Hochhut, B., Hentschel, U., and Hacker, J. (2004). Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol.2,414-424.
    el Zahar Haichar, F., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., Heulin, T., and Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. ISME J.2,1221-1230.
    Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biol. Conserv.61,1-10.
    Faoro, H., Alves, A. C., Souza, E.M., Rigo, L. U., Cruz, L. M., Al-Janabi, S. M., Monteiro, R. A., Baura, V. A., and Pedrosa, F. O. (2010). Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Appl. Environ. Microbiol.76,4744-4749.
    Ferguson, B. J., Indrasumunar, A., Hayashi, S., Lin, M. H., Lin, Y. H., Reid, D. E., and Gresshoff, P. M. (2010). Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol.52,61-76.
    Ferreira, L., Sanchez-Juanes, F., Garcia-Fraile, P., Rivas, R., Mateos, P. F., Martinez-Molina, E., Gonzalez-Buitrago, J. M., and Velazquez, E. (2011). MALDI-TOF mass spectrometry is a fast and reliable platform for identification and ecological studies of species from family Rhizobiaceae. PLoS ONE 6, e20223.
    Fierer, N., and Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A.103,626-631.
    Fierer, N., Lauber, C. L., Ramirez, K. S., Zaneveld, J., Bradford, M. A., and Knight, R. (2011). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J.6,1007-1017.
    Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., Owens, S., Gilbert, J. A., Wall, D. H., and Caporaso, J. G. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. U.S.A.109, 21390-21395.
    Fischer, H. M., Alvarez-Morales, A., and Hennecke, H. (1986). The pleiotropic nature of symbiotic regulatory mutants:Bradyrhizobium japonicum nifA gene is involved in control of nif gene expression and formation of determinate symbiosis. EMBO J.5,1165.
    Fisher, R. F., and Long, S. R. (1993). Interactions of NodD at the nod Box:NodD Binds to Two Distinct Sites on the Same Face of the Helix and Induces a Bend in the DNA. J. Mol. Biol.233, 336-348.
    Fraser, C., Alm, E. J., Polz, M. F., Spratt, B. G., and Hanage, W. P. (2009). The bacterial species challenge:making sense of genetic and ecological diversity. Science 323,741-746.
    Freitag, T. E., Chang, L., Clegg, C. D., and Prosser, J. I. (2005). Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils. Appl. Environ. Microbiol.71,8323-8334.
    Gottfert, M., Grob, P., and Hennecke, H. (1990). Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc. Natl. Acad. Sci. U.S.A.87,2680-2684.
    Galibert, F., Finan, T. M., Long, S. R., Piihler, A., Abola, P., Ampe, F., Barloy-Hubler, F., Barnett, M. J., Becker, A., and Boistard, P. (2001). The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293,668-672.
    Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A. (2008). Transformation of the nitrogen cycle:recent trends, questions, and potential solutions. Science 320,889-892.
    Garbeva, P., van, Van Veen, J., and Van Elsas, J. (2004). Microbial diversity in soil:selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol.42,243-270.
    Gibson, K. E., Kobayashi, H., and Walker, G. C. (2008). Molecular determinants of a symbiotic chronic infection. Annu. Rev. Genet.42,413-441.
    Gillman, L. N., and Wright, S. D. (2014). Species richness and evolutionary speed:the influence of temperature, water and area. J. Biogeogr.41,39-51.
    Giongo, A., Ambrosini, A., Vargas, L., Freire, J., Bodanese-Zanettini, M., and Passaglia, L. (2008). Evaluation of genetic diversity of bradyrhizobia strains nodulating soybean [Glycine max (L.) Merrill] isolated from South Brazilian fields. Appl. Soil Ecol.38,261-269.
    Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J. C., Jaubert, M., Simon, D., Cartieaux, F., and Prin, Y. (2007). Legumes symbioses:absence of Nod genes in photosynthetic bradyrhizobia. Science 316,1307-1312.
    Goecks, J., Nekrutenko, A., and Taylor, J. (2010). Galaxy:a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol.11, R86.
    Gonzalez, V., Acosta, J. L., Santamaria, R. I., Bustos, P., Fernandez, J. L., Gonzalez, I. L. H., Diaz, R., Flores, M., Palacios, R., and Mora, J. (2010). Conserved symbiotic plasmid DNA sequences in the multireplicon pangenomic structure of Rhizobium etli. Appl. Environ. Microbiol.76, 1604-1614.
    Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., and Tiedje, J. M. (2007). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol.57,81-91.
    Gould, S.J. (2002). The structure of evolutionary theory (Harvard University Press).
