遮光和磷供应对菌根共生体碳—磷互作的影响及不同演替草原植物的菌根响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物-菌根真菌共生体是自然界形成较早、分布最广的一类互利共生体系,共生体双方的碳-磷交易是菌根研究的核心内容,对理解自然界长期进化过程中生物共生体的稳定性具有重要的意义。本研究通过盆栽和分根模拟试验,结合14C、32p和33p三标记方法,在改变光照时长和土壤磷供应强度条件下,分别研究了自交系玉米L224和葱属植物Allium vineale L与不同菌根真菌共生体的菌根效应和碳-磷互作。此外,通过盆栽试验,研究了早期、晚期演替草原植物与外来植物的本地菌根效应。主要结果如下:
     盆栽试验研究了自交系玉米L224在不同土壤磷供应强度下的菌根效应。接种(Funneliformis mosseae和Rhizophagus irregularis)以及土壤磷供应强度(10,20,30,40,50,100mg kg-1)显著影响了宿主植物生长和磷吸收效应。低磷条件下接种Rhizophagus irregularis和中等磷供应水平条件下接种Funneliformis mosseae菌根生长效应较高。接种和磷供应强度未显著影响特异性转运蛋白ZEAma;Pht1;6的表达。接种和提高磷供应强度显著提高了玉米根系的磷吸收效率,说明自交系玉米L224具有较高的菌根依赖性。
     采用分根装置室内模拟研究了不同光照时长(遮光4周,6周,8周,不遮光对照)对菌根共生体碳分配和磷吸收的影响。有益菌根真菌Claroideoglomus candidum促进了宿主植物Allium vineale L的生长,且遮光降低了宿主植物的菌根效应。宿主植物优先分配碳供给有益菌根真菌侧,并从该侧吸收了较多的磷。接种非有益菌根真菌Gigaspora margarita并未显著促进宿主植物生长。植物对有益菌根真菌的碳优先分配程度随着光照时长的延长而增加。宿主对Claroideoglomus candidum侧碳优先分配对光照变化反应敏感,碳的分配比率从不遮光时的25%下降到遮光8周的15%。宿主植物对非有益菌根真菌Gigaspora margarita的碳优先分配对光照变化不敏感,所有处理约在11%左右,说明菌根共生体碳优先分配给有益菌根真菌。与非有益菌根真菌相比,有益菌根真菌对光照变化响应较敏感。
     采用分根装置利用32p,33p和14C三标记方法,模拟研究了不同土壤磷供应强度对菌根共生体碳分配和磷吸收的影响。土壤磷供应强度的增加(1X、2X、3X和4X,1X代表土壤背景磷浓度)降低了宿主植物的菌根效应,有益菌根真菌Claroideoglomus candidum对植物生长的正效应随土壤磷供应强度的增加而下降。根室双侧接种同一菌根真菌时,宿主Allium vineale L表现为优先分配碳给高磷侧,并从该侧吸收较多的磷。宿主植物同样从非有益菌根真菌Gigaspora margarita高磷侧吸收较多的磷。植株分配给Claroideoglomus candidum高磷侧的碳从2012年的1.09上升到2013年的7.05,而Gigaspora margarita高磷侧碳从2012年的2.02下降到1.86。双侧分别接种不同的菌根真菌时,在不同磷供应强度条件下(1X,2X,4X),宿主植物依然优先分配碳给有益菌根真菌,且分配比率随磷供应的强度升高而增加,说明有益菌根共生体植物碳的优先分配受土壤磷供应强度的影响,而非有益菌根真菌高磷侧磷吸收的增加则可能提高了根系吸磷途径的吸磷能力。
     盆栽模拟研究了3种早期、4种晚期演替草原植物以及6种外来植物的本地菌根生长效应。不同演替背景植物种间的菌根效应存在显著差异。早期演替种菌根生长效应和变异程度均较低;晚期演替植物种对本地菌根真菌的响应最敏感,易于受到外来物种变化影响;接种本地菌根真菌显著促进外来植物种的生长,但菌根生长效应与早期演替植物种的效应相当。在外来植物种中,Allium vineale L.菌根效应为其他外来植物的两倍,且显著高于早期和晚期演替种,菌根生长效应均值和变异系数存在显著相关。说明本地AM菌根真菌一定程度上提高了本地植物种的适应性,影响了外来植物种的本地定殖。
In nature, the symbiosis between land plants and arbuscular mycorrhizal fungi is one of the most common, oldest and ecologically important mutualisms in terrestrial ecosystems. The trade-off between carbon and phosphorus is the key component in understanding the stabilization of the mycorrhizal mutualism. In the present study, we used triple isotopic labeling of carbon (14C) and phosphorus (32P and33P) within split root chambers to investigate the trade-off of carbon and phosphorus of host plant Allium vineale L. with varying light inputs and phosphorus supply levels. In addition, pot experiments were used to study the mycorrhizal growth responsiveness among plant species of early succession, late succession and exotic plant species. The main results were as follows:
     1. Pot experiment was used to study the mycorrhizal responsiveness (MR) of inbred maize (Zea mays L. vs. L224) with different soil P supply levels. The mycorrhizal responsiveness of maize plants was significantly affected by the fungal inoculum (Funneliformis mosseae、 Rhizophagus irregularis) and P supply levels (10,20,30,40,50,100mg kg-1). Maize plants exhibited higher MR at lower P supply when inoculated with R. irregularis, and at intermediate P supply when inoculated with F. mosseae. The expression of the AM-inducible Pi transporter gene ZEAma;Phtl;6was neither significantly affected by soil P supply, nor by fungi species. Root P uptake efficiency (RPUE) of maize was greatly increased by mycorrhizal colonization at all P supply level. In conclusion, the maize inbred line of L224was highly responsive to mycorrhizal inoculation.
