单胶束二氧化硅荧光纳米粒子的合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,无机-有机复合纳米材料的设计和合成越来越多的受到了科学家们的广泛关注。在众多的复合纳米材料中,单胶束二氧化硅纳米粒子作为杂化复合纳米材料的无机部分,具有合成过程简单、尺寸较小、水溶性佳、低毒性以及良好的生物兼容性等特点,在生物传感领域有潜在的应用。本论文用单胶束二氧化硅纳米粒子作为媒介,在其疏水内核中引入荧光有机染料来制备功能化的水溶性复合纳米材料。通过包覆和修饰等过程合成了一系列功能化的单胶束二氧化硅荧光纳米粒子并对其性质和应用进行了研究。主要成果如下:
     1.研究了单一有机染料掺杂的单胶束二氧化硅荧光纳米粒子的光学性质。在单胶束二氧化硅纳米粒子中掺杂了香豆素衍生物(HCE)蓝光染料。单胶束包覆的香豆素衍生物(HCE-SCMNPs)的荧光发射和紫外吸收相对于相同浓度的HCE有机溶液几乎没有变化。而HCE包覆在单胶束二氧化硅纳米粒子中的荧光寿命却比有机溶液中的有显著增长。而后,测试了HCE在单胶束二氧化硅纳米粒子疏水内核中对pH的响应效果。HCE-SCMNPs能够在水溶液中响应氨水,表明HCE在单胶束内核中仍旧保持了其内酯结构,HCE-SCMNPs使得难溶于水的有机染料在水溶液中实现pH传感。制备了基于HCE-SCMNPs的卟啉响应的能量转移系统以及三种染料掺杂的单胶束复合白光材料。通过紫外和荧光光谱的研究表明,在含有四苯基卟啉(TPP)的水中,HCE-SCMNPs受到TPP的影响,能够淬灭发射带,实现HCE到TPP的能量转移(HCE作为能量给体,TPP作为能量受体)。这一淬灭过程通过HCE的变化放大了TPP的信号,为卟啉类分子在水体系中的检测提供了可能。HCE的蓝光发射和TPP的红光发射可以由能量转移过程调节至发光颜色平衡。我们在HCE与TPP掺杂的单胶束体系中掺入绿光发射的喹吖啶酮衍生物(8CQA),制备三种染料掺杂的单胶束纳米粒子HCE-TPP-8CQA-SCMNPs。适宜的掺杂比例使得三种染料掺杂的单胶束纳米材料在单一波长激发下获得了白光发射,色坐标为CIE (0.29,0.34)。为水溶性白光材料的制备提供了简便的方法。
     2.将吩噻嗪类的西弗碱有机染料引入单胶束二氧化硅纳米粒子的内核,获得了水溶性高、选择性好的Fe3+检测传感材料。我们合成了吩噻嗪类西弗碱衍生物(EDDP)并探测了它游离在有机溶剂中和掺杂在单胶束内核(EDDP-SCMNPs)中,两种不同体系对Fe3+和Fe2+的响应过程。实验结果表明,在EDDP的有机溶液中,Fe3+和Fe2+都能够使EDDP的荧光发射淬灭,而在EDDP-SCMNPs的水溶液中,只有Fe3+能够使其荧光淬灭。质谱、核磁氢谱、立体荧光等表征证实了在有机溶剂中的响应过程是由西弗碱碳氮双键断裂导致的,而在水体系中的淬灭过程是由西弗碱结构的EDDP向Fe3+的电子转移导致的。其他过渡金属离子对EDDP-SCMNPs荧光几乎没有影响,说明了EDDP-SCMNPs对Fe3+的检测有很好的选择性,能够区分响应Fe3+和Fe2+。
     3.将三苯胺类西弗碱衍生物引入表面电荷不同的三种单胶束纳米结构中,制备检测能力增强的水溶性Fe3+荧光检测材料。用共沉淀的方法合成了表面氨基功能化的单胶束纳米粒子(NH2-SCMNPs)作为正电性较强的模板,用双氧水氧化粒子表面巯基获得磺酸基功能化的单胶束纳米粒子(SO3H-SCMNPs)即负电性较强的模板。在这两种改进的单胶束模板中掺杂三苯胺西弗碱衍生物(DBDDP)以制备表面电荷不同的单胶束荧光纳米粒子(DBDDP-SO3H-SCMNP和DBDDP-NH2-SCMNP),用于Fe3+检测。比较了普通单胶束包裹的DBDDP(DBDDP-SCMNPs)、DBDDP-SO3H-SCMNP、DBDDP-NH2-SCMNP和DBDDP的有机溶液对Fe3+响应。其中,DBDDP的有机溶液对Fe3+的荧光发射呈现荧光“turn-on”的响应,而三种单胶束荧光纳米材料的水溶液对Fe3+呈现“turn-off”的响应。用核磁、质谱、荧光光谱等表征了DBDDP在游离溶液中的与三种不同单胶束内核中的Fe3+响应机理。给出了Fe3+的检测能力为:DBDDP-SO3H-SCMNPs>DBDDP-SCMNPs> DBDDP-NH2-SCMNPs。研究表明,DBDDP-SO3H-SCMNPs与DBDDP-SCMNPs对Fe3+的荧光淬灭响应呈线性关系,这为定量测定水体系中的Fe3+提供了方便。
     本论文通过掺杂和共沉淀的方法将有机荧光染料和官能团引入到单胶束二氧化硅纳米粒子内核或表面从而获得了能量转移、电子转移的复合纳米结构。这一类单胶束二氧化硅荧光纳米粒子具有较小的尺寸、低毒性、发光稳定性和较高的水溶性等优势,有望广泛的应用于生物体系中,成为细胞内响应传感和生物标记的理想材料。
Photochemistry has developed rapidly. These days, many researchers inphotochemistry field have shifted research focus from single molecular tomuticomponent nanostructures. Muticomponent nanostructures can be used asfunctional materials, which enable complex process (energy transfer, electron transfer,etc.) to occur in this system. Among most of nanostructures, silica cross-linkedmicellar nanoparticles worked as idea scaffolds for constructing multicomponentfunctional nanomaterials due to its unique features, such as ultrasmall nanosize, highwater solubility, nontoxity and good biocompatibility. Silica cross-linked micellarnanoparticles have been used as scaffolds to encapsulate π-conjugated organic dyesfor water-soluble fluorescence materials design. The main achievements in my Ph.D.thesis are shown as follows.