    Gourion, B., Sulser, S., Frunzke, J., Francez-Charlot, A., Stiefel, P., Pessi, G., Vorholt, J. A., and Fischer, H. M. (2009). The PhyR-σEcfG signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum. Mol. Microbiol.73,291-305.
    Griffiths, R. I., Thomson, B. C., James, P., Bell, T., Bailey, M., and Whiteley, A. S. (2011). The bacterial biogeography of British soils. Environ. Microbiol.13,1642-1654.
    Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies:assessing the performance of PhyML 3.0. Syst. Biol.59,307-321.
    Guo, H. J., Wang, E. T., Zhang, X. X., Li, Q. Q., Zhang, Y. M., Tian, C. F., and Chen, W. X. (2014). Replicon-dependent differentiation of symbiosis-Related genes in Sinorhizohium strains nodulating Glycine max. Appl. Environ. Microbiol.80,1245-1255.
    Guttman, D. S., and Dykhuizen, D. E. (1994). Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science,1380-1380.
    Han, L. L., Wang, E. T., Han, T. X., Liu, J., Sui, X. H., Chen, W. F., and Chen, W. X. (2009). Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant Soil 324,291-305.
    Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C, and Martiny, J. B. (2012). Beyond biogeographic patterns:processes shaping the microbial landscape. Nat. Rev. Microbiol.10, 497-506.
    Hartl, D. L., and Clark, A. G. (1997). Principles of population genetics (Sinauer associates Sunderland),116.
    Hedrick, P. W. (1999). Perspective:Highly varuable loci and their interpretation in evolution and conservation. Evolution 53,313-318.
    Herridge, D. F., Peoples, M. B., and Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311,1-18.
    Hey, J., and Wakeley, J. (1997). A coalescent estimator of the population recombination rate. Genetics 145,833-846.
    Hirsch, A. M., Bauer, W. D., Bird, D. M., Cullimore, J., Tyler, B., and Yoder, J. I. (2003). Molecular signals and receptors:controlling rhizosphere interactions between plants and other organisms. Ecology 84,858-868.
    Holyoak, M., Leibold, M.A., and Holt, R.D. (2005). Metacommunities:spatial dynamics and ecological communities (University of Chicago Press).
    Hubbell, S.P. (2001). The unified neutral theory of biodiversity and biogeography (MPB-32) (Princeton University Press),32.
    Hudson, R. R., Slatkin, M., and Maddison, W. (1992). Estimation of levels of gene flow from DNA sequence data. Genetics 132,583-589.
    Hungria, M., Chueire, L. M. O., Megias, M., Lamrabet, Y., Probanza, A., Guttierrez-Manero, F. J., and Campo, R. J. (2006). Genetic diversity of indigenous tropical fast-growing rhizobia isolated from soybean nodules. Plant Soil 288,343-356.
    Hutchison, D. W., and Templeton, A. R. (1999). Correlation of pairwise genetic and geographic distance measure:inferring the relative influences of gene flow and drift on distribution of genetic variability. Evolution 53,1898-1914.
    Jones, K. M., Kobayashi, H., Davies, B. W., Taga, M. E., and Walker, G. C. (2007). How rhizobial symbionts invade plants:the Sinorhizobium-Medicago model. Nat. Rev. Microbiol.5,619-633.
    Jordan, D. (1982). NOTES:transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol.32,136-139.
    Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Idesawa, K., Ishikawa, A., and Kawashima, K. (2000). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA research 7,331-338.
    Kaneko, T., Nakamura, Y, Sato, S., Minamisawa, K., Uchiumi, T., Sasamoto, S., Watanabe, A., Idesawa, K., Iriguchi, M., and Kawashima, K. (2002). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA research 9, 189-197.
    Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30,772-780.
    Khodadad, C. L., Zimmerman, A. R., Green, S. J., Uthandi, S., and Foster, J. S. (2011). Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol. Biochem.43,385-392.
    Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution 16,111-120.
    Kimura, M. (1984). The neutral theory of molecular evolution (Cambridge University Press).
    Knelman, J. E., Legg, T. M., O'Neill, S. P., Washenberger, C. L., Gonzalez, A., Cleveland, C. C., and Nemergut, D. R. (2012). Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol. Biochem.46, 172-180.
    Konstantinidis, K. T., and Tiedje, J. M. (2005). Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U.S.A.102,2567-2572.
    Krause, A., Doerfel, A., and Gottfert, M. (2002). Mutational and transcriptional analysis of the type Ⅲ secretion system of Bradyrhizobium japonicum. Mol. Plant Microbe Interact.15,1228-1235.
    Kuklinsky-Sobral, J., Araujo, W. L., Mendes, R., Pizzirani-Kleiner, A. A., and Azevedo, J. L. (2005). Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273,91-99.