     2. Roots of the host plant of Allium vineale L. were grown in spatially separated root chambers. Half of the roots were inoculated with beneficial fungal species of Claroideoglomus candidum and the other was with non-beneficial AM fungal species of Gigaspora margarita. The above-ground was treated with four different shading treatments (no shading, shading for8,6and4weeks). Carbon allocation and phosphorus uptake by host plants were calculated by measuring the radioactivity of labeled C (14C) in roots and P(32P/33P) in shoots. The biomass of host plant was promoted by the beneficial fungi, and the mycorrhizal growth responsiveness (MGR) declined with prolong of the shading treatments. Whereas the growth of host growth was not significantly affected by either shading or the inoculation of non-beneficial mycorrhizal fungus. Host plants preferentially allocated more carbon toward roots associated with the beneficial AM fungus, and in return the fungus delivered more phosphorus to host plant across all shading treatments. The proportion of preferential carbon allocation declines with the increase of shading duration. The host plant allocated approximate25%of the labelled carbon to roots associated with the beneficial AM fungus under un-shading condition and the value declines to15%under8weeks shading treatment. The proportion of preferential carbon allocation to roots associated with the non-beneficial fungus (Gigaspora margarita) did not different among shading treatments and the value was approximate11%. Our findings demonstrate that host plants preferentially allocated more carbon toward the effective mycorrhizal fungus and the allocation was highly relevant to the above-ground light conditions.
     3. Using the same split root chambers, the C allocation and P uptake across four different soil P levels (1X,2X,3X and4X,1X was background P level) was investigated in the present experiment. Roots were inoculated with the same or different fungi isolates on both sides. The mycorrhizal growth response (MGR) of Claroideoglomus candidum inoculated plants decreased with the increasing soil P supply levels. Host plants preferentially allocated more carbon toward high P side and in return received more phosphorus regardless of the fungi species when both root sides were inoculated with the same fungus species. The carbon allocation to high P vs low P in Gigaspora margarita inoculated treatment increased from3.27in2012to6.03in2013, and the corresponding ratio in Claroideoglomus candidum inoculated plants increased from1.09in2012to7.05in2013. When roots were inoculated with different fungi isolates on both sides, host plants preferentially allocated more carbon toward Claroideoglomus candidum under P supply levels of1X,2X and4X, and the ratio increased with increasing soil P supply levels. Our results indicate that host plants preferential allocated more carbon toward the effective mycorrhizal fungus and the allocation proportion varied with below-ground soil P supply levels.
     4. Pot experiments were conducted to investigate the mycorrhizal growth responsiveness (MGR) among plant species of early succession (3species), late succession (4species) and exotic (6species) plants. The MGR was significantly different among plant species of different succession stages. The variation and MGR of early succession plants was smaller compared to late succession and exotic plant species. The late succession plant species were more sensitive to local AM fungi and prone to be influenced by exotic plant species. The biomass of exotic plants was promoted when inoculated with local AM fungi species, and the effect was equivalent to those of early succession plant species. The MGR of Allium vineale L. was almost twice higher than those of other exotic plant species. The average MGR of different plant species was significantly correlated with the coefficient of variation. In conclusion, local AM fungi species improve the adaptability of the native plant species and may affect the invasion of exotic plant species.
引文
刘润进,陈应龙.2007.菌根学.北京:科学出版社。
    张福锁,崔振岭,王激清,李春俭,陈新平.2007.中国土壤和植物养分管理现状与策略.植物学通报.24:687-694.
    Antoninka A, Reich PB, Johnson NC.2011. Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytologist 192:200-214.
    Arpana J, Bagyaraj DJ, Prakasa Rao EVS, Parameswaran TN, Abdul Rahiman BA.2008. Symbiotic response of patchouli [Pogostemon cablin (Blanco) Benth.] to different arbuscular mycorrhizal fungi. Advances in Environmental Biology 2:20-24.