     The first part demonstrated that water-soluble fluorescent hybrid materials can besuccessfully synthesized by using silica cross-linked micellar nanoparticles (SCMNPs)as scaffolds to encapsulate fluorescent conjugated dyes for pH sensing, porphyrinsensing and tunable colour emission. Three dyes were separately encapsulated insideSCMNPs (dye-SCMNPs). Each of the dye-SCMNPs indicated longer lifetime inwater than that of free dye dissolved in organic solvent. The7-(hexadecyloxy) coumarin-3-ethylformate (HCE) encapsulated inside SCMNPs (HCE-SCMNPs)exhibited fluorescence quenching by pH change in aqueous media. Furthermore, itwas confirmed that the radiative and non-radiative energy transfer processes bothoccurred between HCE-SCMNPs and tetraphenyl-porphyrin (TPP), which were usedto synthesize the water-soluble TPP sensor. Significantly, HCE-SCMNPs doped with5,12-dicotyl-quinacridone (8CQA) and TPP showed water soluble white lightemission (CIE (0.29,0.34)) upon singlet excitation of376nm due to colouradjustment of8CQA and energy transfer from HCE (donor) to TPP (acceptor).
     The second part demonstrated that luminescent chemosensor based on silicacross-linked micellar nanoparticles (SCMNPs) was design by encapsulating a schiffbase (4E)-4-((10-dodecyl-10H-phenothiazin-7-yl) methyleneamino)-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (EDDP) for the selective detection of Fe3+. Inthe mixture of acetonitrile and water, the addition of Fe3+/Fe2+to EDDP induced adecrease and a red-shift in fluorescence emission which results from the hydrolysis ofSchiff base. While in aqueous media, EDDP encapsulated inside SCMNPs(EDDP-SCMNPs) shows a high selectively fluorescence quenching by Fe3+. InEDDP-SCMNPs system, the electron transferred from EDDP in the core to Fe3+onthe shell. However, EDDP-SCMNPs showed no sensing ability of Fe2+due to theweak electron-accepting of Fe2+. A strong electron-accepting ability of Fe3+inEDDP-SCMNPs system was verified using UV-absorption, fluorescence emission and3D fluorescence spectra. Significantly, because of the ultrasmall size, nontoxity, highwater solubility and biocompatibility of EDDP-SCMNPs, which can protect theemitting of EDDP in aqueous media, this material exerts promising features inbiological system.
     In the third part, we first use (4E)-4-(4-(diphenylamino) benzylideneamino)-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (DBDDP) as a fluorescence turn-on sensor for Fe3+detection in organic solvent. To achieve Fe3+system sensing inaqueous media, DBDDP doped SCMNPs (DBDDP-SCMNPs) and functionalizedSCMNPs (DBDDP-NH2-SCMNPs and DBDDP-SO3H-SCMNPs) are synthesizedusing encapsulation method via electron transfer process. Surface charge ofnanoparticles is used to tune Fe3+fluorescence sensing ability. The sensing abilitiesare following in this order: DBDDP-SO3H-SCMNPs> DBDDP-SCMNPs>DBDDP-NH2-SCMNPs. Electron transfer processes of three nanoparticles areverified by fluorescence emission quenching. The linear correlation betweenquenching intensity and lower concentration of Fe3+was accord to Stern–Volmerequation.
     Thus, silica cross-linked micellar nanoparticles have been used to encapsulatefluorescent organic dyes for water-soluble sensing. The sensing ability can be adjustedby functionalized SCMNPs. The encapsulating process is easy to build promisingbiocompatibility materials, which can be used in intracellular system.
引文
[1] HUO Q, LIU J, WANG L-Q, et al. A New Class of Silica Cross-Linked MicellarCore Shell Nanoparticles [J]. Journal of the American Chemical Society,2006,128(19):6447-53.
    [2] WANG K, HE X, YANG X, et al. Functionalized Silica Nanoparticles: APlatform for Fluorescence Imaging at the Cell and Small Animal Levels [J]. Accountsof Chemical Research,2013,46(7):1367-76.
    [3] YAN J, EST VEZ M C, SMITH J E, et al. Dye-doped nanoparticles forbioanalysis [J]. Nano Today,2007,2(3):44-50.aH[4ny] db PrKihdIMo N tooHbnlel iKance,ha irKn OAg pNfotiGrc CMS-haJat,ne nrCieaHll sOW vIai vaS eS-goKul,i dGetese la[JPl.].r oHCcihegeshsm:l yi sS tyErynff tohicfei seMinsta, tOOerpriatgialcnsa, li1cP/I9rn9oo9pr, eg1ra1tin(ei3sc),:779-88.
    [5] BAGWE R P, YANG C, HILLIARD L R, et al. Optimization of Dye-DopedSilica Nanoparticles Prepared Using a Reverse Microemulsion Method [J]. Langmuir,2004,20(19):8336-42.
    [6] ZHAO X, BAGWE R P, TAN W. Development of Organic-Dye-Doped SilicaNanoparticles in a Reverse Microemulsion [J]. Advanced Materials,2004,16(2):173-6.