    Kuklinsky-Sobral, J., Araujo, W. L., Mendes, R., Geraldi, I. O., Pizzirani-Kleiner, A. A., and Azevedo, J. L. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol.6,1244-1251.
    Kumar, S., Nei, M., Dudley, J., and Tamura, K. (2008). MEGA:a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinformatics 9,299-306.
    Kuykendall, L., Saxena, B., Devine, T., and Udell, S. (1992). Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can. J. Microbiol.38, 501-505.
    Kuykendall, L. D., and Hunter, W. J. (1997). The sequence of a symbiotically essential Bradyrhizobium japonicum operon consisting of trpD, trpC and a moaC-like gene. Biochim. Biophys. Acta 1350,277-281.
    Lauber, C. L., Hamady, M., Knight, R., and Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol.75,5111-5120.
    Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J., Hoopes, M., Holt, R., Shurin, J., Law, R., and Tilman, D. (2004). The metacommunity concept:a framework for multi-scale community ecology. Ecol. Lett.7,601-613.
    Li, J. H., Wang, E. T., Chen, W. F., and Chen, W. X. (2008a). Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol. Biochem.40,238-246.
    Li, Q., Zhang, X., Zou, L., Chen, Q., Fewer, D.P., and Lindstrom, K. (2009). Horizontal gene transfer and recombination shape mesorhizobial populations in the gene center of the host plants Astragalus luteolus and Astragalus ernestii in Sichuan, China. FEMS Microbiol. Ecol.70, 227-235.
    Li, Q. Q., Wang, E. T., Chang, Y. L., Zhang, Y. Z., Zhang, Y. M., Sui, X. H., Chen, W. F., and Chen, W. X. (2011a). Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int. J. Syst. Evol. Microbiol.61,1981-1988.
    Li, Q. Q., Wang, E. T., Zhang, Y. Z., Zhang, Y. M., Tian, C. F., Sui, X. H., Chen, W. F., and Chen, W. X. (2011b). Diversity and biogeography of rhizobia isolated from root nodules of Glycine max grown in Hebei Province, China. Microb. Ecol.61,917-931.
    Li, Y., Guan, R., Liu, Z., Ma, Y., Wang, L., Li, L., Lin, F., Luan, W., Chen, P., Yan, Z. (2008b). Genetic structure and diversity of cultivated soybean(Glycine max (L.) Merr.) landraces in China. Theor. Appl. Genet.117,857-871.
    Lin, W., Wang, Y., Li, B., and Pan, Y. (2012). A biogeographic distribution of magnetotactic bacteria influenced by salinity. ISME J.6,475-479.
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., and Knight, R. (2010). UniFrac:an effective distance metric for microbial community comparison. ISME J.5,169-172.
    Madrzak, C. J., Golinska, B., Kroliczak, J., Pudelko, K., Lazewska, D., Lampka, B., and Sadowsky, M. J. (1995). Diversity among field populations of Bradyrhizobium japonicum in Poland. Appl. Environ. Microbiol.61,1194-1200.
    Magurran, A.E. (1988). Ecological diversity and its measurement (Princeton university press),168.
    Man, C. X., Wang, H., Chen, W. F., Sui, X. H., Wang, E. T., and Chen, W. X. (2008). Diverse rhizobia associated with soybean grown in the subtropical and tropical regions of China. Plant Soil 310, 77-87.
    Mao, C., Qiu, J., Wang, C., Charles, T. C., and Sobral, B. W. (2005). NodMutDB:a database for genes and mutants involved in symbiosis. Bioinformatics 21,2927-2929.
    Mardis, E. R (2008). The impact of next-generation sequencing technology on genetics. Trends in genetics 24,133-141.
    Margaret, I., Becker, A., Blom, J., Bonilla, I., Goesmann, A., Gottfert, M., Lloret, J., Mittard-Runte, V., Ruckert, C., and Ruiz-Sainz, J. E. (2011). Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. J. Biotechnol.155,11-19.
    Markmann, K., and Parniske, M. (2009). Evolution of root endosymbiosis with bacteria:How novel are nodules? Trends Plant Sci.14,77-86.
    Martinez-Romero, E (2009). Coevolution in Rhizobium-legume symbiosis? DNA Cell Biol.28, 361-370.
    Martinez-Romero, E., Segovia, L., Mercante, F. M., Franco, A. A., Graham, P., and Pardo, M. A. (1991). Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol.41,417-426.
    Martin, B., Humbert, O., Camara, M., Guenzi, E., Walker, J., Mitchell, T., Andrew, P., Prudhomme, M., Alloing, G., and Hakenbeck, R. (1992). A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res.20,3479-3483.