    Bago B, Pfeffer PE, Shachar-Hill Y.2000. Carbon Metabolism and Transport in Arbuscular Mycorrhizas. Plant Physiology 124:949-958.
    Bai Z, Li H, Yan X, Zhou B, Shi X, Wang B, Li D, Shen J, Chen Q, Qin W, Oenema O, Zhang F. 2013. Thecritical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil 37:27-37.
    Barker SJ, Tagu D.2000. The roles of auxins and cytokinins in mycorrhizal symbioses. Journal of Plant Growth Regulation 19:144-154.
    Bennett AE, Bever JD.2007. Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210-218.
    Bennett AE, Bever JD.2009. Trade-offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in Plantago lanceolata. Oecologia 160:807-816.
    Bever JD.2002. Negative feedback within a mutualism:host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society B:Biological Sciences 269: 2595-2601.
    Bever JD, Morton JB, Antonovics J, Schultz PA.1996. Host-dependent sporulation and species diversity of mycorrhizal fungi in a mown grassland. Journal of Ecology 75:1965-1977.
    Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M.2009. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters 12:13-21.
    Bever JD, Schultz PA, Pringle A, Morton JB.2001. Arbuscular mycorrhizal fungi:more diverse than meets the eye, and the ecological tale of why. BioScience 51:923-932.
    Bidartondo MI.2005. The evolutionary ecology of myco-heterotrophy. New Phytol 167:335-352
    Bonfante P, Genre A.2008. Plants and arbuscular mycorrhizal fungi:an evolutionary-developmental perspective. Trends in Plant Science 13:492-498.
    Bonfante P, Perotto S.1995. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytologist 130:3-21.
    Bovill WD, Huang CY, McDonald GK.2013. Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops:challenges and directions. Crop and Pasture Science 64:179-198.
    Bronstein JJ.2001. The exploitation of mutualisms. Ecology Letters 4:277-287.
    Brundrett MC.2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154: 275-304.
    Brundrett MC.2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320:37-77.
    Brundrett MC, Piche Y, Peterson RL.1985. A developmental study of the early stages in vesicular-arbuscular mycorrhiza formation. Canadian Journal of Botany 63:184-194.
    Bucher M.2007. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist 173:11-26.
    Burleigh SH, Cavagnaro T, Jakobsen I.2002. Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. Journal of Experimental Botany 53:1593-1601.
    Cai HG.2010. Quantitative trait locus (QTL) analysis of root and nitrogen and phosphorus efficiency related traits in maize(Zea mays L.). China Agricultural University, Beijing (Ph.D. Dissertation)
    Cain ML, Bowman WD, Hacker SD.2011. Ecology. Sunderland, USA:Sinauer Associates Inc.
    Casper BB, Castelli JP.2007. Evaluating plant-soil feedback together with competition in a serpentine grassland. Ecology Letters 10:394-400.
    Chapin FS III, Bloom AJ, Field CB, Waring RH.1987. Plant responses to multiple environmental factors. BioScience 37:49-57.
    Chu Q, Wang XX, Yang Y, Chen FJ, Zhang FS, Feng G (2013) Mycorrhizal responsiveness of maize(Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza 23:497-505.
    Clark AL, St Claire SB.2011. Mycorrhizas and secondary succession in aspen-conifer forest:light imitation differentially affects a dominant early and late successional species. Forest Ecology and Management 262:203-207.
    Compant S, van der Heijden MGA, Sessitsch A.2010. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology 73:197-214.
    Darwin C.1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (1st ed.). London:John Murray.
    Davison J, Opik M, Daniell T, Moora M, Zobel M.2011. Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiology Ecology 78: 103-115.
    de Bary A.1887. Comparative Morphology and Biology of the Fungi, Mycetozoa and Bacteria. English translation. Clarendon Press, Oxford, UK.
    Denison RF, Kiers ET.2011. Life Histories of Symbiotic Rhizobia and Mycorrhizal Fungi. Current Biology 21:775-785.
    Douds D, Nagahashi DG, Abney GD.1996. The differential effects of cell wall-associated phenolics, cell walls, and cytosolic phenolics of host and non-host roots on the growth of two species of AM fungi. New Phytologist 133:289-294.
    Douds DD, Pfeffer PE, Shachar-Hill Y.2000. Carbon partitioning, cost and metabolism of arbuscular mycorrhizae. In:DoudsDD, Kapulnik Y, eds. Arbuscular mycorrhizas physiology and function. Dordrecht, The Netherlands:Kluwer Academic Publishers, pp. 107-130.
    Douglas AE.1998. Host benefit and the evolution of specialization in symbiosis. Heredity 81: 599-603.