    [7] PENN S G, HE L, NATAN M J. Nanoparticles for bioanalysis [J]. CurrentOpinion In Chemical Biology,2003,7(5):609-15.
    [8] NOGINOV M A, ZHU G, BELGRAVE A M, et al. Demonstration of aspaser-based nanolaser [J]. Nature,2009,460(7259):1110-U68.
    [9] QHOBOSHEANE M, SANTRA S, ZHANG P, et al. Biochemicallyfunctionalized silica nanoparticles [J]. Analyst,2001,126(8):1274-8.
    [10]BAGWE R P, HILLIARD L R, TAN W H. Surface modification of silicananoparticles to reduce aggregation and nonspecific binding [J]. Langmuir,2006,22(9):4357-62.
    [11]CHEON J, LEE J H. Synergistically Integrated Nanoparticles as MultimodalProbes for Nanobiotechnology [J]. Accounts Of Chemical Research,2008,41(12):1630-40.
    [12]SHIBATA S, TANIGUCHI T, YANO T, et al. Formation of Water-SolubleDye-Doped Silica Particles [J]. Journal of Sol-Gel Science and Technology,1997,10(3):263-8.
    [13]TAPEC R, ZHAO X J J, TAN W H. Development of organic dye-doped silicananoparticles for bioanalysis and biosensors [J]. Journal Of Nanoscience AndNanotechnology,2002,2(3-4):405-9.
    [14]VAN BLAADEREN A, VRIJ A. Synthesis and characterization of colloidaldispersions of fluorescent, monodisperse silica spheres [J]. Langmuir,1992,8(12):2921-31.
    [15]YAMAUCHI H, ISHIKAWA T, KONDO S. Surface characterization ofultramicro spherical particles of silica prepared by w/o microemulsion method [J].Colloids and Surfaces,1989,37(0):71-80.
    [16]WANG L, YANG C, TAN W. Dual-Luminophore-Doped Silica Nanoparticlesfor Multiplexed Signaling [J]. Nano Letters,2004,5(1):37-43.
    [17]WANG L, TAN W. Multicolor FRET Silica Nanoparticles by Single WavelengthExcitation [J]. Nano Letters,2005,6(1):84-8.
    [18]BAGWE R P, HILLIARD L R, TAN W. Surface Modification of SilicaNanoparticles to Reduce Aggregation and Nonspecific Binding [J]. Langmuir,2006,22(9):4357-62.
    [19]HILLIARD L R, ZHAO X, TAN W. Immobilization of oligonucleotides ontosilica nanoparticles for DNA hybridization studies [J]. Analytica Chimica Acta,2002,470(1):51-6.
    [20]SHUVAEV V V, DZIUBLA T, WIEWRODT R, et al. Streptavidin-BiotinCrosslinking of Therapeutic Enzymes With Carrier Antibodies#[M]. TBioconjugation Protocols.2004:3-19.
    [21]WANG L, WANG K, SANTRA S, et al. Watching Silica Nanoparticles Glow inthe Biological World [J]. Analytical Chemistry,2006,78(3):646-54.
    [22]SANTRA S, ZHANG P, WANG K M, et al. Conjugation of biomolecules withluminophore-doped silica nanoparticles for photostable biomarkers [J]. AnalyticalChemistry,2001,73(20):4988-93.
    [23]ATANASIJEVIC T, SHUSTEFF M, FAM P, et al. Calcium-sensitive MRIcontrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin[J]. Proceedings Of the National Academy Of Sciences Of the United States OfAmerica,2006,103(40):14707-12.
    [24]BURNS A, SENGUPTA P, ZEDAYKO T, et al. Core/Shell Fluorescent SilicaNanoparticles for Chemical Sensing: Towards Single-Particle Laboratories [J]. Small,2006,2(6):723-6.
    [25]CHEN Y-P, CHEN H-A, HUNG Y, et al. Surface charge effect in intracellularlocalization of mesoporous silica nanoparticles as probed by fluorescent ratiometricpH imaging [J]. RSC Advances,2012,2(3):968-73.
    [26]SEO S, LEE H Y, PARK M, et al. Fluorescein-Functionalized SilicaNanoparticles as a Selective Fluorogenic Chemosensor for Cu2+in Living Cells [J].European Journal Of Inorganic Chemistry,2010,6):843-7.
    [27]RASTOGI S K, PAL P, ASTON D E, et al.8-Aminoquinoline FunctionalizedSilica Nanoparticles: A Fluorescent Nanosensor for Detection of Divalent Zinc inAqueous and in Yeast Cell Suspension [J]. ACS Applied Materials&Interfaces,2011,3(5):1731-9.
    [28]LIU B, ZENG F, WU G, et al. A FRET-based ratiometric sensor for mercury ionsin water with multi-layered silica nanoparticles as the scaffold [J]. ChemicalCommunications,2011,47(31):8913-5.
    [29]BAU L, SELVESTREL F, ARDUINI M, et al. A Cell-Penetrating RatiometricNanoprobe for Intracellular Chloride [J]. Organic Letters,2012,14(12):2984-7.
    [30]LASIC D D. Doxorubicin in sterically stabilized liposomes [J]. Nature,1996,380(6574):561-2.
    [31]COUVREUR P, PUISIEUX F. Nano-and microparticles for the delivery ofpolypeptides and proteins [J]. Advanced Drug Delivery Reviews,1993,10(2–3):141-62.
    [32]FERRARI M. Cancer nanotechnology: opportunities and challenges [J]. Nat RevCancer,2005,5(3):161-71.
    [33]TORCHILIN V P. Structure and design of polymeric surfactant-based drugdelivery systems [J]. Journal of Controlled Release,2001,73(2–3):137-72.
