基因芯片检测子宫内膜癌放射敏感性及血管生成相关基因的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分利用寡核苷酸基因芯片技术筛选子宫内膜癌放射敏感性基因
     第一章人子宫内膜癌体外放射敏感性的检测
     【目的】子宫内膜癌(endometrial cancer)是妇科最常见的恶性肿瘤之一,其发病率在世界范围内呈逐年上升趋势。对存在高危因素的患者放疗联合手术治疗能显著提高子宫内膜癌疗效、降低盆腔及阴道残端的复发率,对合并有内科疾病的患者放疗是主要的治疗手段。因此,目前约2/3的子宫内膜癌患者需接受放疗,但在这些患者中仍有相当数量的病例在5年内复发。多数学者认为,患者对放疗的反应主要取决于子宫内膜癌个体固有的放射敏感性。本研究通过观察体外不同剂量X线照射后,4株人子宫内膜癌细胞的生存情况及影响因素,进行放射敏感性和敏感程度的初步研究,筛选出放射敏感性差异的细胞株,为下一步研究提供良好的实验基础和理想的实验材料。
     【方法】培养4株人子宫内膜癌细胞株Ishikawa(ISK,高分化腺癌)、RL95-2(中分化腺鳞癌)、HHUA(高分化腺癌)和KLE(低分化腺癌),应用6MV X线照射细胞(剂量分别为0、1、2、3、4、6、8、10Gy),观察细胞照射前后形态学变化,计算各组的克隆形成率,通过GraphPad prism软件,采用“多靶单击模型”来拟合剂量存活曲线,并计算放射敏感性参数外推值(N)、平均致死剂量(Do)、准阈剂量(Dq)和2Gy照射后细胞的存活分数(SF_2)。并用流式细胞术检测X线照射后ISK和KLE细胞周期的变化及凋亡细胞的比例。
     【结果】子宫内膜癌细胞照射后可见部分细胞形态变圆、脱落,呈凋亡改变。照射后的细胞种植于培养瓶后,培养约14~21d可形成肉眼可见的细胞克隆。四株子宫内膜癌细胞的SF_2值分别为0.572,0.510,0.446和0.328,其中ISK细胞的SF_2值最高,KLE细胞SF_2最低,二者之间存在明显差异(P=0.017)。细胞周期检测结果显示,照射前ISK细胞G_2/M期细胞比例明显低于KLE细胞(13.6%vs.37.0%,P<0.05)。6Gy X线照射后,两组细胞均出现明显的G_2/M期阻滞,同时伴随S期比例下降。比较照射后12小时两组细胞中G_2/M期细胞增加的比例,在ISK细胞中高于KLE细胞(50.0%vs.14.1%,P<0.05)。6Gy X线照射24小时后,与照射前比较2株细胞凋亡率均有增加,KLE细胞中凋亡细胞的比例(Annexin V+/PI-)从照射前的1.58%升高到9.25%,ISK细胞中由2.88%升高到4.60%,而KLE细胞的凋亡率明显高于ISK细胞(P<0.05)。
     【结论】4株人子宫内膜癌细胞株中KLE细胞的放射敏感性最高,ISK细胞放射敏感性最低,这2株细胞被筛选出进入下一部分实验。
     第二章利用基因芯片技术筛选子宫内膜癌放射敏感性基因
     【目的】肿瘤患者对放疗的不同反应主要是由于其放射敏感性不同决定的,肿瘤本身固有的放射敏感性与辐射诱导的基因表达和基因调控有关,因此,通过基因表达谱差异研究可以发现与子宫内膜癌放射敏感性密切相关的基因,有利于制定子宫内膜癌患者个体化治疗方案。本部分研究的目的是通过应用含人类全基因组序列的寡聚核苷酸芯片对已筛选出的两个放射敏感性不同的子宫内膜癌细胞株进行检测,比较其接受照射前后基因表达谱的变化,并对筛选出的差异表达基因进行初步验证,以寻找与内膜癌放射敏感性密切相关的基因。
     【方法】1.应用北京博奥生物有限公司提供人类全基因组表达谱芯片22KHuman Genome Array检测4Gy X线照射后ISK细胞株及KLE细胞株的基因表达谱,分别筛选照射前后的差异表达基因。
     2.对两株细胞的差异表达基因进行主成分分析、GO分析及Pathway聚类分析,通过NCBI生物医学文献数据库检索基因信息及功能,寻找与子宫内膜癌放射敏感性相关的主效基因,探索放射耐受发生的分子机制。利用Molecule AnnotationSystem(MAS)系统进一步分析ISK和KLE细胞株接受X线照射后的基因表达谱变化,比较二者辐射诱导基因表达的差异。
     3.采用相对定量荧光实时PCR技术及蛋白印迹的方法对部分差异表达基因或编码的相应蛋白进行mRNA及蛋白水平的验证,以确定芯片检测结果的可靠性。
     【结果】1.ISK细胞株照射后与照射前比较差异表达的基因数目为227条,其中上调的基因共有70条,下调的有157条;KLE细胞株照射前后的差异基因数目为354条,其中上调的基因有121条,下调的233条。功能涉及不同的分子功能分类,参与多个生物学过程,主要涉及到DNA损伤修复、凋亡、生长因子、信号转导、细胞周期及细胞黏附等方面。
     2.用Gene Ontology聚类分析,ISK和KLE比较共筛选出53条差异在两倍以上的基因,其中已知基因48条,EST序列5条。上调表达基因24条,功能主要涉及DNA双链断裂修复、生长因子、凋亡抑制基因等,下调表达基因29条,主要与细胞周期、细胞黏附功能等有关。
     3.相对定量荧光实时PCR技术及蛋白印迹方法对部分差异表达在2倍以上的基因或编码的相应蛋白进行mRNA及蛋白水平的验证,显示实时PCR和蛋白印迹实验结果与芯片结果具有良好的一致性,进一步证实了芯片结果的可靠性。
     【结论】1.子宫内膜癌放射敏感性的分子机制极为复杂,是多基因协同作用的结果,涉及到DNA损伤修复、细胞周期调控、肿瘤细胞凋亡、信号转导、细胞粘附、应激反应等多种遗传学改变。
     2.聚类分析得出的差异表达基因可能与内膜癌放射敏感性密切相关。尤其是对在ISK细胞株中表达上调基因的进一步研究将有助于解释子宫内膜癌放射耐受发生的分子机制,为提高放射治疗的敏感性提供新的靶点及策略。
     第二部分子宫内膜癌肿瘤相关血管内皮细胞的分离提纯、鉴定以及基因表达谱的检测
     【目的】子宫内膜癌是妇科最常见的恶性肿瘤之一,虽然大部分早期患者预后较好,但晚期患者的复发率和死亡率仍较高,因此迫切需要探讨新的治疗途径。肿瘤的生长和转移与血管生成和内皮细胞的活动密切相关,抑制肿瘤血管生成,可减少肿瘤赖以生存的营养供应,从而抑制肿瘤生长。抗血管生成对于治疗和预防肿瘤的转移复发一种非常有前途的方法,但由于缺乏子宫内膜癌血管特异的靶点,因而疗效有限。本部分研究拟通过分离子宫内膜癌及正常子宫内膜中的人子宫内膜血管内皮细胞(human endometrial endothelial cells,HEECs),检测其生物学特性及血管生成相关基因表达的改变,以期发现子宫内膜癌转移过程中,与血管生成密切相关的基因表达的改变,为内膜癌血管生成研究提供新的分子标记和治疗靶点。
     【方法】1.收集病理学证实的新鲜的子宫内膜癌组织和正常内膜组织标本,采用优化的CD31单克隆抗体交联免疫磁珠分选法,对人子宫内膜癌组织及正常内膜组织进行血管内皮细胞分选。对获得的HEECs应用免疫荧光法检测内皮细胞标记分子的表达情况,并用流式细胞术检测内皮细胞纯度。
     2.应用人类全基因组表达谱芯片22K Human Genome Array检测子宫内膜癌肿瘤相关HEECs的基因表达谱的改变,筛选不同于正常HEECs的差异表达基因。并对差异表达基因进行主成分分析、GO分析及Pathway聚类分析,通过NCBI生物医学文献数据库检索基因信息及功能,寻找与子宫内膜癌血管生成相关的基因。应用相对定量荧光实时PCR技术及蛋白印迹方法对部分差异表达在2倍以上的基因或编码的相应蛋白进行mRNA及蛋白水平的验证。
     3.对分离的肿瘤相关HEECs和正常HEECs进行体外培养,分别应用MTT法、划痕实验、Transwell侵袭小室模型、Matrigel胶体外管腔形成实验来比较二者增殖、迁移、侵袭和管腔形成能力。
     【结果】1.分选获得HEECs的纯度均在95%以上。体外培养呈现典型的内皮细胞形态特征,免疫荧光证实此内皮细胞表达CD31、CD34和vWF,而肿瘤上皮标记分子角蛋白8、造血细胞标志物CD14、CD45及平滑肌细胞肌动蛋白抗体检测,均为阴性表达,从而排除了肿瘤细胞、淋巴细胞及组织平滑肌细胞污染的情况。
     2.与正常内膜中的HEECs相比,肿瘤相关HEECs中共有317条基因差异超过2倍以上,其中191条为上调,126条为下调。上调基因主要包括:细胞外基质功能相关的基因,如MMP10、MMP9、LAMB1、SPP1、LOX及LGALS3BP;与肌动蛋白细胞骨架功能有关的基因如CAPG、CAPZA1和TMSB10;细胞周期调节基因MAPRE1、CDC25B、CCNB2等。下调超过5倍的25条基因,其中包括具有潜在抗血管生成和增殖作用的基因如周期素依赖性蛋白激酶抑制剂2A(CDKN2A)、溶质传递家族29-2(SLC29A2);神经生长因子受体相关蛋白1(NGFRAP1);凋亡诱导基因如凋亡伴生斑点像蛋白质包含看板卡(PYCARD)以及细胞黏附分子连环蛋白1(CTNNB1)等。Pathway分析有显著性差异的通路中占主导地位有细胞周期、细胞黏附分子(CAMs)、黏着斑、细胞外基质及受体相互作用通路等。相对定量荧光实时PCR技术及蛋白印迹方法对部分差异表达在2倍以上的基因或编码的相应蛋白进行mRNA及蛋白水平的验证,结果显示实时PCR和蛋白印迹实验结果与芯片结果具有良好的一致性。
     3.在体外培养条件下,肿瘤相关HEECs和正常对照HEECs增殖率无显著性差异(P=0.173)。在同样条件下,肿瘤相关HEECs在划痕实验修复面积与对照相比明显提高(P=0.006),在侵袭实验中穿过膜的细胞数也显著增加(P=0.033)。HEECs在Matrigel胶上排列成多中心连接的血管腔样结构,肿瘤相关HEECs形成的血管腔样结构明显多于正常HEECs(P=0.026)。
     【结论】采用优化的免疫磁珠分选法高纯度地分离纯化出子宫内膜癌和正常内膜组织中的HEECs,分离的内皮细胞可用于内膜癌血管生成的相关研究。HEECs体外培养生物学特性表明:肿瘤相关HEECs迁移、侵袭能力明显增强,与正常内皮细胞相比具有更强的血管生成能力。基因芯片检测结果显示肿瘤相关HEECs与正常HEECs比较基因表达水平存在明显差异,这些差异基因为内膜癌血管生成研究提供了新的分子标记和治疗靶点。
PartⅠIdentification of Differentially Expressed Genes Response to Ionizing Radiation in Human Endometrial Cancer Cell Lines with Distinct Radiosensitivities by Oligonucleotide Microarrays
     ChapterⅠExperimental Study of Radiosensitivity for Human Endometrial Cancer Cell Lines