    Douglas AE.2010. The symbiotic habit, New Jersey:Princeton University Press.
    Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T.2011. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist 190:794-804.
    Eissenstat DM, Graham JH, Syvertsen JP et al.1993. Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Annals of Botany 71:1-10.
    Fitter AH.1991. Costs and benefits of mycorrhizas:Implications for functioning under natural conditions. Experientia 47:350-355.
    Fitter AH.2006. What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytologist 172:3-6.
    Frank AB.1877. Uber die biologischen Verhaltnisse des Thallus einiger Krustflechten. Beitrage zur Biologie der Pflanzen 2:123-200.
    Frank AB.1885. Ueber die auf Wurzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdische Pilze. Berichte der Deutschen botanischen Gesellschaft 3:128-145.
    Friese CF, Allen MF.1991. The spread of VA mycorrhizal fungal hyphae in the soil:Inoculum types and external hyphal architecture. Mycologia 83:409-418.
    Garcia MO, Ovasapyan T, Greas M, Treseder KK.2008. Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant and Soil 303:301-310.
    Gerdemann JW.1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46:235-244.
    Gerdemann JW.1965. Vesicular-arbuscular mycorrhizae of maize and tuliptree by Endogone fasiculata. Mycologia 57:562-575.
    Gerdemann JW.1968. Vesicular-Arbuscular Mycorrhiza and Plant Growth. Annual Review of Phytopathology 6:397-418.
    Gerdemann JW, Trappe JM.1974. The Endogonaceae in the Pacific Northwest. Mycologia Memoirs 5:1-76.
    Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S.2000. Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609-613
    Gilbert N.2009. The disappearing nutrient. Nature 461:716-718.
    Giovannetti M, Sbrana C, Citermesi AS, Avio L, Gianinazzi-Pearson V, Gianinazzi S.1994. Recognition and infection process, basis for host specificity of arbuscular mycorrhizal fungi, in Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. eds Gianinazzi S, Schuepp H (Birkhauser-Verlag, Basel).
    Glassop D, Smith SE, Smith FA.2005. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688-698.
    Goto R, Okamoto T, Kiers ET, Kawakita A, Kato M.2010. Selective flower abortion maintains moth cooperation in a newly discovered pollination mutualism. Ecology Letters 13:321-329.
    Graham JH, Duncan LW, Eissenstat DM.1997. Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytologist 135:335-343.
    Graham JH, Eissenstat DM, Drouillard DL.1991. On the relationship between a plant's mycorrhizal dependency and rate of vesicular arbuscular mycorrhizal colonization. Functional Ecology 5:773-779.
    Grime J.1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111:1169-1194.
    Harley JL.1989. The significance of mycorrhizae. Mycology Research 92:129-139.
    Harrison MJ.2005. Signaling in the arbuscular mycorrhizal symbiosis. Annual Review of Microbiology 59:19-42.
    Hawkes CV, Belnap J, D'Antonio C, Firestone MK.2006. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant and soil 281: 369-380.
    Hetrick BAD, Wilson GWT.1992. Mycorrhizal dependence of modem wheat cultivars and ancestors:a synthesis. Canadian Journal of Botany 71:512-518.
    Hinkley DV.1969. On the Ratio of Two Correlated Normal Random Variables. Biometrika 56: 635-639.
    Hinsinger P.2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review. Plant and Soil 237:173-195.
    Hoeksema JD, Burna EM.2000. Pursuing the Big Questions about Interspecific Mutualism:A Review of Theoretical Approaches. Oecologia 125:321-330.
    Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC et al. 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters 13:394-407.
    Hoeksema JD, Schwartz MW.2003. Expanding comparative-advantage biological market models: contingency of mutualism on partner's resource requirements and acquisition trade-offs. Proceedings of the Royal Society B:Biological Sciences 270:913-919.
    Hofland-Zijlstra JD, Berendse F.2009. The effect of nutrient supply and light intensity on tannins and mycorrhizal colonisation in Dutch heathland ecosystems. Plant Ecology 201:661-675.
    Hunt R, Hope-Simpson JF.1990. Growth of Pyrola rotundifolia ssp. maritima in relation to shade. New Phytologist 114:129-137.
    Hurst SE, Turnbull MH, Norton DA.2002. The effect of plant light environment on mycorrhizal colonization in field-grown seedlings of podocarp-angiosperm forest tree species. New Zealand Journal of Botany 40:65-72.
    Jakobsen I.1995. Transport of phosphorus and carbon in VA mycorrhizas. Mycorrhiza 297-324.
    Jakobsen I, Abbott LK, Robson AD.1992. External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow in roots. New Phytologist 120:371-380.
    Janos DP.1980. Mycorrhizae influence tropical succession. Biotropica 12:56-64.