    [34]ZHANG Y, WANG M, ZHENG Y-G, et al. PEOlated Micelle/Silica asDual-Layer Protection of Quantum Dots for Stable and Targeted Bioimaging [J].Chemistry of Materials,2013,25(15):2976-85.
    [35]KABANOV A V, BATRAKOVA E V, ALAKHOV V Y. Pluronic blockcopolymers as novel polymer therapeutics for drug and gene delivery [J]. Journal ofControlled Release,2002,82(2–3):189-212.
    [36]SOPPIMATH K S, AMINABHAVI T M, KULKARNI A R, et al. Biodegradablepolymeric nanoparticles as drug delivery devices [J]. Journal of Controlled Release,2001,70(1–2):1-20.
    [37]YOKOYAMA Y, TANABE K, YAMADA S, et al. Changes in plasma level ofbrain natriuretic peptide during exercise in recovery phase of myocardial infarctionand the clinical significance [J]. Journal of cardiology,1996,27(3):121-31.
    [38]RAPOPORT N. Stabilization and activation of Pluronic micelles fortumor-targeted drug delivery [J]. Colloids and Surfaces B: Biointerfaces,1999,16(1–4):93-111.
    [39]LI W, HAN Y C, ZHANG J L, et al. Effect of ethanol on the aggregationproperties of cetyltrimethylammonium bromide surfactant [J]. Colloid J,2005,67(2):159-63.
    [40]PROCH ZKA K, BALOCH M K, TUZAR Z. Photochemical stabilization ofblock copolymer micelles [J]. Die Makromolekulare Chemie,1979,180(10):2521-3.
    [41]THURMOND II K B, HUANG H, CLARK JR C G, et al. Shell cross-linkedpolymer micelles: stabilized assemblies with great versatility and potential [J].Colloids and Surfaces B: Biointerfaces,1999,16(1–4):45-54.
    [42]CHI F, GUO Y-N, LIU J, et al. Size-Tunable and Functional Core ShellStructured Silica Nanoparticles for Drug Release [J]. The Journal of PhysicalChemistry C,2010,114(6):2519-23.
    [43]CHI F, GUAN B, YANG B, et al. Terminating Effects of Organosilane in theFormation of Silica Cross-Linked Micellar Core Shell Nanoparticles [J]. Langmuir,2010,26(13):11421-6.
    [44]LIU J, YANG Q, ZHANG L, et al. Organic Inorganic Hybrid HollowNanospheres with Microwindows on the Shell [J]. Chemistry of Materials,2008,20(13):
    [45]ZHU J, TANG J, ZHAO L, et al. Ultrasmall, Well-Dispersed, Hollow SiliceousSpheres with Enhanced Endocytosis Properties [J]. Small,2010,6(2):276-82.
    [46]ZANARINI S, RAMPAZZO E, BONACCHI S, et al. Iridium Doped Silica PEGNanoparticles: Enabling Electrochemiluminescence of Neutral Complexes inAqueous Media [J]. Journal of the American Chemical Society,2009,131(40):14208-9.
    [47]BONACCHI S, GENOVESE D, JURIS R, et al. Luminescent SilicaNanoparticles: Extending the Frontiers of Brightness [J]. Angewandte ChemieInternational Edition,2011,50(18):4056-66.
    [48]WANG X-D, STOLWIJK J A, LANG T, et al. Ultra-Small, Highly Stable, andSensitive Dual Nanosensors for Imaging Intracellular Oxygen and pH in Cytosol [J].Journal of the American Chemical Society,2012,134(41):17011-4.
    [49]RIO-ECHEVARRIA I M, SELVESTREL F, SEGAT D, et al. Highly PEGylatedsilica nanoparticles:"ready to use" stealth functional nanocarriers [J]. Journal ofMaterials Chemistry,2010,20(14):2780-7.
    [50]GENOVESE D, MONTALTI M, PRODI L, et al. Reversible photoswitching ofdye-doped core-shell nanoparticles [J]. Chemical Communications,2011,47(39):10975-7.
    [51]WU Z, GUO C, LIANG S, et al. A pluronic F127coating strategy to producestable up-conversion NaYF4:Yb,Er(Tm) nanoparticles in culture media forbioimaging [J]. Journal of Materials Chemistry,2012,22(35):18596-602.
    [52]DE BARROS E SILVA BOTELHO M, FERNANDEZ-HERNANDEZ J M, DEQUEIROZ T B, et al. Iridium(iii)-surfactant complex immobilized in mesoporoussilicavia templated synthesis: a new route to optical materials [J]. Journal of MaterialsChemistry,2011,21(24):8829-34.
    [53]RAMPAZZO E, BONACCHI S, JURIS R, et al. Energy Transfer from SilicaCore Surfactant Shell Nanoparticles to Hosted Molecular Fluorophores [J]. TheJournal of Physical Chemistry B,2010,114(45):14605-13.
    [54]RAMPAZZO E, BONACCHI S, GENOVESE D, et al. A Versatile Strategy forSignal Amplification Based on Core/Shell Silica Nanoparticles [J]. Chemistry–AEuropean Journal,2011,17(48):13429-32.
    [1] MCDERMOTT G, PRINCE S M, FREER A A, et al. Crystal structure of anintegral membrane light-harvesting complex from photosynthetic bacteria [J]. Nature,1995,374(6522):517-21.
    [2] STANDFUSS J, TERWISSCHA VAN SCHELTINGA A C, LAMBORGHINI M,et al. Mechanisms of photoprotection and nonphotochemical quenching in pea light‐harvesting complex at2.5resolution [J]. The EMBO Journal,2005,24(5):919-28.
    [3] TU D, LIU L, JU Q, et al. Time-Resolved FRET Biosensor Based onAmine-Functionalized Lanthanide-Doped NaYF4Nanocrystals [J]. AngewandteChemie International Edition,2011,50(28):6306-10.