     OBJECTIVE:Endometrial cancer is one of the most common gynecological malignancies worldwide,which morbidity is increasing year by year.High-risk patients are at risk for local-regional relapse and therefore adjuvant radiotherapy is essential for local control.Although there are two-thirds of patients need adjuvant radiotherapy,quite a few patients recurrent within 5 years.It is generally believed that the efficacy of this therapeutic modality depends on the individual inherent radiation sensitivity.The aim of the present study is to investigate the radiosensitivities of 4 human endometrial cancer cell lines ISK,RL95-2,HHUA and KLE and select two cell lines with different radiosensitivity for later analysis.
     METHODS:Human endometrial cancer cells from the ISK(well differentiated), RL95-2(moderately differentatied),HHUA(well differentiated) and KLE(poorly differentiated) cell lines were irradiated by 6MV X-rays with various doses:0,1,2,3, 4,6,8,10Gy,and plating efficiency was calculated from the postirradiated cells by colony formation assay.Survival curves were determined by 'single hit multi target theory' and radiosensitivity parameters were calculated by GraphPad prism software. Cell cycle distributions and apoptosis after irradiation were analyzed using a FACScan flow cytometer.
     RESULTS:After irradiation,the cells became round in morphology and appeared anoikis comparing with normal cell.Colonies formed after 10 days of incubation.The SF_2 values were 0.572,0.510,0.446,and 0.328,respectively.Significant difference was found between ISK and KLE cells(P=0.017).The cell cycle distribution showed lower fractions of G_2/M phase cells in radioresistant cell line ISK before radiation compared with radiosensitive cell line KLE(13.6%vs.37.0%,P<0.05).Irradiation caused cell cycle arrest at G_2/M phases in both cell lines.12 hours after radiation, higher fractions of G_2/M phase cells were found in ISK compared with KLE(50.0% vs.14.1%,P<0.05).Apoptosis assessment also showed significant elevation in the percentage of early apoptosis cells in KLE cells(P<0.05).
     CONCLUSION:From detection of clonogenic survival curves for the four cell lines exposed by X-ray radiation,we select two cell lines with different radiosensitivity.Cell line KLE was classified as radiation-sensitive,and cell lines ISK were classified as relatively radiation resistant.
     ChapterⅡDifferential Expression Profiling of Genes Response to Ionizing Radiation in Endometrial Cancer Cell Lines
     OBJECTIVE:The efficacy of radiotherapy depends on the individual inherent radiosensitivity which related to gene expression induced by irradiation.Identification of the genes differentially expressed between radiosensitive and radioresistant cancers may provide new insights into the mechanisms underlying clinical radioresistance and improve the efficacy of radiotherapy.The aim of the present study is to examine global expression patterns induced by X-ray irradiation of two cell lines with different radiosensitivities and elucidate the further molecular events involved in radiosensitivity of endometrial cancer.
     METHODS:Microarray experiments were performed using 22K Human genome oligonucleotide microarrays containing 21,329 well-characterized Homo sapiens genes to screen gene expression changes after X-ray exposure in ISK and KLE cells.Differential expression was determined using the combined basis of t-test with P<0.05 and fold changes(either up or down) of≥2-fold.All differentially expressed genes were analyzed using Molecular Annotation System 5.0 which integrates three pathway resources—KEGG,BioCarta and GenMAPP.To show the reproducibility of the microarray analysis,10 genes were selected at random,and these changes were validated by real-time RT-PCR and Western blot.
     RESULTS:227 and 354 genes that exhibited≥2-fold difference were identified in ISK and KLE,respectively.However,only 53 genes showing differences more than double the median expression value between the two groups were defined as radiosensitivity(or radioresistance) related genes.Among these,genes associated with DNA-repair,apoptosis,growth factor,signal transduction,cell cycle and cell adhesion were obviously predominant.The validity of the expression level of 10 randomly selected genes was confirmed by real-time PCR and/or Western blotting.
     CONCLUSION:The molecular mechanisms of radiosensitivity in endometrial cancer are very complex and involve expression changes of multiple genes associated with DNA-repair,cell cycle,apoptosis,signal transduction,cell adhesion and stress reaction.The differential gene expression changes that occur after radiation in the two cell lines will not only provide insight into molecular mechanisms of radioresistance in endometrial carcinoma,but also as a means to find potential targets to achieve further gains in therapeutic benefit.