    Janos DP.1987. VA mycorrhizas in humid tropical ecosystems. In:SafirG, eds. VA Mycorrhizae: an Ecophysiological Approach., Boca Raton, FL, USA:CRC Press
    Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E.2002. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225-234.
    Jansa J, Smith FA, Smith SE.2008. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist 177:779-789.
    Janzen DH.1985. The natural history of mutualisms. In New York:Oxford University Press.30: 39-99.
    Javot H, Pumplin N, Harrison MJ.2007. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant, Cell and Environment 30:310-322.
    Jin H, Pfeffer P, Douds D, Piotrowski E, Lammers P, Shachar Hill Y.2005. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist 168:687-697.
    Jin L, Zhang G, Wang X, Dou C, Chen M, Lin S, Li Y.2011. Arbuscular mycorrhiza regulate inter-specific competition between a poisonous plant, Ligularia virgaurea, and a co-existing grazing grass, Elymus nutans, in Tibetan Plateau Alpine meadow ecosystem. Symbiosis 55:29-38.
    Johnson NC.2009. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist 185:631-647.
    Johnson NC, Graham JH.2013. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant and Soil 363:411-419.
    Johnson NC, Graham JH, Smith FA.1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135:575-585.
    Johnson NC, Hoeksema JD, Bever JD, Chaudhary VB, Gehring CA, Klironomos JN, Koide R, Miller RM, Moore J, Moutoglis P et al.2006. From Lilliput to Brobdingnag:Extending models of mycorrhizal function across scales. BioScience 56:889-900.
    Johnson NC, Rowland DL, Corkidi L, Allen EB.2008. Characteristics of plant winners and losers in grassland eutrophication-importance of allocation plasticity and mycorrhiza function. Ecology 89:2868-2878.
    Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton L, Allen EB.2003. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84: 1895-1908.
    Jones MD, Smith SE.2004. Exploring functional definitions of mycorrhizas:Are mycorrhizas always mutualisms? Canadian Journal of Botany 82:1089-1109.
    Jungk A, Claassen N.1989. Availability in soil and acquisition by plants as the basis for phosphorus and potassium supply to plants. Zeitschrift fur Pflanzenerndhrung und Bodenkunde 152:151-157.
    Kaeppler SM, Parkeb JL, Muellera SM, Seniorc L, Stuberd C, Tracya WF.2000. Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Science 40:358-364.
    Kahiluoto H, Ketoja E, Vestberg M.2000. Creation of a non-mycorrhizal control for a bioassay of AM effectiveness. Mycorrhiza 9:241-258.
    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A et al.2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880-882.
    Kiers ET, Rousseau RA, West SA, Denison RF.2003. Host sanctions and the legume-rhizobium mutualism. Nature 425:78-81.
    Kiers ET, van der Heijden MGA.2006. Mutualistic stability in the arbuscular mycorrhizal symbiosis:exploring hypotheses of evolutionary cooperation. Ecology 87:1627-1636.
    Kisa A, Sanon A, Thioulouse J, Assigbetse K, Sylla S, Spichiger R, Dieng L, Berthelin J, Prin Y, Galiana A, Lepage M, Duponnois R.2007. Arbuscular mycorrhizal symbiosis can counterbalance the negative influence of the exotic tree species Eucalyptus camaldulensis on the structure and functioning of soil microbial communities in a sahelian soil. FEMS Microbiology Ecology 62:32-44.
    Klironomos JN.2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292-2301.
    Klironomos JN, Allen MF, Rillig MC, Piotrowski J, Makvandi-Nejad S, Wolfe BE, Powell JR. 2005. Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature 433:621-624.
    Koide RT.1991. Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist 117:365-386.
    Koide R, Elliott G.1989. Cost, benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosis. Funct. Ecol.3:4-7.
    Koide RT, Li MG.1990. On host regulation of the vesicular-arbuscular mycorrhizal symbiosis. New Phytologist 114:59-74.
    Kowalchuk GA, Souza FAD, Veen JAV.2002. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Molecular Ecology 11:571-581.
    Krebs JR.1978. Optimal foraging:decision rules for predators. In Krebs JR & Davies NB, (eds). Behavioural Ecology. Blackwell Scientific Publishers, Oxford.
    Lee J.2003. "Amphiprion percula" (On-line), Animal Diversity Web, retrieved 2007-09-29.
    Lekberg Y, Schnoor T, Kjoller R, Gibbons SM, Hansen LH, Al-Soud WA, Sorensen SJ, Rosendahl S.2012.454-Sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. Journal of Ecology 100:151-160.
    Lendenmann M, Thonar C, Bamard RL, Salmon Y, Werner RA, Frossard E, Jansa J.2011. Symbiont identity matters:carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21:689-702.
    Li H, Huang G, Meng Q, Ma L, Yuan L, Wang F, Zhang W, Cui Z, Shen J, Chen X, Jiang R, Zhang F.2011. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil 349:157-167.