    [4] DUMAS A, LUEDTKE N W. Cation-Mediated Energy Transfer inG-Quadruplexes Revealed by an Internal Fluorescent Probe [J]. Journal of theAmerican Chemical Society,2010,132(51):18004-7.
    [5] ZHANG K, ZHOU H, MEI Q, et al. Instant Visual Detection of TrinitrotolueneParticulates on Various Surfaces by Ratiometric Fluorescence of Dual-EmissionQuantum Dots Hybrid [J]. Journal of the American Chemical Society,2011,133(22):8424-7.
    [6] COX J R, M LLER P, SWAGER T M. Interrupted Energy Transfer: HighlySelective Detection of Cyclic Ketones in the Vapor Phase [J]. Journal of the AmericanChemical Society,2011,133(33):12910-3.
    [7] WADA A, TAMARU S-I, IKEDA M, et al. MCM Enzyme SupramolecularHydrogel Hybrid as a Fluorescence Sensing Material for Polyanions of BiologicalSignificance [J]. Journal of the American Chemical Society,2009,131(14):5321-30.
    [8] HAN L, WEI H, TU B, et al. A facile one-pot synthesis of uniform core-shellsilver nanoparticle@mesoporous silica nanospheres [J]. Chemical Communications,2011,47(30):8536-8.
    [9] GUO X, DENG Y, GU D, et al. Synthesis and microwave absorption of uniformhematite nanoparticles and their core-shell mesoporous silica nanocomposites [J].Journal of Materials Chemistry,2009,19(37):6706-12.
    [10]WU S-H, LIN C-Y, HUNG Y, et al. PEGylated silica nanoparticles encapsulatingmultiple magnetite nanocrystals for high-performance microscopic magnetic resonanceangiography [J]. Journal of Biomedical Materials Research Part B: AppliedBiomaterials,2011,99B(1):81-8.
    [11]LU C-W, HUNG Y, HSIAO J-K, et al. Bifunctional Magnetic Silica Nanoparticlesfor Highly Efficient Human Stem Cell Labeling [J]. Nano Letters,2006,7(1):149-54.
    [12]LIN Y-S, TSAI C-P, HUANG H-Y, et al. Well-Ordered Mesoporous SilicaNanoparticles as Cell Markers [J]. Chemistry of Materials,2005,17(18):4570-3.
    [13]ZHU Y, SHI J, SHEN W, et al. Stimuli-Responsive Controlled Drug Release froma Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core–Shell Structure[J]. Angewandte Chemie International Edition,2005,44(32):5083-7.
    [14]LIN Q, HUANG Q, LI C, et al. Anticancer Drug Release from a MesoporousSilica Based Nanophotocage Regulated by Either a One-or Two-Photon Process [J].Journal of the American Chemical Society,2010,132(31):10645-7.
    [15]ZHOU K, WANG Y, HUANG X, et al. Tunable, Ultrasensitive pH-ResponsiveNanoparticles Targeting Specific Endocytic Organelles in Living Cells [J].Angewandte Chemie International Edition,2011,50(27):6109-14.
    [16]TREWYN B G, SLOWING I I, GIRI S, et al. Synthesis and Functionalization of aMesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications inControlled Release [J]. Accounts of Chemical Research,2007,40(9):846-53.
    [17]CHEN Y, CHEN H, ZENG D, et al. Core/Shell Structured Hollow MesoporousNanocapsules: A Potential Platform for Simultaneous Cell Imaging and AnticancerDrug Delivery [J]. ACS Nano,2010,4(10):6001-13.
    [18]ZHANG L, QIAO S, JIN Y, et al. Fabrication and Size-Selective Bioseparation ofMagnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure [J].Advanced Functional Materials,2008,18(20):3203-12.
    [19]ZHANG F, HAUSHALTER R C, HAUSHALTER R W, et al. Rare-EarthUpconverting Nanobarcodes for Multiplexed Biological Detection [J]. Small,2011,7(14):1972-6.
    [20]MELUCCI M, ZAMBIANCHI M, BARBARELLA G, et al. Facile tuning fromblue to white emission in silica nanoparticles doped with oligothiophene fluorophores[J]. Journal of Materials Chemistry,2010,20(44): F[2l1u]oAroLpTho NreO-DGo LpUed EC aI,l ciRuUmS PShINos pTh aJt,e KNAanIoSpEaRrt9icJ90leM3s,-f9oe.rt Ianl.V Niveoa rI-mInafgrianrged o fE HmuitmtinangBreast Cancer [J]. ACS Nano,2008,2(10):2075-84.
    [22]WANG L, TAN W. Multicolor FRET Silica Nanoparticles by Single WavelengthExcitation [J]. Nano Letters,2005,6(1):84-8.
    [23]CAUDA V, SCHLOSSBAUER A, KECHT J, et al. Multiple Core ShellFunctionalized Colloidal Mesoporous Silica Nanoparticles [J]. Journal of the AmericanChemical Society,2009,131(32):11361-70.
    [24]ROMIEU A, BROSSARD D, HAMON M, et al. Postsynthetic Derivatization ofFluorophores with α-Sulfo-β-alanine Dipeptide Linker. Application to the Preparationof Water-Soluble Cyanine and Rhodamine Dyes [J]. Bioconjugate Chemistry,2007,19(1):279-89.
    [25]UENO Y, JOSE J, LOUDET A, et al. Encapsulated Energy-Transfer Cassetteswith Extremely Well Resolved Fluorescent Outputs [J]. Journal of the AmericanChemical Society,2010,133(1):51-5.
    [26]CHO E-B, VOLKOV D O, SOKOLOV I. Ultrabright Fluorescent SilicaMesoporous Silica Nanoparticles: Control of Particle Size and Dye Loading [J].Advanced Functional Materials,2011,21(16):3129-35.