     PartⅡIsolation,Purificantion and Gene Alterations in Tumor-associated Human Endometrial Endothelial Cells
     OBJECTIVE:Endometrial cancer is one of the most common malignancies of the female genital tract.Although early-stage endometrial cancer can be treated surgically,mortality in women with advanced disease has remained largely unchanged despite improvements in surgical technique,chemotherapy regimens,and radiation protocols.Therefore,novel therapeutic strategies are highly needed.It is now well known that tumor growth and proliferation are associated with angiogenesis. The growth of malignant tumor can be reduced through inhibiting angiogenesis.The therapeutic effect of antiangiogenesis is limited by deficiency of specific target for endometrial cancer.In the present study,we aim to immunopurify endothelial cells from freshly resected specimens of endometrial cancers and normal endometrial tissues and investigate the gene expression profile using microarrays.The growth characteristics and the capacity of immigration,invasiveness,and tube formation of isolated human endometrial endothelial cells(HEECs) are examined additionally.The alterations in gene expression profile in tumor-associated human endometrial endothelial cells(HEECs) may allow opportunities for developing new therapeutic approaches to inhibit angiogenesis in endometrial cancer.
     METHODS:Endothelial cells were isolated from 3 freshly collected endometrial cancer tissues and 3 normal endometria tissues with anti-CD31 conjugated magnetic microbeads.Global expression patterns of purified HEECs were analyzed using 22K Human genome oligonucleotide microarrays.All differentially expressed genes were analyzed using Molecular Annotation System 5.0 which integrates three pathway resources—KEGG,BioCarta and GenMAPP.Real-time RT-PCR and Western blot were used to validate the reproducibility of microarray analysis.We also performed in vitro culture and identified the endothelial origin,as well as observed the functional characteristics in angiogenesis by MTT,Wound Healing Assays,Transwell Cell Invasion Assay and Tube Formation Assay of HEECs from the two different sources.
     RESULTS:Flow cytometry revealed that the immunopurification technique yielded endothelial cell purity of>95%in all samples.HEECs separated from normal and malignant endometrial tissue presented similar appearance in culture medium under phase contrast microscope.Cell cultures presented flattened monolayers,with typical cobblestone morphology.All purified cells were characterized as endothelial cells on the basis of expression of the classical endothelial markers vWF,CD31,and CD34 as shown by immunofluorescence examination.In addition,the cells were negative when stained with antibodies recognizing the epithelial cell markers(keratin 8 and 6A),hematopoietic cells(CD14 and CD45),and smooth muscle cell actin.
     Microarray analyses revealed distinct gene expression pattems and consistent up-regulation of certain endometrial endothelial marker genes across patient samples. 317 genes that exhibited≥2-fold differences,including 191 up-regulated genes and 126 down-regulated one,were identified in tumor-associated HEECs.Several proteins involved in extracellular matrix function,such as MMP10,MMP9,LAMB1,SPP1, LOX,and LGALS3BP,had increased expression in tumor vasculature.Several proteins responsible for actin cytoskeleton organization and regulation,such as CAPG, CAPZA1 and TMSB10,were also up-regulated.MAPRE1,CDC25B and CCNB2, genes correlated with regulation of cell cycle,were also elevated in tumor endothelium.There were 25 genes with≥5-fold decrease in tumor endothelium, including several genes with potential antiangiogenic or antiproliferative roles,such as Cyclin-dependent kinase inhibitor 2A(CDKN2A) and Solute cartier family 29 member 2(SLC29A2),nerve growth factor receptor associated protein 1(NGFRAP1), apoptosis-associated speck-like protein containing a CARD(PYCARD),and cellular adhesion,molecule Catenin beta 1(CTNNB1).
     Pathway analysis showed that pathways of Cell cycle,Cell adhesion molecules (CAMs),focal adhesion,and extracellular matrix(ECM)-receptor interaction were obviously predominant.The results of the microarray analysis were confirmed by quantitative real-time PCR,immunohistochemistry,and/or western blotting.
     After cells were cultured for 24,48,72 and 96 h,there was no significant difference in proliferation rate of tumor-associated HEECs and normal HEECs (P=0.173).Moreover,although the tumor-associated HEECs didn't show faster proliferation than normal HEECs,they exhibited enhanced migration ability (P=0.006),potent invasiveness(P=0.033),and elevated tube formation in vitro (P=0.026).
     CONCLUSION:HEECs can be efficiently isolated from endometrial cancer and normal endometrial tissues by immunomagnetic methods and these cells were verified for angiogenesis research in endometrial cancer.The present study shows that the tumor-associated HEECs exhibited enhanced migration ability,potent invasiveness,and elevated tube formation in vitro.Microarray analysis show that tumor and normal endothelium differ at molecular level,and additional characterization of this gene expression database will provide insights into the angiogenesis of endometrial cancers and might be of great benefit for finding potential therapeutic targets.
引文
1.丰有吉.妇产科学[M].第一版.北京:人民卫生出版社,2003.286.
    2.Eitan R,Saenz CC,Venkatraman ES,et al.Pilot study prospectively evaluating the use of the measurement of preoperative sonographic endometrial thickness postmenopausal patients with endometrial cancer.Menopause,2005,12(1):27-30.
    3.曹泽毅.中华妇产科学[M].第2版.北京:人民卫生出版社,2004.2539.
    4.Purdie DM,Green AC.Epidemiology of endometrial cancer:best practice and research.Clin Obstet Gynaecol,2001,15(1):341-354.
    5.Creasman WT,Odicino F,Maisonneuve P,et al.Carcinoma of the corpus uteri.Int J Gynaecol Obstet,2003,83(Suppl 1):79-118.
    6.ChanJK,LinYK,MonkBJ,etal.Vaginal hysterectomy asprimanry tretmen to endometrial cancer in medical lycompromise women[J].Obstet Gynecol,2001,9(5pt1)B707-711.
    7.Jobsen JJ,Schutter EM,Meerwaldt JH,etal.Treatment results in women with chinicastage and endometrial carcinoma[J]IntJ Gynecol Cancer,2001,11B49-53.
    8.Kong A,Powell M,Blake P.The role of postoperative radiotherapy in carcinoma of the endometrium.Clin Oncol(R Coll Radiol).2008 Aug;20(6):457-62.
    9.R(o|¨)per B,Astner ST,Heydemann-Obradovic A,Thamm R,Jacob V,H(o|¨)lzel D,Schmalfeldt B,Kiechle-Bahat M,H(o|¨)ss C,Molls M.Ten-year data on 138 patients with endometrial carcinoma and postoperative vaginal brachytherapy alone:no need for external-beam radiotherapy in low and intermediate risk patients.Gynecol Oncol.2007 Dec;107(3):541-8.
    10.Anderson PR.The role of radiation therapy in locally advanced endometrial cancer.Semin Radiat Oncol.2006 Jul;16(3):152-7.
    11.Kendrick JE,Huh WK.Treatment considerations in advanced endometrial cancer.Curr Oncol Rep.2007 Nov;9(6):494-8.
    12.Kristensen G,Trope C.Endometrial cancer:the management of high-risk disease.Curr Oncol Rep.2004 Nov;6(6):471-5.
    13. Bolukbasi Y, Demirci S, Ozsaran Z, Yalman D, Hanhan M, Ozsaran A, Dikmen Y, Aras A.Postoperative radiotherapy in intermediate and high-risk Stage I endometrial cancer: analysis of prognostic factors and survival.Eur J Gynaecol Oncol. 2008; 29(5):505-10.
    14. Johnson N, Cornes P. Survival and recurrent disease after postoperative radiotherapy for early endometrial cancer: systematic review and meta-analysis.BJOG. 2007 Nov;114(11):1313-20.
    15. Rossi PJ, Jani AB, Horowitz IR, Johnstone PA.Adjuvant brachytherapy removes survival disadvantage of local disease extension in stage IHC endometrial cancer: a SEER registry analysis.Int J Radiat Oncol Biol Phys. 2008 Jan 1;70(1):134-8.