    Liu JX, Chen FJ, Olokhnuud CL, Glass ADM, Tong YP, Zhang FS, Mi GH.2009. Root size and nitrogen-uptake activity in two maize (Zea mays) inbred lines differing in nitrogen-use efficiency. Journal of Plant Nutrition and Soil Science 172:230-236.
    Liu RJ, Luo XS.1994. A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi. New Phytologist 128:89-92.
    Marler MJ, Zabinski CA, Callaway RM.1999. Mychorrizae indirectly enhance competitive effects of invasive forb on a native bunchgrass. Ecology 80:1180-1186.
    Marschner H.1995. Mineral nutrition ofhigher plants,2nd edn. London:Academic Press.
    Marschner H, Dell B.1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159:89-102.
    Marsh JF, Schultze M.2001. Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytologist 150:525-532.
    Marulanda A, Azcon R, Ruiz-Lozano JM.2003. Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiologia Plantarum 119:526-533.
    Mclaughlin MJ, Alston AM, Martin JK.1988. Phosphorus cycling in wheat pasture rotations.Ⅱ. The role of the microbial biomass in phosphorus cycling. Journal of Soil Research 26: 333-342.
    Meyer FH.1974. Physiology of Mycorrhiza Annual Review of Plant Physiology 25:567-586.
    Mi GH, Chen FJ, Wu QP, Lai NW, Yuan LX, Zhang FS.2010. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Science China Life Sciences 53:1369-1373.
    Middleton EL, Bever JD.2012. Inoculation with a native soil community advances succession in a grassland restoration. Restoration Ecology 20:218-226.
    Middleton EL, Bever JD, Schultz PA.2010. The effect of restoration methods on the quality of the restoration and resistance to invasion by exotics. Restoration Ecology 18:181-187.
    Moran NA.2006. "Symbiosis", Current Biology 16:866-871.
    Nagy R, Drissner D, Amrhein N, Jakobsen Ⅰ, Bucher M.2009. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytologist 181:950-959.
    Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht B, Xu GH, Jakobsen Ⅰ, Levy AA, Amrhein N, Bucher M.2005. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. The Plant Journal 42:236-250.
    National Bureau of Statistics of China (2010)'China Statistical Yearbook.'(China Statistics Press, Beijing)
    Newman EI, Reddell P.1987. The distribution of mycorrhizas among families of vascular plants. New Phytol.106:745-751.
    Nijjer S, Rogers WE, Siemann E.2004. The effect of mycorrhizal inoculum on the growth of five native tree species and the invasive Chinese Tallow tree (Sapium sebiferum). Tex. J. Sci. 56:357-368.
    Ohsowski BM, Klironomos JN, Dunfield KE, Hart MM.2012. The potential of soil amendments for restoring severely disturbed grasslands. Applied Soil Ecology 60:77-83.
    Olsson PA, Baath E, Jakobsen I, S6derstrom B.1995. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99: 623-629.
    Opik M, Moora M, Liira J, Zobel M.2006. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol.94: 778-790.
    Paszkowski U, Kroken S, Roux C, Briggs SP.2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 99: 13324-13329.
    Pawlowska TE, Taylor JW.2004. Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733-737.
    Pearse AGE.1968. 'Histochemistry:Theoretical and Applied.' 3rd edn. Edinburgh, London: Churchill Livingstone.
    Pearson JN, Jakobsen Ⅰ.1993. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants measured by dual labelling with 32P and 33P. New Phytol 124:489-494.
    Peiffera JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Bucklera ES, Ley RE.2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America 110:6548-6553.
    Pendleton RM, Smith BN.1983. Vesicular-arbuscular mycorrhizae of weedy and colonizer plant species at disturbed sites in Utah. Oecologia 59:296-301.
    Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC.1993. Growth depression in mycorrhizal citrus at high-phosphorus supply (Analysis of Carbon Costs). Plant Physiology 101:1063-1071.
    Peterson RL, Bonfante P.1994. Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant Soil 159:79-88.
    Pfeffer PE, Douds DD Jr, Bucking H, Schwartz DP, Shachar-Hill Y.2004. The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytologist 163:617-627.
    Phillips DA, Tsai SM.1992. Flavonoids as plant signals to the rhizosphere microbes. Mycorrhiza 1:55-58.
    Polley HW, Derner JD, Wilsey BJ.2005. Patterns of plant species diversity in remnant and restored tallgrass prairies. Restoration Ecology 13:480-487.
    Poulsen KH, Nagy R, Gao LL, Smith SE, Bucher M, Smith FA, Jakobsen Ⅰ.2005. Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytologist 168: 445-454.