    [27]CHO E-B, VOLKOV D O, SOKOLOV I. Ultrabright Fluorescent MesoporousSilica Nanoparticles [J]. Small,2010,6(20):2314-9.
    [28]SOKOLOV I, KIEVSKY Y Y, KASZPURENKO J M. Self-Assembly ofUltrabright Fluorescent Silica Particles [J]. Small,2007,3(3):419-23.
    [29]RAMPAZZO E, BOSCHI F, BONACCHI S, et al. Multicolor core/shell silicananoparticles for in vivo and ex vivo imaging [J]. Nanoscale,2012,4(3):824-30.
    [30]RAMPAZZO E, BONACCHI S, GENOVESE D, et al. A Versatile Strategy forSignal Amplification Based on Core/Shell Silica Nanoparticles [J]. Chemistry–AEuropean Journal,2011,17(48):13429-32.
    [31]BONACCHI S, GENOVESE D, JURIS R, et al. Luminescent Silica Nanoparticles:Extending the Frontiers of Brightness [J]. Angewandte Chemie International Edition,2011,50(18):4056-66.
    [32]GENOVESE D, BONACCHI S, JURIS R, et al. Prevention of Self-Quenching inFluorescent Silica Nanoparticles by Efficient Energy Transfer [J]. Angewandte ChemieInternational Edition,2013,52(23):5965-8.
    [33]TAN H, ZHANG Y, WANG M, et al. Silica-shell cross-linked micellesencapsulating fluorescent conjugated polymers for targeted cellular imaging [J].L[B3ii4og]mhTat RteHEraNiarvOlsesR,2ti nS01g R2,t, o3S3PH(1hU):otL2oT3-CZ7r-oA46s sR.-L, inLkOaVblEe BT isJs, ueet aSlc. aCffoouldmsa r[iJn].s Cinh ePmoliycmal erRse: v Fierwoms,2004,104(6):3059-78.
    [35]ZHAO L, LOY D A, SHEA K J. Photodeformable Spherical Hybrid Nanoparticles[J]. Journal of the American Chemical Society,2006,128(44):14250-1.
    [36]MAL N K, FUJIWARA M, TANAKA Y. Photocontrolled reversible release ofguest molecules from coumarin-modified mesoporous silica [J]. Nature,2003,421(6921):350-3.
    [37]CAO X, LIN W, YU Q. A Ratiometric Fluorescent Probe for Thiols Based on aTetrakis(4-hydroxyphenyl)porphyrin–Coumarin Scaffold [J]. The Journal of OrganicChemistry,2011,76(18):7423-30.
    [38]RAMPAZZO E, BONACCHI S, JURIS R, et al. Energy Transfer from SilicaCore Surfactant Shell Nanoparticles to Hosted Molecular Fluorophores [J]. TheJournal of Physical Chemistry B,2010,114(45):14605-13.
    [39]DONG Y, SHI Q, NAKAGAWA-GOTO K, et al. Antitumor agents269.Non-aromatic ring-A neotanshinlactone analog, TNO, as a new class of potentantitumor agents [J]. Bioorganic&Medicinal Chemistry Letters,2009,19(22):6289-92.
    [40]HECHT S, VLADIMsooliaettiioens [wJ]i.t hJionu Brnraaln ocfh teIMhde SIRAtaOmr VeP roNiclay,nm F CeRrhs e: Cm EHifcfEaeTlc St Joo cfMi eC tyhJ,a. i2nE00Lnc0ea,npsulation of Functional1g2th3(a1n)d:1S8o-l2v5e.nt on Site
    [1] SAHOO S K, SHARMA D, BERA R K, et al. Iron(iii) selective molecular andsupramolecular fluorescent probes [J]. Chemical Society Reviews,2012,41(21):7195-227.
    [2] YANG Y, ZHAO Q, FENG W, et al. Luminescent Chemodosimeters forBioimaging [J]. Chemical Reviews,2012,113(1):192-270.
    [3] WANG J H. Synthetic biochemical models [J]. Accounts of Chemical Research,1970,3(3):90-7.
    [4] BUSH A I. Metals and neuroscience [J]. Current Opinion in Chemical Biology,2000,4(2):184-91.
    [5] AISEN P, WESSLING-RESNICK M, LEIBOLD E A. Iron metabolism [J].Current Opinion in Chemical Biology,1999,3(2):200-6.
    [6] GUPTA T, VAN DER BOOM M E. Monolayer-Based Selective OpticalRecognition and Quantification of FeCl3via Electron Transfer [J]. Journal of theAmerican Chemical Society,2007,129(40):12296-303.
    [7] WU P, LI Y, YAN X-P. CdTe Quantum Dots (QDs) Based Kinetic Discriminationof Fe2+and Fe3+, and CdTe QDs-Fenton Hybrid System for SensitivePhotoluminescent Detection of Fe2+[J]. Analytical Chemistry,2009,81(15):6252-7.
    [8] LI P, FANG L, ZHOU H, et al. A New Ratiometric Fluorescent Probe forDetection of Fe2+with High Sensitivity and Its Intracellular Imaging Applications [J].Chemistry–A European Journal,2011,17(38):10520-3.
    [9] CHEREDDY N R, THENNARASU S, MANDAL A B. Incorporation of triazoleinto a quinoline-rhodamine conjugate imparts iron(iii) selective complexationpermitting detection at nanomolar levels [J]. Dalton Transactions,2012,41(38):11753-9.
    [10]WU S-P, CHEN Y-P, SUNG Y-M. Colorimetric detection of Fe3+ions usingpyrophosphate functionalized gold nanoparticles [J]. Analyst,2011,136(9):1887-91.