    16. Creutzberg CL, van Putten WL, Warlam-Rodenhuis CC, van den Bergh AC, de Winter KA, Koper PC, Lybeert ML, Slot A, Lutgens LC, Stenfert Kroese MC, Beerman H, van Lent M; postoperative Radiation Therapy in Endometrial Carcinoma Trial.Outcome of high-risk stage IC, grade 3, compared with stage I endometrial carcinoma patients: the Postoperative Radiation Therapy in Endometrial Carcinoma Trial.J Clin Oncol. 2004 Apr 1;22(7): 1234-41.
    17 . Creutzberg CL, van Putten WL, Koper PC, Lybeert ML, Jobsen JJ, Warlam-Rodenhuis CC, De Winter KA, Lutgens LC, van den Bergh AC, van der Steen-Banasik E, Beerman H, van Lent M; PORTEC Study Group. Survival after relapse in patients with endometrial cancer: results from a randomized trial.Gynecol Oncol. 2003 May;89(2):201-9.
    18. Parthasarathy A, Kapp DS, Cheung MK, Shin JY, Osann K, Chan JK.Adjuvant radiotherapy in incompletely staged IC and II endometrioid uterine cancer.Obstet Gynecol. 2007 Dec;l 10(6): 1237-43.
    19. Rossi PJ, Jani AB, Horowitz IR, Johnstone PA.Adjuvant brachytherapy removes survival disadvantage of local disease extension in stage IHC endometrial cancer: a SEER registry analysis.Int J Radiat Oncol Biol Phys. 2008 Jan 1;70(1):134-8.
    20. Johnson N and Cornes P: Survival and recurrent disease after postoperative radiotherapy for early endometrial cancer: systematic review and meta-analysis. BJOG 114:1313-1320, 2007.
    21.Obermair A,Cheuk R,Pak SC,Perrin L,Nicklin J,Crandon A,Land R,Chennakes SK,Janda M,Tripcony L.Disease-free survival after vaginal vault brachytherapy versus observation for patients with node-negative intermediate-risk endometrial adenocarcinoma.Gynecol Oncol.2008 Sep;110(3):280-5.
    22.Peignaux K,Truc G,Blanchard N,Crehange G,Maingon P.Stage I endometrial carcinoma.Cancer Radiother.2008 Nov;12(6-7):625-9.
    23.ASTEC/EN.5 Study Group,Blake P,Swart AM,Orton J,Kitchener H,Whelan T,Lukka H,Eisenhauer E,Bacon M,Tu D,Parmar MK,Amos C,Murray C,Qian W.Adjuvant external beam radiotherapy in the treatment of endometrial cancer(MRC ASTEC and NCIC CTG EN.5 randomised trials):pooled trial results,systematic review,and meta-analysis.Lancet.2009 Jan 10;373(9658):137-46.
    24.Kendrick JE,Huh WK.Treatment considerations in advanced endometrial cancer.Curr Oncol Rep.2007 Nov;9(6):494-8.
    Johnson N,Cornes P.Survival and recurrent disease after postoperative radiotherapy for early endometrial cancer:systematic review and meta-analysis.BJOG.2007 Nov;114(11):1313-20.
    25.Greven K,Winter K,Underhill K,Fontenesci J,Cooper J,Burke T;Radiation Therapy Ontology Group.Preliminary analysis of RTOG 9708:Adjuvant postoperative radiotherapy combined with cisplatin/paclitaxel chemotherapy after surgery for patients with high-risk endometrial cancer.Int J Radiat Oncol Biol Phys.2004 May 1;59(1):168-73.
    26.Rantanen V,Grenman S,Kulmala J,Salmi T and Grenman R:Radiation sensitivity of endometrial carcinoma in vitro.Gynecol Oncol 44:217-222,1992.
    27.郭万峰,丁桂荣,韩良辅.应用生物标志对肿瘤辐射敏感性的研究[J].国外医学放射核医学分册,2001,25(4):185-188.
    28.Vaz AF,Pinto-Neto AM,Conde DM,Costa-Paiva L,Morais SS,Esteves SB.Quality of life and acute toxicity of radiotherapy in women with gynecologic cancer:a prospective longitudinal study.Arch Gynecol Obstet.2008 Sep;278(3):215-23.
    29. Mclaughlin N,AnnabiB, BouzeghraneM,et al.The Survivin-mediate radioresistant phenotype of glioblastomas is regulated by RhoA and inhibited by the green tea polyphenol(-)-epigallocatechin-3-gallate[J]. Brain Res, 2006, 1071(1): 1-9.
    30. Bao S,Wu Q,Mclendon RE,et al.Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J].Nature, 2006, 444(7120): 756-760.
    31. Saydam O, GlauserDL, Heid I, etal. Herpes simplex virus amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth ofhuman glioma cell in vivo [J].Molecular Therapy, 2005,12(5): 803-812.
    32. Lammering G, Hewit TH, HolmesM, et al. Inhibition of the typeIIIepidermal growth factor receptor variantmutant receptor by dominant-negative EGFR-CD533 enhances malignant glioma cell radiosensitivity [J]. Clin CancerRes, 2004, 10(19): 6732-6743.
    33. Nakamura JL, KarlssonA, ArvoldND, etal.PKB/Aktmediates radiosensitization by the signaling inhibitorLY294002 in humanmalignantgliomas [J]. JNeuroOnco,l 2005,71(3):215-222.
    34. ShonoT, Tofilon PJ, SchaeferTS, etal. Apoptosis induced by adenovirus-mediated P53 gene transfer in human glioma correlates with site-specificphorylation [J].CancerRes, 2002, 62(4): 1068-1076.
    35. RoyK, WangL, MakrigiorgosGM, et al.Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity [J].Biochem BiophysResCommun, 2006, 344(3): 821-826.
    36. Golding SE, Rosenberg E, KhalilA, et al. Double strand break repair by homologous recombination is regulated by cell cycle-independent signaling via ATM in human glioma cells[J]. J Biol Chem, 2004,279(15): 15402-15410.
    37 . Kim BY, Kim KA,Kwon O,et al. NF-kappa B inhibition radiosensitizesKi-Ras-transformed cells to ionizing radiation[J]. Carcinogenesis, 2005, 26(8): 1395-1403.
    38.Rantanen V,Grenman S,Kurvinen K,Hietanen S,Raitanen M,Syrj(a|¨)nen S.p53mutations and presence of HPV DNA do not correlate with radiosensitivity of gynecological cancer cell lines.Gynecol Oncol.1998 Dec;71(3):352-8.
    39.De Ruyck K,Van Eijkeren M,Claes K,Bather K,Vral A,De Neve W,Thierens H.TGFbetal polymorphisms and late clinical radiosensitivity in patients treated for gynecologic tumors.Int J Radiat Oncol Biol Phys.2006 Jul 15;65(4):1240-8.
    40.De Ruyck K,Wilding CS,Van Eijkeren M,Morthier R,Tawn EJ,Thierens H.Microsatellite polymorphisms in DNA repair genes XRCC1,XRCC3 and XRCC5in patients with gynecological tumors:association with late clinical radiosensitivity and cancer incidence.Radiat Res.2005 Sep;164(3):237-44.
    41.Duggan DJ,Bittner M,Chen YD,Meltzer P,and Trent JM,Expression profiling using cDNA microarrays,Nat.Genet.,1999,21 10-4.
    42.Smid-Koopman E,Blok LJ,Chadha-Ajwani S et al.Gene expression profiles of human endometrial cancer Samples using a cDNA expression array technique:assessment of an analysis method.Br J Cancer,2000,83(2):246-251.
    43.Smid-Koopman E,Blok LJ,Helmerhorst TJ,Chadha-Ajwani S,Burger CW,Brinkmartn AO,Huikeshoven FJ.G ene expression profiling in human endometrial cancer tissue samples:utility and diagnostic value.Gynecol Oncol.2004May;93(2):292-300.