    Preiss K, Adam IKU, Gerhard G.2010. Irradiance governs exploitation of fungi:Fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proceedings of the Royal Society B:Biological Sciences 277:1333-1336.
    Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN.2009. Mycorrhizal symbioses and plant invasions. Annual Review of Ecology, Evolution, and Systematics 40: 699-715.
    Ravnskov S, Larsen J, Jakobsen I.2002. Phosphorous uptake of an arbuscular mycorrhizal fungus is not affected by the biocontrol bacterium Burkholderia cepacia. Soil Biology and Biochemistry 34:1875-1881.
    Read DJ, Koucheki HK, Hodgson J.1976. Vesicular-arbuscular mycorrhizas in natural vegetation systems. I. The occurrence of infection. New Phytologist 77:641-653.
    Redecker D.2000. Specific PCR primers to identify arboscular myeorrhizal fungi within colonized roots. Mycorrhiza 10:73-80.
    Redecker D, Morton JB, TD Bruns.2000. Ancestral lineages of arbuscular mycorrhizal fungi. Molecular Phylogenetics and Evolution 14:276-284.
    Reitz SR, Trumble JT.2002. Competitive displacement among insects and arachnids. Annu. Rev. Entomol 47:435-465.
    Renker C, Heinrichs J, Kaldorf M, Buscot F.2003. Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza 13:191-198.
    Reynolds HL, Packer A, Bever JD, Clay K.2003. Grassroots ecology:plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281-2291.
    Sachs JL, Simms EL.2006. Pathways to mutualism breakdown. Trends in Ecology and Evolution 21:585-592.
    Saffo MB.1993. Coming to terms with a field:words and concepts in symbiosis. Symbiosis 14: 17-31.
    Sanders I, Alt M, Groppe K, Boller TA.1995. Identification of ribosomal DNA polymorphisms among and within spores of the Glomales:Application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytologist 130:419-427.
    Sawers RJ, Gutjahr C, Paszkowski U.2008. Cereal mycorrhiza:an ancient symbiosis in modern agriculture. Trends in Plant Science 13:93-97.
    Schuβler A, Schwarzott D, Walker C.2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413-1421.
    Schuβler A, Walker C.2010. The Glomeromycota:a species list with new families and genera. Edinburgh & Kew, UK:The Royal Botanic Garden; Munich, Germany:Botanische Staatssammlung Munich; Oregon, USA:Oregon State University.
    Schwarzott D, Schuβler A.2001. A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza 10:203-207.
    Seifert EK, Bever JD, Maron JL.2009. Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 90:1055-1062.
    Shah MA, Reshi Z, Rashid I.2008. Mycorrhizal source and neighbour identity differently influence Anthemis cotula L. invasion in the Kashmir Himalaya, India. Appl Soil Ecol 40: 330-337.
    Shah MA, Reshi ZA, Khasa DP.2009. Arbuscular mycorrhizas:drivers or passengers of alien plant invasion. The Botanical Review 75:397-417.
    Simon L, Bousquet J, Levesque RC, Lalonde M.1993. Origin and diversification of endomycorrhizal fungi and coincidence with ascular land plants. Nature 363:67-69.
    Siqueira JO, Carneiro MAC, Curi N, Rosado SCS, Davide AC.1998. Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in Southeastern Brazil. Forest Ecology and Management 107:241-252.
    Smith FA, Smith SE.1997. Structural diversity in vesicular-arbuscular mycorrhizal symbioses. New Phytologist 137:373-388.
    Smith SE, Jakobsen Ⅰ, Gronlund M, Smith FA.2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition:interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156:1050-1057.
    Smith SE, Read DJ.2008. Mycorrhizal Symbiosis. New York, USA:Academic Press.
    Smith SE, St. John BJ, Smith FA, Bromley JL.1986. Effect of mycorrhizal infenction on plant growth, nitrogen and phosphorus nutrition in glasshouse-grown Allium cepa L. New Phytologist 103:359-373.
    Smith SE, Smith FA.2011. Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62:227-250.
    Smith SE, Smith FA.1990. Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transfer. New Phytologist 114:1-38.
    Smith SE, Smith FA.2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1-13.
    Smith SE, Smith FA, Jakobsen Ⅰ.2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133:16-20.
    Smits WTM.1992. Mycorrhizal studies in Dipterocarp forest in Indonesia. In:Alexander IJ(Ed.), Mycorrhizas in Ecosystems. CAB International, Wallingford.
    Soares MC, Cote IM, Cardoso SC, Bshary R.2008. The cleaning goby mutualism:a system without punishment, partner switching or tactile stimulation. Journal of zoology 276:306-312.
    Son CL, Smith SE.1988. Mycorrhizal growth responses:interactions between photon irradiance and phosphorus nutrition. New Phytologist 108:305-314.