    Martiny, J. B. H., Bohannan, B. J., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner-Devine, M. C., Kane, M., Krumins, J. A., and Kuske, C. R. (2006). Microbial biogeography:putting microorganisms on the map. Nat. Rev. Microbiol.4,102-112.
    Masson-Boivin, C., Giraud, E., Perret, X., and Batut, J. (2009). Establishing nitrogen-fixing symbiosis with legumes:how many rhizobium recipes? Trends Microbiol.17,458-466.
    McGill, B. J. (2003). A test of the unified neutral theory of biodiversity. Nature 422,881-885.
    McInnes, A., Thies, J., Abbott, L., and Howieson, J. (2004). Structure and diversity among rhizobial strains, populations and communities. Soil Biol. Biochem.36,1295-1308.
    Mendes, R., Garbeva, P., and Raaijmakers, J. M. (2013). The rhizosphere microbiome:significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37,634-663.
    Menna, P., and Hungria, M. (2011). Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium:supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int. J. Syst. Evol. Microbiol.61, 3052-3067.
    Minh, B. Q., Klaere, S., and von Haeseler, A. (2009). Taxon selection under split diversity. Syst. Biol. 58,586-594.
    Miyashita, N. T., Iwanaga, H., Charles, S., Diway, B., Sabang, J., and Chong, L. (2013). Soil bacterial community structure in five tropical forests in Malaysia and one temperate forest in Japan revealed by pyrosequencing analyses of 16S rRNA gene sequence variation. Genes Genet. Syst. 88,93-103.
    Mortier, V., Holsters, M., and Goormachtig, S. (2012). Never too many? How legumes control nodule numbers. Plant Cell Environ.35,245-258.
    Moulin, L., Bena, G., Boivin-Masson, C., and Stepkowski, T. (2004). Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol. Phylogenet. Evol.30,720-732.
    Nacke, H., Thurmer, A., Wollherr, A., Will, C., Hodac, L., Herold, N., Schoning, I., Schrumpf, M., and Daniel, R. (2011). Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 6, e17000.
    Naito, Y., Fujie, M., Usami, S., Murooka, Y., and Yamada, T. (2000). The involvement of a cysteine proteinase in the nodule development in Chinese milk vetch infected with Mesorhizobium huakuii subsp. rengei. Plant Physiol.124,1087-1096.
    Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., and Renella, G. (2003). Microbial diversity and soil functions. Eur. J. Soil Sci.54,655-670.
    Navarro, E., Simonet, P., Normand, P., and Bardin, R. (1992). Characterization of natural populations of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch. Microbiol. 157,107-115.
    Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A.70, 3321-3323.
    Nei, M. (1975). Molecular population genetics and evolution (North-Holland Publishing Company).
    Nei, M., and Gojobori, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol.3,418-426.
    Nekola, J. C., and White, P. S. (1999). The distance decay of similarity in biogeography and ecology. J. Biogeogr.26,867-878.
    Noisangiam, R., Teamtisong, K., Tittabutr, P., Boonkerd, N., Toshiki, U., Minamisawa, K., and Teaumroong, N. (2012). Genetic diversity, symbiotic evolution, and proposed infection process of Bradyrhizobium strains isolated from root nodules of Aeschynomene americana L. in Thailand. Appl. Environ. Microbiol.78,6236-6250.
    Normand, P., Orso, S., Cournoyer, B., Jeannin, P., Chapelon, C., Dawson, J., Evtushenko, L., and Misra, A. K. (1996). Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int. J. Syst. Bacteriol.46,1-9.
    Offre, P., Pivato, B., Mazurier, S., Siblot, S., Berta, G., Lemanceau, P., and Mougel, C. (2008). Microdiversity of Burkholderiales associated with mycorrhizal and nonmycorrhizal roots of Medicago truncatula. FEMS Microbiol. Ecol.65,180-192.
    Oh, H. S., Son, O., Chun, J. Y., Stacey, G., Lee, M. S., Min, K. H., Song, E. S., and Cheon, C. I. (2001). The Bradyrhizobium japonicum hsfA gene exhibits a unique developmental expression pattern in cowpea nodules. Mol. Plant Microbe Interact.14,1286-1292.
    Okazaki, S., Kaneko, T., Sato, S., and Saeki, K. (2013). Hijacking of leguminous nodulation signaling by the rhizobial type Ⅲ secretion system. Proc. Natl. Acad. Sci. U.S.A.110,17131-17136.