    44.孟元光,魏丽惠,王建六.应用cDNA微阵列技术检测子宫内膜癌组织中基因表达图谱的变化[J].中华医学杂志,2001,81:665-668.
    45.周怀君,石一复,李娟清.子宫内膜腺癌基因表达谱的初步研究[J].中华肿瘤杂志,2003.25:464-467.
    46.Wong YF,Cheung TH,Lo KW,Yim SF,Siu NS,Chan SC,et al.Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling.Oncogene.2007 Mar 22;26(13),:1971-82.
    47.Cai B,Liu L,Xi W,Zhu YP,Lu GZ,Yang YX,Wan XP.Comparison of the molecular classification with FIGO stage and histological grade on endometrial cancer.Eur J Gynaecol Oncol.2007;28(6):451-60.
    48.万小平,蔡斌,刘玲,席晓薇,杨懿霞.不同期别子宫内膜癌组织中差异表达基因的层次聚类分析[J].中华妇产科杂志,2006,41(1):38-42.
    49.张萍,周志国,高献书等.中华放射医学与防护杂,2006,26(6):266。
    50.Higo M,Uzawa K,Kouzu Y,Bukawa H,Nimura Y,Seki N,Tanzawa H.Identification of candidate radioresistant genes in human squamous cell carcinoma cells through gene expression analysis using DNA microarrays.Oncol Rep.2005Nov;14(5):1293-8.
    51.Guo WF,Lin RX,Huang J,et a.l Identification of differentially expressed genes contributing to radioresistance in lung cancer cells using microarray analysis[J].RadiatRes,2005,164(1):27-35.
    52.OtomoT,HishiiM,AraiH,et a.lMicroarray analysis of temporal gene responses to ionizing radiation in two glioblastoma cell lines:up-regulation ofDNA repairgenes[J].JRadiatRes(Tokyo),2004,45(1):53-60.
    53.LiZ,XiaL,LeeLM,eta.l Effectorgenesaltered inMCF-7 human breast cancer cells after exposure to fractionated ionizing radiation[J].Radiat Res,2001,155(4):543-553.
    54.ChinnaiyanP,HuangS,VallabhaneniG,etal.Mechanismsofenhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva)[J].CancerRes,2005,65(8):3328-3335.
    55.FukudaK,SakakuraC,MiyagawaK,et a.l Differential gene expression profiles of radioresistant oesophageal cancer cell lines established by continuous fractionated irradiation[J].BrJCancer,2004,91(8):1543-1550.
    56.Ogawa R,Ishiguro H,Kuwabara Y,et al:Identification of candidate genes involved in the radiosensitivity of esophageal cancer cells by microarray analysis.Dis Esophagus 21:288-297,2008.
    57.Watanabe T,Komuro Y,Kiyomatsu T,et al:Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles.Cancer Res 66:3370-3374,2006.
    58.Ojima E,Inoue Y,Miki C,Mori M and Kusunoki M:Effectiveness of gene expression profiling for response prediction of rectal cancer to preoperative radiotherapy.J Gastroenterol 42:730-736,2007.
    59.Wong YF,Sahota DS,Cheung TH,et al:Gene expression pattern associated with radiotherapy sensitivity in cervical cancer.Cancer J 12:189-193,2006.
    60.Liu SS,Cheung AN,NganHY.Differential gene expression in cervical cancer cell lines before and after ionizing radiation[J].Int JOnco,l 2003,22(5):1091-1099.
    61.Kitahara O,KatagiriT,Tsunoda T,et a.l Classification of sensitivity or resistance ofcervicalcancers to ionizing radiation according to expression profiles of62 genes selected by cDNA microarray analysis[J].Neoplasia,2002,4(4):295-303.
    63.Ghadimi BM,GradeM,DifilippantonioMJ,et a.l Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy[J].JClinOnco,l 2005,23(9):1826-1838.
    64.Otomo T,Hishii M,Arai H,et al.Microarray analysis of temporal gene responses to ionizing radiation in two glioblastoma cell lines:up-regulation of DNA repair genes[J].J Radiat Res(Tokyo),2004,45(1):53-60.
    65.沈瑜,糜福顺.肿瘤放射生物学[M].北京:中国医药科技大学,2001:9.
    66.梁克.放射治疗与细胞凋亡[A].沈瑜,糜福顺.肿瘤放射生物学[C].北京:中国医药科技出版社.2001:420-425.
    67.Liu Z Z,Huang W Y,Li X S,et al.Prediction value of radiosensitivity of hepatocarcinoma cells for apoptosis and micronucleus assay[J].World J Gastroenterol,2005,11(44):7036-7039.
    68.Fabbro M,Savage K,Hobson K,et al.BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage[J].J Biol Chem,2004,279(30):31251-31258.
    69.Essmann F,Engels I H,Totzke G,et al.Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event[J].Cancer Res,2004,64(19):7065-7072.
    70.Livak KJ and Schmittgen TD,Analysis of relative gene expression data using real-time quantitative PCR and the 2~(-△△Ct) method,Methods,2001,25(4):402-8.
    71. Ogawa R, Ishiguro H, Kuwabara Y, et al: Identification of candidate genes involved in the radiosensitivity of esophageal cancer cells by microarray analysis. Dis Esophagus 21: 288-297, 2008.
    72. Chang JT, Chan SH, Lin CY, et al: Differentially expressed genes in radioresistant nasopharyngeal cancer cells: gp96 and GDF15. Mol Cancer Ther 6: 2271-2279, 2007.
    73. Ojima E, Inoue Y, Miki C, Mori M and Kusunoki M: Effectiveness of gene expression profiling for response prediction of rectal cancer to preoperative radiotherapy. J Gastroenterol 42: 730-736, 2007.
    74. Aravindan N, Madhusoodhanan R, Natarajan M and Herman TS: Alteration of apoptotic signaling molecules as a function of time after radiation in human neuroblastoma cells. Mol Cell Biochem 310: 167-179,2008.
    75. Chinnaiyan P, Huang S, Vallabhaneni G, et al: Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res 65: 3328-3335,2005.
    76. Kitahara O, Katagiri T, Tsunoda T, Harima Y and Nakamura Y: Classification of sensitivity or resistance of cervical cancers to ionizing radiation according to expression profiles of 62 genes selected by cDNA microarray analysis. Neoplasia 4: 295-303, 2002.
    77. Mu Z,Hachem P,Agarawal S,et al.Int J Radiat Oncol Biol Phys,2004, 58(2): 336-343. 6 Perry M E.Mol Cancer Res,2004,2(1):9-19.
    78.郭万峰,林汝仙,黄坚,等.中华放射医学与防护杂志,2005,25(2):107-110.
    79. Cao C, Shinohara ET, Niermann KJ, Donnelly EF, Chen X, Hallahan DE and Lu B: Murine double minute 2 as a therapeutic target for radiation sensitization of lung cancer. Mol Cancer Ther 4: 1137-1145,2005.
    80. Dilla T, Romero J, Sanstisteban P and Velasco JA: The mdm2 proto-oncogene sensitizes human medullary thyroid carcinoma cells to ionizing radiation. Oncogene 15:2376-2386,2002.
    81. Deans B, Griffin CS, ORegan P, et al. Homologous recombination deficiency leads to profound genetic instability in cells derived from XRCC2knockout mice [J]. Cancer Res, 2003, 63: 8181-8187.
    82. Yokoyama H, Sarai N, Kagawa W, et al. Preferential binding to branched DNA strands and strandannealing activity of the human Rad51B,Rad51C, Rad51D and XRCC2 protein complex [J] . Nucleic Acids Res, 2004,32(8): 2556-2565.
    83. Mohindra A, Bolderson E, Stone J, et al. A tumourderived mutant allele of XRCC2 preferentially suppresses homologous recombination at DNA replication forks [J] . Hum Mol Genet, 2004, 139(2): 203-212.
    84. Griffin CS, Simpson PJ , Wilson CR, et al. Mammalian recombination repair genes XRCC 2 and XRCC3 promote correct chromosome segregation [J] . Nat Cell Biol, 2000,2 (10) :757-761.