    Stubblefield SP, Taylor TN, Trappe JM.1987. Vesicular-arbuscular mycorrhizae from the Triassic of Antarctica. American Journal of Botany 74:1904-1911.
    Tawaraya K, Tokairin K, Wagatsuma T.2001. Dependence of Allium fistulosum cultivars on the arbuscular mycorrhizal fungus, Glomus fasciculatum. Applied Soil Ecology 17:119-124.
    Teng W, Deng Y, Chen XP, Xu XF, Chen RY, Lv Y, Zhao YY, Zhao XQ, He X, Li B, Tong YP, Zhang FS, Li ZS.2013. Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. Journal of Experimental Botany 64: 1403-1411.
    Tian H, Drijber RA, Li XL, Miller DN, Wienhold BJ.2013. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza 23:507-514.
    Tian QY, Sun DH, Zhao MG, Zhang WH.2007. Inhibition of nitric oxide synthase (NOS) underlines aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322-331.
    Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C.2001. Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161-168.
    Trappe J. Schenck N.1982. Taxonomy of the fungi forming endomycorrhizae. A. vesicular-arbuscular mycorrhizal fungi. (Endogonales) In:Schenck, N. (Ed.), Methods and Principles of Mycorrhizal Research. American Phytopathological Society, St.Paul, Minn, pp.1-10.
    Trouvelot A, Kough J, Gianinazzi-Pearson V.1986. 'Mesuredutaux de mycorrhization VA d'unsystemeradiculaire.Recherche de methodesd'estimationayantune signification functionnelle.' (In:Gianinazzi-Pearson V, Gianinazzi S (Eds). Physiological and Genetic Aspects of Mycorrhizae.
    Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M.2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics 45:1097-1102.
    van der Heijden MGA, □Klironomos JN, Ursic M,Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A,Sanders IR.1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69-72.
    Van der Putten WH.2003. Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology 84:2269-2280.
    Van Kleunen M, Weber E, Fischer M.2010. A meta analysis of trait differences between invasive and non invasive plant species. Ecology Letters 13:235-245.
    Vance CP, Uhde-Stone C, Allan DL.2003. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157:423-447.
    Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW.2003. Co-existing grass species have distinct arbuscular mycorrhizal communities. Mol Ecol 12:3085-3095.
    Verbruggen E, Mouden CE, Jansa J, Akkermans G, Bucking H, West SA, Kiers ET.2012. Spatial structure and interspecific cooperation:theory and an empirical test using the mycorrhizal mutualism. The American Naturalist 179:133-146.
    Versaw WK, Chiou T-J, Harrison MJ.2002. Phosphate transporters of Medicago truncatula and arbuscular mycorrhizal fungi. Plant Soil 244:239-245.
    Vogelsang KM, Bever JD.2009. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90:399-407.
    Walker C.1983. Taxonomic concepts in the Endogonaceae:spore wall characteristics in species descriptions. Mycotaxon 18:443-455.
    Walker C.1987. Current concepts in the taxonomy of the Endogonaceae. Proceedings of the 7th NACOM, IFAS,University of Florida, Gainesville, Fla.
    Wang B, Qiu YL.2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299-363.
    Wilson GWT, Hartnett DC.1998. Interspecific variation in plant responses to mycorrhizal colonization in prairie grasses and forbs. Am. J. Bot.85:1732-1738.
    Wright DP, Scholes JD, Read DJ.1998. Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant, Cell and Environment 21:209-216.
    Wyss P, Bonfante P.1993. Amplification of genomic DNA of arbuscular-mycorrhizal (AM) fungi by PCR using short arbitrary primers. Mycological Research 97:1351-1357.
    Yao Q, Li XL, Feng G, Christie P.2001a. Influence of extrametrical hyphae on mycorrhizal dependency of wheat genotypes. Communications in Soil Science and Plant Analysis 32: 3307-3317.
    Yao Q, Li XL, Christie P.2001b. Factors affecting arbuscular mycorrhizal dependency of wheat genotypes with different phosphorus efficiencies. Journal of Plant Nutrition 24:1409-1419.
    Zangaro W, Nisizaki S, Domingos J, Nakano E.2003. Mycorrhizal response and successional status in 80 woody species from south Brazil. Journal of Tropical Ecology 19:315-324.
    Zhang Q, Yang RY, Tang JJ, Yang HS, Hu SJ, Chen X.2010. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS One 5, e12380.
    Zhang Y, Chen FJ, Li XX, Li CJ.2013. Higher leaf area and post-silking P uptake conferred by introgressed DNA segments in the backcross maize line 224. Field Crops Research 151: 78-84.
    Zhong XY, Zhao XR, Bao HJ, Li HH, Li GT, Lin QM.2004. The evaluation of phosphorus leaching risk of 23 Chinese soils I. Leaching criterion. Acta Ecologica Sinica (in Chinese) 24:2275-2280.