    Okubo, T., Ikeda, S., Kaneko, T., Eda, S., Mitsui, H., Sato, S., Tabata, S., and Minamisawa, K. (2009). Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans. Microbes Environ.24,253-258.
    Oldroyd, G. E. (2013). Speak, friend, and enter:signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol.11,252-263.
    Oldroyd, G. E., and Downie, J. A. (2004). Calcium, kinases and nodulation signalling in legumes. Nat. Rev. Mol. Cell Biol.5,566-576.
    Oldroyd, G. E., Harrison, M. J., and Paszkowski, U. (2009). Reprogramming plant cells for endosymbiosis. Science 324,753.
    Oldroyd, G. E., Murray, J. D., Poole, P. S., and Downie, J. A. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet.45,119-144.
    Perez-Losada, M., Porter, M. L., Tazi, L., and Crandall, K. A. (2007). New methods for inferring population dynamics from microbial sequences. Infect. Genet. Evol.7,24-43.
    Parker, M. A. (2012). Legumes select symbiosis island sequence variants in Bradyrhizobium. Mol. Ecol.21,1769-1778.
    Parks, D. H., Porter, M., Churcher, S., Wang, S., Blouin, C., Whalley, J., Brooks, S., and Beiko, R. G. (2009). GenGIS:A geospatial information system for genomic data. Genome Res.19, 1896-1904.
    Parniske, M. (2008). Arbuscular mycorrhiza:the mother of plant root endosymbioses. Nat. Rev. Microbiol.6,763-775.
    Peoples, M., Herridge, D., and Ladha, J. (1995). Biological nitrogen fixation:an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174,3-28.
    Ponsonnet, C., and Nesme, X. (1994). Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch. Microbiol.161,300-309.
    Posada, D. (2003). Using Modeltest and PAUP* to select a model of nucleotide substitution. Curr Protoc Bioinformatics,6.5.1-6.5.14.
    Posada, D., and Crandall, K. A. (1998). Modeltest:testing the model of DNA substitution. Bioinformatics 14,817-818.
    Prakash, C. S., and Annapurna, K. (2006). Diversity of a soybean bradyrhizobial population adapted to an Indian soil. J. Plant Biochem. Biotechnol.15,27-32.
    Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490.
    Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155,945-959.
    Quelas, J. I., Lopez-Garcia, S. L., Casabuono, A., Althabegoiti, M. J., Mongiardini, E. J., Perez-Gimenez, J., Couto, A., and Lodeiro, A. R. (2006). Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots. Arch. Microbiol.186,119-128.
    Reis-Filho, J. S. (2009). Next-generation sequencing. Breast Cancer Res.11, S12.
    Richter, M., and Rossello-Mora, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. U.S.A.106,19126-19131.
    Riesenfeld, C. S., Schloss, P. D., and Handelsman, J. (2004). Metagenomics:genomic analysis of microbial communities. Annu. Rev. Genet.38,525-552.
    Risal, C. P., Yokoyama, T., Ohkama-Ohtsu, N., Djedidi, S., and Sekimoto, H. (2010). Genetic diversity of native soybean bradyrhizobia from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal. Syst. Appl. Microbiol.33,416-425.
    Rivas, R., Martens, M., de Lajudie, P., and Willems, A. (2009). Multilocus sequence analysis of the genus Bradyrhizobium. Syst. Appl. Microbiol.32,101-110.
    Robeson, M. S., King, A. J., Freeman, K. R., Birky, C. W., Martin, A. P., and Schmidt, S. K. (2011). Soil rotifer communities are extremely diverse globally but spatially autocorrelated locally. Proc. Natl. Acad. Sci. U.S.A.108,4406-4410.
    Rossbach, S., and Hennecke, H. (1991). Identification of glyA as a symbiotically essential gene in Bradyrhizobium japonicum. Mol. Microbiol.5,39-47.
    Rousk, J., Baath, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., and Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J.4,1340-1351.
    Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X., and Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19,2496-2497.
    Sachs, J. L., Russell, J. E., and Hollowell, A. C. (2011). Evolutionary instability of symbiotic function in Bradyrhizobium japonicum. PLoS ONE 6, e26370.
    Saeki, Y., Kaneko, A., Hara, T., Suzuki, K., Yamakawa, T., Nguyen, M. T., Nagatomo, Y., and Akao, S. (2005). Phylogenetic analysis of soybean-nodulating rhizobia isolated from alkaline soils in Vietnam. Soil Sci. Plant Nutr.51,1043-1052.
    Saikia, S., and Jain, V. (2007). Biological nitrogen fixation with non-legumes:An achievable target or a dogma? Curr. Sci.92,317-322.