    85. Nakayama K, Hara T, Hibi M, er al. A novel oncostatin M-inducible gene OIG37 forms a gene family with MyD118 and GADD45 and negatively regulates cell growth[J]. J Biol Chem,1999,274(35):24766-72.
    86. Zhang W, Bae I, Krishnaraju K, et al.CR6:A third member in the MyD118 and GADD45 gene family which functions in negative growth control[J]. Oncogene, 1999, 18(35):4899-907.
    87. Pagp S, Zazzeroni F, Bubici C, et al.Gadd45 beta mediates the NF-kappa B suppression of JNK signaling by targeting MKK7/JNKK2 [J]. Nat Cell Biol,2004,6(2) 146-153.
    88. Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ Jr, Liebermann DA, Bottinger EP, Roberts AB. Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem. 2003 Oct 31;278(44):43001-7.
    89. Bringold F, Serrano M. Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol. 2000 May;35(3):317-29.
    90. Lu B, Ferrandino AF and Flavell RA: Gadd45beta is important for perpetuating cognate and inflammatory signals in T cells. Nat Immunol 5: 38-44,2004.
    91. Hassan KA, Ang KK, El-Naggar AK, et al: Cyclin B1 Overexpression and Resistance to Radiotherapy in Head and Neck Squamous Cell Carcinoma. Cancer Res 62:6414-6417,2002.
    92. Yoo J, Ghiassi M, Jirmanova L, et al.Transforming growth factor-P-induced apoptosis is mediated by Smad-dependent expression GADD45β through p53 actication [J]. J Biol Chem, 2003, 278(44):43001-7.
    93. Wang T, Hu YC, Dong S, et al: Co-activation of ERK, NF-kappaB, and GADD45beta in response to ionizing radiation. J Biol Chem 280: 12593-12601, 2005.
    94. Soni DV, Sramkoski RM, Lam M, Stefan T, Jacobberger JW. Cyclin B1 is rate limiting but not essential for mitotic entry and progression in mammalian somatic cells. Cell Cycle. 2008 May 1;7(9):1285-300.
    95. Lindqvist A, van Zon W, Karlsson Rosenthal C, Wolthuis RM. Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression. PLoS Biol. 2007 May;5(5):el23.
    96. Blais A, Monte D, Pouliot F, Labrie C. Regulation of the human cyclin-dependent kinase inhibitor p18INK4c by the transcription factors E2F1 and Sp1. J Biol Chem. 2002 Aug 30;277(35):31679-93.
    97. van Veelen W, Klompmaker R, Gloerich M, van Gasteren CJ, Kalkhoven E, Berger R, Lips CJ, Medema RH, Hoppener JW, Acton DS. P18 is a tumor suppressor gene involved in human medullary thyroid carcinoma and pheochromocytoma development. Int J Cancer. 2009 Jan 15;124(2):339-45.
    98. Brondani Da Rocha A, Regner A, Grivicich I, et al: Radioresistance is associated to increased Hsp70 content in human glioblastoma cell lines. Int J Oncol 25: 777-785, 2004.
    99. Kabakov AE, Malyutina YV and Latchman DS. Hsf1 -mediated stress response can transiently enhance cellular radioresistance. Radiat Res 165: 410-423, 2006.
    100. Deininger MH, Meyermann R, Trautmann K, Duffner F, Grote EH, Wickboldt J and Schluesener HJ: Heme oxygenase (HO)-l expressing macrophages/microglial cells accumulate during oligodendroglioma progression. Brain Res 882: 1-8, 2000.
    101. Berberat PO, Dambrauskas Z, Gulbinas A, et al: Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res 11: 3790-3798,2005.
    102. Sunamura M, Duda DG, Ghattas MH, et al. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis 6: 15-24,2003.
    103. Burke C, Foley M, Lenehan P, Kelehan P, Flannelly G. Early stage endometrial carcinoma-a study of management and outcome. Ir Med J. 2007 Nov-Dec; 100(10):621-3.
    104. Zusterzeel PL, Bekkers RL, Hendriks JC, Neesham DN, Rome RM, Quinn MA. Prognostic factors for recurrence in patients with FIGO stage I and II, intermediate or high risk endometrial cancer. Acta Obstet Gynecol Scand. 2008;87(2):240-6.
    105. Ayhan A, Taskiran C, Celik C, Yuce K, Kucukali T. The influence of cytoreductive surgery on survival and morbidity in stage IVB endometrial cancer. Int J Gynecol Cancer. 2002 Sep-Oct;12(5):448-53.
    106. Eto M, Kodama S, Nomi N, Uemura N, and Suzuki M, Clinical significance of elevated osteopontin levels in head and neck cancer patients, Auris Nasus Larynx, 2007, 34 (3): 343-6.
    107. Hu Z, Lin DM, Yuan JS, Xiao T, Zhang HS, Sun WY, Han NJ, Ma Y, Di XB, Gao MX, Ma JF, Zhang JH, Cheng SJ, and Gao YN, Overexpression of osteopontin is associated with more aggressive phenotypes in human non-small cell lung cancer, Clin. Cancer Res., 2005,11(13): 4646-52.
    108. Kerbel R and Folkman J, Clinical translation of angiogenesis inhibitors, Nat. Rev. Cancer, 2002,2 (10): 727-39.
    109. Kerbel RS, A cancer therapy resistant to resistance, Nature, 1997, 390 (6658): 335-6.
    110. Morikawa S, Baluk P, Kaidoh T, et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002; 160:985-1000.
    111. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 2003;163:1801-15.
    112. Madden SL, Cook BP, Nacht M, et al. Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol. 2004;165(2):601-8.
    113. Lu C, Bonome T, Li Y, Kamat AA, Han LY, Schmandt R, Coleman RL, Gershenson DM, Jaffe RB, Birrer MJ, Sood AK. Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res. 2007 Feb 15;67(4):1757-68.
    114. Ruoslahti E and Rajotte D, An address system in the vasculature of normal tissues and tumors, Annu. Rev. Immunol., 2000,18 (1): 813-27.
    115. Croix BS, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, and Kinzler KW, Genes expressed in human tumor endothelium, Science, 2000,289 (5482): 1197-202.
    116. Oh P, Li Y, Yu JY, Durr E, Krasinska KM, Carver LA, Testa JE, and Schnitzer JE, Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy, Nature, 2004,429 (6992): 629-35.
    117. Essler M and Ruoslahti E, Molecular specialization of breast vasculature: A breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature, Proc. Natl. Acad. Sci. USA, 2002, 99 (4): 2252-7.
    118. Baccala A, Sercia L, Li JB, Heston W, and Zhou M, Expression of prostate-specific membrane antigen in tumor-associated neovasculature of renal neoplasms, Urology, 2007, 70 385-90.
    119. Okazaki I, Wada N, Nakano M, Saito A, Takasaki K, Doi M, Kameyama K, Otani Y, Kubochi K, Niioka M, Watanabe T, and Maruyama K, Difference in gene expression for matrix metalloproteinase-l between early and advanced hepatocellular carcinomas, Hepatology, 1997,25 (3): 580-4.
    120. Borlak J, Meier T, Halter R, Spanel R, and Spanel-Borowski K, Epidermal growth factor-induced hepatocellular carcinoma: gene expression profiles in precursor lesions, early stage and solitary tumours, Oncogene, 2005, 24 (11): 1809-19.
    121. Filipenko NR, MacLeod TJ, Yoon C-S, and Waisman DM, Annexin A2 is a novel RNA-binding protein, J. Biol. Chem., 2004, 279 (10): 8723-31.
    122. Wu X, Zeng H, Zhang X, Zhao Y, Sha H, Ge X, Zhang M, Gao X, and Xu Q, Phosphatase of Regenerating Liver-3 Promotes Motility and Metastasis of Mouse Melanoma Cells, Am. J. Pathol. 2004 164: 2039-2054., 2004,164 (6): 2039-54.
    123. Tiniakos DG, Yu H, and Liapis H, Osteopontin expression in ovarian carcinomas and tumors of low malignant potential (LMP), Hum. Pathol., 1998,29 (11): 1250-4.