    [11]TOYOKUNI S. Role of iron in carcinogenesis: Cancer as a ferrotoxic disease [J].Cancer Science,2009,100(1):9-16.
    [12]QUE E L, DOMAILLE D W, CHANG C J. Metals in Neurobiology: ProbingTheir Chemistry and Biology with Molecular Imaging [J]. Chemical Reviews,2008,108(5):1517-49.
    [13]MOLINA-HOLGADO F, HIDER R, GAETA A, et al. Metals ions andneurodegeneration [J]. Biometals,2007,20(3-4):639-54.
    [14]BEUTLER E, FELITTI V, GELBART T, et al. Genetics of Iron Storage andHemochromatosis [J]. Drug Metabolism and Disposition,2001,29(4):495-9.
    [15]MENG Q, SU W, HE C, et al. Novel chitosan-based fluorescent materials for theselective detection and adsorption of Fe3+in water and consequent bio-imagingapplications [J]. Talanta,2012,97(0):456-61.
    [16]VAN DEN BERG C M G. Chemical Speciation of Iron in Seawater by CathodicStripping Voltammetry with Dihydroxynaphthalene [J]. Analytical Chemistry,2005,78(1):156-63.
    [17]ANDERSEN J E T. A novel method for the filterless preconcentration of iron [J].Analyst,2005,130(3):385-90.
    [18]ARNOLD G L, WEYER S, ANBAR A D. Fe Isotope Variations in NaturalMaterials Measured Using High Mass Resolution Multiple Collector ICPMS [J].Analytical Chemistry,2003,76(2):322-7.
    [19]DEL CASTILLO BUSTO M E, MONTES-BAY N M, BLANCO-GONZ LEZ E,et al. Strategies To SCChhrroonmica tAoglcraophhoyl AICbuPtusMde Sy[J,] H.Mum AAnaLanlD SytIi-ecTruaOml CF h,T earmnandsis ftEerySrr, Ii2-n0Q I0-s5To,Ofo7Fr7m(1Ds7e U)t:esing Integrated Liquid5c6ti1o5n-:21A.pplication to
    [20]POMAZAL K, PROHASKA C, STEFFAN I, et al. Determination of Cu, Fe, Mn,and Zn in blood fractions by SEC-HPLC-ICP-AES coupling [J]. Analyst,1999,124(5):657-63.
    [21]DE SILVA A P, GUNARATNE H Q N, GUNNLAUGSSON T, et al. SignalingRecognition Events with Fluorescent Sensors and Switches [J]. Chemical Reviews,1997,97(5):1515-66.
    [22]WANG B, HAI J, LIU Z, et al. Selective Detection of Iron(III) byRhodamine-Modified Fe3O4Nanoparticles [J]. Angewandte Chemie InternationalEdition,2010,49(27):4576-9.
    [23]ZHANG T, FAN H, LIU G, et al. Different effects of Fe2+and Fe3+onconjugated polymer PPESO3: a novel platform for sensitive assays of hydrogenperoxide and glucose [J]. Chemical Communications,2008,42):5414-6.
    [24]DU J, HU M, FAN J, et al. Fluorescent chemodosimeters using "mild" chemicalevents for the detection of small anions and cations in biological and environmentalmedia [J]. Chemical Society Reviews,2012,41(12):4511-35.
    [25]LIN W, LONG L, YUAN L, et al. A novel ratiometric fluorescent Fe3+sensorbased on a phenanthroimidazole chromophore [J]. Analytica Chimica Acta,2009,634(2):262-6.
    [26]LEE M H, GIAP T V, KIM S H, et al. A novel strategy to selectively detect Fe(iii)in aqueous media driven by hydrolysis of a rhodamine6G Schiff base [J]. ChemicalCommunications,2010,46(9):1407-9.
    [27]SUMNER J P, KOPELMAN R. Alexa Fluor488as an iron sensing molecule andits application in PEBBLE nanosensors [J]. Analyst,2005,130(4):528-33.
    [28]BHARDWAJ V K, SALUJA P, HUNDAL G, et al. Benzthiazole-basedmultifunctional chemosensor: fluorescent recognition of Fe3+and chromogenicrecognition of [J]. Tetrahedron,2013,69(5):1606-10.
    [29]KAUR K, SAINI R, KUMAR A, et al. Chemodosimeters: An approach fordetection and estimation of biologically and medically relevant metal ions, anions andthiols [J]. Coordination Chemistry Reviews,2012,256(17–18):1992-2028.
    [30]JUNG H J, SINGH N, JANG D O. Highly Fe3+selective ratiometric fluorescentprobe based on imine-linked benzimidazole [J]. Tetrahedron Letters,2008,49(18):2960-4.
    [31]LIN W, YUAN L, FENG J, et al. A Fluorescence-Enhanced Chemodosimeter forFe3+Based on Hydrolysis of Bis(coumarinyl) Schiff Base [J]. European Journal ofOrganic Chemistry,2008,2008(16):2689-92.
    [32]MONTALTI M, RAMPAZZO E, ZACCHERONI N, et al. Luminescentchemosensors based on silica nanoparticles for the detection of ionic species [J]. NewJournal of Chemistry,2013,37(1):28-34.
    [33]LUXAMI V, KUMAR S. ESIPT based dual fluorescent sensor and concentrationdependent reconfigurable boolean operators [J]. RSC Advances,2012,2(23):8734-40.
    [34]BONACCHI S, GENOVESE D, JURIS R, et al. Luminescent Silica Nanoparticles:Extending the Frontiers of Brightness [J]. Angewandte Chemie International Edition,2011,50(18):4056-66.
    [35]XIONG K, WANG X, JIANG F, et al. Heterometallic thiacalix[4]arene-supportedNa2NiII12LnIII2clusters with vertex-fused tricubane cores (Ln=Dy and Tb)[J].Chemical Communications,2012,48(60):7456-8.