    Saito, T., Ishii, S., Otsuka, S., Nishiyama, M., and Senoo, K. (2007). Identification of novel betaproteobacteria in a succinate-assimilating population in denitrifying rice paddy soil by using stable isotope probing. Microbes Environ.23,192-200.
    Saitou, N., and Nei, M. (1987). The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4,406-425.
    Saldana, G., Martinez-Alcantara, V., Vinardell, J. M., Bellogin, R., Ruiz-Sainz, J. E., and Balatti, P. A. (2003). Genetic diversity of fast-growing rhizobia that nodulate soybean(Glycine max L. Merr). Arch. Microbiol.180,45-52.
    Salles, J. F., Van Veen, J. A., and Van Elsas, J. D. (2004). Multivariate analyses of Burkholderia species in soil:effect of crop and land use history. Appl. Environ. Microbiol.70,4012-4020.
    Sawyer, S. A., Parsch, J., Zhang, Z., and Hartl, D. L. (2007). Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proc. Natl. Acad. Sci. U.S.A.104, 6504-6510.
    Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., and Robinson, C. J. (2009). Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol.75,7537-7541.
    Scholla, M. H., and Elkan, G. H. (1984). Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int. J. Syst. Bacteriol.34,484-486.
    Schumpp, O., and Deakin, W. J. (2010). How inefficient rhizobia prolong their existence within nodules. Trends Plant Sci.15,189-195.
    Sessitsch, A., Howieson, J., Perret, X., Antoun, H., and Martinez-Romero, E. (2002). Advances in Rhizobium research. CRC Crit Rev Plant Sci.21,323-378.
    Shapiro, J. A. (2013). Rethinking the (im) possible in evolution. Progress in biophysics and molecular biology 111,92-96.
    Sharples, G. J., and Lloyd, R. G. (1990). A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res.18,6503-6508.
    Shimoda, Y., Nagata, M., Suzuki, A., Abe, M., Sato, S., Kato, T., Tabata, S., Higashi, S., and Uchiumi, T. (2005). Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol.46,99-107.
    Shimodaira, H., and Hasegawa, M. (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol.16,1114-1116.
    Shiro, S., Matsuura, S., Saiki, R., Sigua, G. C., Yamamoto, A., Umehara, Y., Hayashi, M., and Saeki, Y. (2013). Genetic diversity and geographical distribution of indigenous soybean-nodulating bradyrhizobia in the United States. Appl. Environ. Microbiol.79,3610-3618.
    Simms, E. L., and Taylor, D. L. (2002). Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. Integrative and Comparative Biology 42,369-380.
    Slatkin, M. (1985). Gene flow in natural populations. Annu Rev Ecol Syst.,393-430.
    Slatkin, M., and Barton, N. H. (1989). A comparison of three indirect methods for estimating average levels of gene flow. Evolution 57,1349-1368.
    Smouse, P. E., Long, J. C., and Sokal, R. R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic zoology,627-632.
    Spaink, H. P. (2000). Root nodulation and infection factors produced by rhizobial bacteria. Annual Reviews in Microbiology 54,257-288.
    Sprent, J. I., and James, E. K. (2007). Legume evolution:where do nodules and mycorrhizas fit in? Plant Physiol.144,575-581.
    SPSS, I. (2011). IBM SPSS Statistics for Windows, Version 20.0 (New York:IBM Corp).
    Streng, A., op den Camp, R., Bisseling, T., and Geurts, R. (2011). Evolutionary origin of rhizobium Nod factor signaling. Plant Signal Behav.6,1510-1514.
    Suzuki, K., Oguro, H., Yamakawa, T., Yamamoto, A., Akao, S., and Saeki, Y. (2008). Diversity and distribution of indigenous soybean-nodulating rhizobia in the Okinawa islands, Japan. Soil Sci. Plant Nutr.54,237-246.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28, 2731-2739.
    Tan, Z., and Chen, W. (1998). SDS page of whole cell protein of new rhizobial groups and 16S rDNA sequencing of their representatives. Ying Yong Yu Huan Jing Sheng Wu Xue Bao 1.
    Tang, J., Bromfield, E., Rodrigue, N., Cloutier, S., and Tambong, J. (2012). Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol. Evol.2,2943-2961.
    Terefework, Z., Kaijalainen, S., and Lindstrom, K. (2001). AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J. Biotechnol.91,169-180.
    Tian, C. F., Young, J. P., Wang, E. T., Tamimi, S. M., and Chen, W. X. (2010). Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba:the role of recombination and lateral gene transfer. FEMS Microbiol Ecol.73,563-576.