    124. Mirza M, Shaughnessy E, Hurley JK, Vanpatten KA, Pestano GA, He B, and Weber GF, Osteopontin-c is a selective marker of breast cancer, Int. J. Cancer, 2008, 122 889-97.
    125. Hu Z, Lin DM, Yuan JS, Xiao T, Zhang HS, Sun WY, Han NJ, Ma Y, Di XB, Gao MX, Ma JF, Zhang JH, Cheng SJ, and Gao YN, Overexpression of osteopontin is associated with more aggressive phenotypes in human non-small cell lung cancer, Clin. Cancer Res., 2005, 11(13): 4646-52.
    126. Shijubo N, Uede T, Kon S, Nagata M, Abe S. Vascular endothelial growth factor and osteopontin in tumor biology. Crit Rev Oncog. 2000; 11(2): 135-46.
    127. Takano S, Tsuboi K, Tomono Y, Mitsui Y, Nose T. Tissue factor, osteopontin, alphavbeta3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression. Br J Cancer. 2000 Jun;82(12): 1967-73.
    128. Ishiwata T, Takahashi K, Shimanuki Y, Ohashi R, Cui R, Takahashi F, Shimizu K, Miura K, and Fukuchi Y, Serum tenascin-C as a potential predictive marker of angiogenesis in non-small cell lung cancer, Anticancer Res., 2005, 25 (1B): 489-95.
    129. Cheriyath V and Hussein MA, Osteopontin, angiogenesis and multiple myeloma, Leukemia, 2005,19 (12): 2203-5.
    130. Leali D, Dell'Era P, Stabile H, Sennino B, Chambers AF, Naldini A, Sozzani S, Nico B, Ribatti D, Presta M. Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. J Immunol. 2003 Jul 15;171(2):1085-93.
    131 . Fujita M, Khazenzon NM, Bose S, et al. Overexpression of beta1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases. Breast Cancer Res. 2005; 7(4): 166-7.
    132. Ljubimova JY, Fujita M, Khazenzon NM, Ljubimov AV, Black KL. Changes in laminin isoforms associated with brain tumor invasion and angiogenesis. Front Biosci. 2006; 11:81-8.
    133. Zeng Q, Si X, Horstmann H, Xu Y, Hong W, Pallen CJ. Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome, J. Biol. Chem., 2000,275 (28): 21444-52.
    134. Guo K, Li J, Tang JP, Koh V, Gan BQ, and Zeng Q, Catalytic domain of PRL-3 plays an essential role in tumor metastasis, formation of PRL-3 tumors inside the blood vessel, Cancer Biol. Ther., 2004, 3 (10): 945-51.
    135. Parker BS, Argani P, Cook BP, Liangfeng H, Chartrand SD, Zhang M, Saha S, Bardelli A, Jiang Y, St Martin TB, Nacht M, Teicher BA, Klinger KW, Sukumar S, Madden SL. Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res. 2004 Nov l;64(21):7857-66. Erratum in: Cancer Res. 2004 Dec 1;64(23):8794.
    136. Riddick AC, Shukla CJ, Pennington CJ, et al. Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer. 2005; 92(12):2171-80.
    137. Aung PP, Oue N, Mitani Y, et al. Systematic search for gastric cancer-specific genes based on SAGE data: melanoma inhibitory activity and matrix metalloproteinase-10 are novel prognostic factors in patients with gastric cancer. Oncogene. 2006; 25(17):2546-57.
    138. Van Themsche C, Alain T, Kossakowska AE, Urbanski S, Potworowski EF, St-Pierre Y. Stromelysin-2 (matrix metalloproteinase 10) is inducible in lymphoma cells and accelerates the growth of lymphoid tumors in vivo. J Immunol. 2004; 173(6):3605-11.
    139 . Lin TS, Chiou SH, Wang LS, et al. Expression spectra of matrix metalloproteinases in metastatic non-small cell lung cancer. Oncol Rep. 2004 ; 12(4): 717-23.
    140. Athanassiadou P, Athanassiades P, Grapsa D, et al. The prognostic value of PTEN, p53, and beta-catenin in endometrial carcinoma: a prospective immunocytochemical study. Int J Gynecol Cancer. 2007; 17(3):697-704.
    141. Scholten AN, Aliredjo R, Creutzberg CL, Smit VT. Combined E-cadherin, alpha-catenin, and beta-catenin expression is a favorable prognostic factor in endometrial carcinoma. Int J Gynecol Cancer. 2006; 16(3): 1379-85.
    142. Kirschmann DA, Seftor EA, Fong SF, et al. A molecular role for lysyl Oxidase in breast cancer invasion. Cancer Res. 2002; 62(15):4478-83.
    1. Shaeffer DT and Randall ME: Adjuvant radiotherapy in endometrial carcinoma. Oncologist 10: 623-631, 2005.
    2. Johnson N and Cornes P: Survival and recurrent disease after postoperative radiotherapy for early endometrial cancer: systematic review and meta-analysis. BJOG 114:1313-1320, 2007.
    3. Rantanen V, Grenman S, Kulmala J, Salmi T and Grenman R: Radiation sensitivity of endometrial carcinoma in vitro. Gynecol Oncol 44: 217-222,1992.
    4. Ogawa R, Ishiguro H, Kuwabara Y, et al: Identification of candidate genes involved in the radiosensitivity of esophageal cancer cells by microarray analysis. Dis Esophagus 21: 288-297, 2008.
    5. Watanabe T, Komuro Y, Kiyomatsu T, et al: Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res 66: 3370-3374,2006.
    6. Ojima E, Inoue Y, Miki C, Mori M and Kusunoki M: Effectiveness of gene expression profiling for response prediction of rectal cancer to preoperative radiotherapy. J Gastroenterol 42: 730-736, 2007.
    7. Wong YF, Sahota DS, Cheung TH, et al: Gene expression pattern associated with radiotherapy sensitivity in cervical cancer. Cancer J 12: 189-193, 2006.
    8. Guo Y, Guo H, Zhang L, et al: Genomic analysis of anti-hepatitis B virus (HBV) activity by small interfering RNA and lamivudine in stable HBV-producing cells. J Virol 79: 14392-14403,2005.
    9. Ogawa R, Ishiguro H, Kuwabara Y, et al: Identification of candidate genes involved in the radiosensitivity of esophageal cancer cells by microarray analysis. Dis Esophagus 21: 288-297, 2008.
    10. Chang JT, Chan SH, Lin CY, et al: Differentially expressed genes in radioresistant nasopharyngeal cancer cells: gp96 and GDF15. Mol Cancer Ther 6: 2271-2279, 2007.
    11. Ojima E, Inoue Y, Miki C, Mori M and Kusunoki M: Effectiveness of gene expression profiling for response prediction of rectal cancer to preoperative radiotherapy. J Gastroenterol 42: 730-736, 2007.
    12. Aravindan N, Madhusoodhanan R, Natarajan M and Herman TS: Alteration of apoptotic signaling molecules as a function of time after radiation in human neuroblastoma cells. Mol Cell Biochem 310: 167-179,2008.
    13. Guo WF, Lin RX, Huang J, Zhou Z, Yang J, Guo GZ and Wang SQ: Identification of differentially expressed genes contributing to radioresistance in lung cancer cells using microarray analysis. Radiat Res 164: 27-35,2005.
    14. Chinnaiyan P, Huang S, Vallabhaneni G, et al: Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res 65: 3328-3335,2005.
    15. Kitahara O, Katagiri T, Tsunoda T, Harima Y and Nakamura Y: Classification of sensitivity or resistance of cervical cancers to ionizing radiation according to expression profiles of 62 genes selected by cDNA microarray analysis. Neoplasia 4: 295-303,2002.
    16. Deininger MH, Meyermann R, Trautmann K, Duffher F, Grote EH, Wickboldt J and Schluesener HJ: Heme oxygenase (HO)-1 expressing macrophages/microglial cells accumulate during oligodendroglioma progression. Brain Res 882:1-8,2000.