    [36]HUANG W T, XIE W Y, SHI Y, et al. A simple and facile strategy based onFenton-induced DNA cleavage for fluorescent turn-on detection of hydroxyl radicalsand Fe2+[J]. Journal of Materials Chemistry,2012,22(4):1477-81.
    [37]HIRAYAMA T, OKUDA K, NAGASAWA H. A highly selective turn-onfluorescent probe for iron(ii) to visualize labile iron in living cells [J]. ChemicalScience,2013,4(3):1250-6.
    [38]GAI F, ZHOU T, ZHANG L, et al. Silica cross-linked nanoparticles encapsulatingfluorescent conjugated dyes for energy transfer-based white light emission andporphyrin sensing [J]. Nanoscale,2012,4(19):6041-9.
    [39]RAMPAZZO E, BONACCHI S, GENOVESE D, et al. A Versatile Strategy forSignal Amplification Based on Core/Shell Silica Nanoparticles [J]. Chemistry–AEuropean Journal,2011,17(48):13429-32.
    [40]TAN H, ZHANG Y, WANG M, et al. Silica-shell cross-linked micellesencapsulating fluorescent conjugated polymers for targeted cellular imaging [J].
    Biomaterials,2012,33(1):237-46.
    [41]THIAGARAJAN V, SELVARAJU C, MALAR E J P, et al. A Novel Fluorophore
    with Dual Fluorescence: Local Excited State and Photoinduced
    Electron-Transfer-Promoted Charge-Transfer State [J]. ChemPhysChem,2004,5(8):
    1200-9.
    [1] MENG Q, ZHANG X, HE C, et al. Multifunctional Mesoporous Silica MaterialUsed for Detection and Adsorption of Cu2+in Aqueous Solution and BiologicalApplications in vitro and in vivo [J]. Advanced Functional Materials,2010,20(12):1903-9.
    [2] KIM H J, LEE S J, PARK S Y, et al. Detection of CuII by aChemodosimeter-Functionalized Monolayer on Mesoporous Silica [J]. AdvancedMaterials,2008,20(17):3229-34.
    [3] DU J, HU M, FAN J, et al. Fluorescent chemodosimeters using "mild" chemicalevents for the detection of small anions and cations in biological and environmentalmedia [J]. Chemical Society Reviews,2012,41(12):4511-35.
    [4] SAHOO S K, SHARMA D, BERA R K, et al. Iron(iii) selective molecular andsupramolecular fluorescent probes [J]. Chemical Society Reviews,2012,41(21):7195-227.
    [5] LIU S-D, ZHANG L-W, LIU X. A highly sensitive and selective fluorescentprobe for Fe3+based on2-(2-hydroxyphenyl)benzothiazole [J]. New Journal ofChemistry,2013,37(3):821-6.
    [6] JACKSON R K, SHI Y, YAO X, et al. FerriNaphth: A fluorescentchemodosimeter for redox active metal ions [J]. Dalton Transactions,2010,39(17):4155-61.
    [7] CHEREDDY N R, THENNARASU S, MANDAL A B. Incorporation of triazoleinto a quinoline-rhodamine conjugate imparts iron(iii) selective complexationpermitting detection at nanomolar levels [J]. Dalton Transactions,2012,41(38):11753-9.
    [8] LI P, FANG L, ZHOU H, et al. A New Ratiometric Fluorescent Probe forDetection of Fe2+with High Sensitivity and Its Intracellular Imaging Applications [J].Chemistry–A European Journal,2011,17(38):10520-3.
    [9] HAN J, ZHOU Z, BU X, et al. Employing aqueous CdTe quantum dots withdiversified surface functionalities to discriminate between heme (Fe(ii)) and hemin(Fe(iii))[J]. Analyst,2013,138(12):3402-8.
    [10]MENG Q, SU W, HE C, et al. Novel chitosan-based fluorescent materials for theselective detection and adsorption of Fe3+in water and consequent bio-imagingapplications [J]. Talanta,2012,97(0):456-61.
    [11]LEE M H, GIAP T V, KIM S H, et al. A novel strategy to selectively detect Fe(iii)in aqueous media driven by hydrolysis of a rhodamine6G Schiff base [J]. ChemicalCommunications,2010,46(9):1407-9.
    [12]LIN W, LONG L, YUAN L, et al. A Ratiometric Fluorescent Probe for Cysteineand Homocysteine Displaying a Large Emission Shift [J]. Organic Letters,2008,10(24):5577-80.
    [13]YANG Y, ZHAO Q, FENG W, et al. Luminescent Chemodosimeters forBioimaging [J]. Chemical Reviews,2012,113(1):192-270.
    [14]JIANG S, WIN K Y, LIU S, et al. Surface-functionalized nanoparticles forbiosensing and imaging-guided therapeutics [J]. Nanoscale,2013,5(8):3127-48.
    [15]JOSHI R K, SCHNEIDER J J. Assembly of one dimensional inorganicnanostructures into functional2D and3D architectures. Synthesis, arrangement andfunctionality [J]. Chemical Society Reviews,2012,41(15):5285-312.
    [16]BAI S, SHEN X. Graphene-inorganic nanocomposites [J]. RSC Advances,2012,2(1):64-98.
    [17]ZHANG Y, WANG M, ZHENG Y-G, et al. PEOlated Micelle/Silica asDual-Layer Protection of Quantum Dots for Stable and Targeted Bioimaging [J].Chemistry of Materials,2013,25(15):2976-85.
    [18]LIN W, YUAN L, FENG J, et al. A Fluorescence-Enhanced Chemodosimeter forFe3+Based on Hydrolysis of Bis(coumarinyl) Schiff Base [J]. European Journal ofOrganic Chemistry,2008,2008(16):2689-92.