    Tian, C. F., Zhou, Y. J., Zhang, Y. M., Li, Q. Q., Zhang, Y. Z., Li, D. F., Wang, S., Wang, J., Gilbert, L. B., and Li, Y. R. (2012). Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc. Natl. Acad. Sci. U.S.A.109, 8629-8634.
    Tripathi, B. M., Kim, M., Singh, D., Lee-Cruz, L., Lai-Hoe, A., Ainuddin, A., Go, R., Rahim, R. A., Husni, M., and Chun, J. (2012). Tropical soil bacterial communities in Malaysia:pH dominates in the equatorial tropics too. Microb. Ecol.64,474-484.
    Tsukui, T., Eda, S., Kaneko, T., Sato, S., Okazaki, S., Kakizaki-Chiba, K., Itakura, M., Mitsui, H., Yamashita, A., and Terasawa, K. (2013). The type III secretion system of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean plants. Appl. Environ. Microbiol.79,1048-1051.
    Turner, S. L., and Young, J. P. W. (2000). The glutamine synthetases of rhizobia:phylogenetics and evolutionary implications. Mol. Biol. Evol.17,309-319.
    Urwin, R., and Maiden, M. C. (2003). Multi-locus sequence typing:a tool for global epidemiology. Trends Microbiol.11,479-487.
    van Berkum, P., Elia, P., and Eardly, B. D. (2006). Multilocus sequence typing as an approach for population analysis of Medicago-nodulating rhizobia. J Bacteriol.188,5570-5577.
    Vellend, M. (2010). Conceptual synthesis in community ecology. Q Rev Biol.85,183-206.
    Vendan, R. T., Lee, S. H., Yu, Y. J., and Rhee, Y. H. (2012). Analysis of bacterial community in the ginseng soil using denaturing gradient gel electrophoresis (DGGE). Indian J. Microbiol.52, 286-288.
    Versalovic, J., Schneider, M., De Bruijn, F., and Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in molecular and cellular biology 5,25-40.
    Vinuesa, P., Rojas-Jimenez, K., Contreras-Moreira, B., Mahna, S. K., Prasad, B. N., Moe, H., Selvaraju, S. B., Thierfelder, H., and Werner, D. (2008). Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the asiatic continent. Appl. Environ. Microbiol.74,6987-6996.
    Vinuesa, P., Silva, C., Werner, D., and Martinez-Romero, E. (2005). Population genetics and phylogenetic inference in bacterial molecular systematics:the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogenet. Evol.34, 29-54.
    Von Humboldt, A. (1807). Essai sur la geographie des plantes:accompagne d'un tableau physique des regions equinoxiales.5,25-87.
    Vos, M. (2011). A species concept for bacteria based on adaptive divergence. Trends Microbiol.19, 1-7.
    Vos, M., Quince, C., Pijl, A. S., de Hollander, M., and Kowalchuk, G. A. (2012). A comparison of rpoB and 16S rRNA as markers in pyrosequencing studies of bacterial diversity. PLoS ONE 7, e30600.
    Wais, R. J., Keating, D. H., and Long, S. R. (2002). Structure-function analysis of nod factor-induced root hair calcium spiking in Rhizobium-legume symbiosis. Plant Physiol.129,211-224.
    Wallace, A.R. (2011). The geographical distribution of animals:with a study of the relations of living and extinct faunas as elucidating the past changes of the earth's surface (Cambridge University Press),1.
    Wang, D., Yang, S., Tang, F., and Zhu, H. (2012). Symbiosis specificity in the legume-rhizobial mutualism. Cell. Microbiol.14,334-342.
    Wang, J. Y., Wang, R., Zhang, Y. M., Liu, H. C., Chen, W. F., Wang, E. T., Sui, X. H., and Chen, W. X. (2013). Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int. J. Syst. Evol. Microbiol.63,616-624.
    Wasike, V., Lesueur, D., Wachira, F., Mungai, N. W., Mumera, L., Sanginga, N., Mburu, H., Mugadi, D., Wango, P., and Vanlauwe, B. (2009). Genetic diversity of indigenous Bradyrhizobium nodulating promiscuous soybean [Glycine max (L) Merr.] varieties in Kenya:impact of phosphorus and lime fertilization in two contrasting sites. Plant Soil 322,151-163.
    Weidner, S., Becker, A., Bonilla, I., Jaenicke, S., Lloret, J., Margaret, I., Punler, A., Ruiz-Sainz, J. E., Schneiker-Bekel, S., and Szczepanowski, R. (2012). Genome sequence of the soybean symbiont Sinorhizobium fredii HH103. J. Bacteriol.194,1617-1618.
    Wernegreen, J., and Riley, M. (1999). Comparison of the evolutionary dynamics of symbiotic and housekeeping loci:a case for the genetic coherence of rhizobial lineages. Mol. Biol. Evol.16, 98-113.