    17. Berberat PO, Dambrauskas Z, Gulbinas A, et al: Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res 11: 3790-3798, 2005.
    18. Sunamura M, Duda DG, Ghattas MH, et al. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis 6: 15-24,2003.
    19. Woods DB and Vousden KH: Regulation of p53 function. Exp Cell Res 1: 56-66, 2001.
    20. Dilla T, Romero J, Sanstisteban P and Velasco JA: The mdm2 proto-oncogene sensitizes human medullary thyroid carcinoma cells to ionizing radiation. Oncogene 15:2376-2386,2002.
    21. Cao C, Shinohara ET, Niermann KJ, Donnelly EF, Chen X, Hallahan DE and Lu B: Murine double minute 2 as a therapeutic target for radiation sensitization of lung cancer. Mol Cancer Ther 4: 1137-1145,2005.
    22. Brondani Da Rocha A, Regner A, Grivicich I, et al: Radioresistance is associated to increased Hsp70 content in human glioblastoma cell lines. Int J Oncol 25: 777-785, 2004.
    23. Kabakov AE, Malyutina YV and Latchman DS. Hsf1-mediated stress response can transiently enhance cellular radioresistance. Radiat Res 165: 410-423, 2006.
    24. Lu B, Ferrandino AF and Flavell RA: Gadd45beta is important for perpetuating cognate and inflammatory signals in T cells. Nat Immunol 5: 38-44,2004.
    25. Hassan KA, Ang KK, El-Naggar AK, et al: Cyclin B1 Overexpression and Resistance to Radiotherapy in Head and Neck Squamous Cell Carcinoma. Cancer Res 62:6414-6417,2002.
    26. Wang T, Hu YC, Dong S, et al: Co-activation of ERK, NF-kappaB, and GADD45beta in response to ionizing radiation. J Biol Chem 280: 12593-12601, 2005.
    1.Burke C, Foley M, Lenehan P, Kelehan P, Flannelly G. Early stage endometrial carcinoma-a study of management and outcome. Ir Med J. 2007 Nov-Dec; 100(10):621-3.
    2. Zusterzeel PL, Bekkers RL, Hendriks JC, Neesham DN, Rome RM, Quinn MA. Prognostic factors for recurrence in patients with FIGO stage I and II, intermediate or high risk endometrial cancer. Acta Obstet Gynecol Scand. 2008;87(2):240-6.
    3. Ayhan A, Taskiran C, Celik C, Yuce K, Kucukali T. The influence of cytoreductive surgery on survival and morbidity in stage IVB endometrial cancer. Int J Gynecol Cancer. 2002 Sep-Oct;12(5):448-53.
    4. Sivridis E. Angiogenesis and endometrial cancer. Anticancer Res. 2001 Nov-Dec;21(6B):4383-8.
    5. Ozbudak IH, Karaveli S, Simsek T, Erdogan G, Pestereli E. Neoangiogenesis and expression of hypoxia-inducible factor 1alpha, vascular endothelial growth factor, and glucose transporter-1 in endometrioid type endometrium adenocarcinomas. Gynecol Oncol. 2008 Mar;108(3):603-8.
    6. Kamat AA, Merritt WM, Coffey D, Lin YG, Patel PR, Broaddus R, Nugent E, Han LY, Landen CN Jr, Spannuth WA, Lu C, Coleman RL, Gershenson DM, Sood AK. Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clin Cancer Res. 2007 15;13(24):7487-95.
    7. Morikawa S, Baluk P, Kaidoh T, et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002; 160:985-1000.
    8. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 2003;163:1801-15.
    9. Parker BS, Argani P, Cook BP, Liangfeng H, Chartrand SD, Zhang M, Saha S, Bardelli A, Jiang Y, St Martin TB, Nacht M, Teicher BA, Klinger KW, Sukumar S, Madden SL. Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res. 2004 Nov l;64(21):7857-66. Erratum in: Cancer Res. 2004 Dec 1;64(23):8794.
    10. St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science 2000;289:1197-202.
    11. Madden SL, Cook BP, Nacht M, et al. Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol. 2004;165(2):601-8.
    12. Lu C, Bonome T, Li Y, Kamat AA, Han LY, Schmandt R, Coleman RL, Gershenson DM, Jaffe RB, Birrer MJ, Sood AK. Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res. 2007 Feb 15;67(4):1757-68.
    13. G. Sha, D. Wu, L. Zhang, X. Chen, M. Lei, H. Sun, S. Lin and J. Lang. Differentially expressed genes in human endometrial endothelial cells derived from eutopic endometrium of patients with endometriosis compared with those from patients without endometriosis. Human Reproduction 2007 22(12):3159-3169.
    14. Langley RR, Ramirez KM, Tsan RZ, Van Arsdall M, Nilsson MB, Fidler IJ.Tissue-specific microvascular endothelial cell lines from H-2K(b)-tsA58 mice for studies of angiogenesis and metastasis.Cancer Res. 2003 Jun 1;63(11):2971-6.
    15. Maxwell GL, Chandramouli GV, Dainty L, Litzi TJ, Berchuck A, Barrett JC, Risinger JI. Microarray analysis of endometrial carcinomas and mixed mullerian rumors reveals distinct gene expression profiles associated with different histologic types of uterine cancer. Clin Cancer Res. 2005 Jun 1; 11(11):4056-66.
    16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(~(-△△C(T))) method. Methods 2001;25:402-8.
    17. Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics (2005) 21:3787-3793.
    18. Shijubo N, Uede T, Kon S, Nagata M, Abe S. Vascular endothelial growth factor and osteopontin in tumor biology. Crit Rev Oncog. 2000; 11(2): 135-46.
    19. Takano S, Tsuboi K, Tomono Y, Mitsui Y, Nose T. Tissue factor, osteopontin, alphavbeta3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression. Br J Cancer. 2000 Jun;82(12): 1967-73.
    20. Leali D, Dell'Era P, Stabile H, Sennino B, Chambers AF, Naldini A, Sozzani S, Nico B, Ribatti D, Presta M. Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. J Immunol. 2003 Jul 15;171(2):1085-93.
    21. Fujita M, Khazenzon NM, Bose S, Sekiguchi K, Sasaki T, Carter WG, Ljubimov AV, Black KL, Ljubimova JY. Overexpression of beta1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases. Breast Cancer Res. 2005;7(4):166-7.
    22. Ljubimova JY, Fujita M, Khazenzon NM, Ljubimov AV, Black KL. Changes in laminin isoforms associated with brain tumor invasion and angiogenesis. Front Biosci. 2006 Jan 1;11:81-8.
    23. Riddick AC, Shukla CJ, Pennington CJ, Bass R, Nuttall RK, Hogan A, Sethia KK, Ellis V, Collins AT, Maitland NJ, Ball RY, Edwards DR. Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer. 2005 Jun 20;92(12):2171-80.
    24. Aung PP, Oue N, Mitani Y, Nakayama H, Yoshida K, Noguchi T, Bosserhoff AK, Yasui W. Systematic search for gastric cancer-specific genes based on SAGE data: melanoma inhibitory activity and matrix metalloproteinase-10 are novel prognostic factors in patients with gastric cancer. Oncogene. 2006 Apr 20;25(17):2546-57.
    25. Van Themsche C, Alain T, Kossakowska AE, Urbanski S, Potworowski EF, St-Pierre Y. Stromelysin-2 (matrix metalloproteinase 10) is inducible in lymphoma cells and accelerates the growth of lymphoid tumors in vivo. J Immunol. 2004 Sep 15;173(6):3605-11.
    26. Lin TS, Chiou SH, Wang LS, Huang HH, Chiang SF, Shih AY, Chen YL, Chen CY, Hsu CP, Hsu NY, Chou MC, Kuo SJ, Chow KC. Expression spectra of matrix metalloproteinases in metastatic non-small cell lung cancer. Oncol Rep. 2004 Oct; 12(4):717-23.
    27. Seiki M, Yana I.Roles of pericellular proteolysis by membrane type-1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Sci. 2003; 94(7):569-74.