    Werner, J. J., Koren, O., Hugenholtz, P., DeSantis, T. Z., Walters, W. A., Caporaso, J. G., Angenent, L. T., Knight, R., and Ley, R. E. (2012). Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J.6,94-103.
    Wiedenbeck, J., and Cohan, F. M. (2011). Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev.35,957-976.
    Wojciechowski, M. F., Lavin, M., and Sanderson, M. J. (2004). A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am. J. Bot.91,1846-1862.
    Wu, L. J., Wang, H. Q., Wang, E. T., Chen, W. X., and Tian, C. F. (2011). Genetic diversity of nodulating and non-nodulating rhizobia associated with wild soybean(Glycine soja Sieb.& Zucc.) in different ecoregions of China. FEMS Microbiol. Ecol.76,439-450.
    Xu, L., Ge, C., Cui, Z., Li, J., and Fan, H. (1995). Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int. J. Syst. Bacteriol.45,706-711.
    Yang, J. K., and Zhou, J. C. (2008). Diversity, phylogeny and host specificity of soybean and peanut bradyrhizobia. Biology and fertility of soils 44,843-851.
    Young, J. P. W., Crossman, L. C., Johnston, A. W., Thomson, N. R., Ghazoui, Z. F., Hull, K. H., Wexler, M., Curson, A. R., Todd, J. D., and Poole, P. S. (2006). The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Bio.7, R34.
    Zahran, H. H. (2001). Rhizobia from wild legumes:diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J. Biotechnol.91,143-153.
    Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D., and Tilman, D. (2003). Plant diversity, soil microbial communities, and ecosystem function:are there any links? Ecology 84,2042-2050.
    Zhang, Y. M., Li, Y., Chen, W. F., Wang, E. T., Sui, X. H., Li, Q. Q., Zhang, Y. Z., Zhou, Y. G., and Chen, W. X. (2012a). Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. Int. J. Syst. Evol. Microbiol.62, 1951-1957.
    Zhang, Y. M., Li, Y., Jr., Chen, W. F., Wang, E. T., Tian, C. F., Li, Q. Q., Zhang, Y. Z., Sui, X. H., and Chen, W. X. (2011). Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl. Environ. Microbiol.77,6331-6342.
    Zhang, Y. M., Tian, C. F., Sui, X. H., Chen, W. F., and Chen, W. X. (2012b). Robust markers reflecting phylogeny and taxonomy of rhizobia. PLoS ONE 7, e44936.
    Zinger, L., Boetius, A., and Ramette, A. (2014). Bacterial taxa-area and distance-decay relationships in marine environments. Mol. Ecol.23,954-964.
    陈文新,汪恩涛.(2011).中国根瘤菌.北京:科学出版社,1-69.
    韩丽丽.(2009).新疆地区大豆根瘤菌多样性及其与环境生态因子之间的关系研究.中国农业大学博士论文.北京:中国农业大学.
    韩斌,孔继君,邹晓明,等.(2009).生物固氮研究现状及展望.山西农业科学37,86-89.
    李继红.(2007).黑龙江省大豆根瘤共生菌、内生菌多样性及其与土壤环境关系的研究.中国农业大学博士论文.北京:中国农业大学.
    李勤勤.(2012).大豆根瘤菌的生物地理学、种群进化和共生适应机制的研究.中国农业大学博士论文.北京:中国农业大学.
    满朝新.(2008).中国大豆根瘤菌遗传多样性研究.中国农业大学博士论文.北京:中国农业大学.
    王浩.(2009).河北大豆根瘤菌应用基础研究及黑龙江小生态区多种豆科植物根瘤菌多样性研究.中国农业大学博士论文.北京:中国农业大学.
    王靖宇.(2011).黑龙江省大豆根瘤菌的种群结构与生态因子的关系及高效固氮根瘤菌的筛选.中国农业大学硕士论文.北京:中国农业大学.
    张红侠,冯瑞华,李俊.(2010).黄土高原地区大豆根瘤菌的遗传多样性和系统发育.微生物学报50,1466-1473.
    张延明.(2012).大豆根瘤菌生物地理分布的生态学特征及基因组学研究.中国农业大学博士论文.北京:中国农业大学.
    张云增.(2012).高效大豆根瘤菌的接种效果及中华根瘤菌属的大豆品种选择性机理研究.中国农业大学博士论文.北京:中国农业大学.
    张伟涛,杨江科,袁天英,等.(2006).我国南北大豆产区慢生大豆根瘤菌的遗传多样性和系统发育研究.微生物学报 46,127-131.