SIRT7基因启动子与其蛋白稳定性的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在酵母中,染色体沉默因子Sir2(silent information regulator-2)是NAD+依赖的组蛋白去乙酰化酶,它参与了基因组稳定和衰老等多种生理过程[1-2]。Sir2在哺乳动物中有七个家族成员(SIRT1-SIRT7)[3]。近年来,大量研究表明Sirtuin家族成员广泛参与凋亡,应激,分化,衰老,基因表达等多种生理过程[4]。SIRT7是这个家族中唯一定位于细胞核仁的蛋白[5]。也是到目前为止,唯一没有被鉴定出酶活性的家族成员。SIRT7是Poll聚合酶的活化子,能够促进rDNA转录。研究表明在乳腺癌和甲状腺癌中SIRT7mRNA高表达,提示SIRT7可能参与癌症的发生过程。因此研究SIRT7基因的表达调控机制对于我们了解SIRT7在肿瘤发生,应激等生理过程中的作用具有重要意义。
     本文主要研究了SIRT7的启动子和SIRT7蛋白稳定性调控机制,以及SIRT7在细胞中的亚细胞定位,并尝试鉴定了SIRT7的组蛋白与非组蛋白的去乙酰化酶活性。
     1SIRT7mRNA的表达谱
     我们通过Northern blotting和RT-PCR在mRNA水平检测了SIRT7在小鼠主要组织和几种人源细胞系中的表达,结果显示SIRT7在小鼠组织中广泛表达,其中在肝脏组织中表达最为丰富。在人胚肾细胞HEK293T, MCF7, Huh7, HepG2, HeLa细胞中SIRT7均有表达,在肺癌细胞H1299中几乎不表达。
     25'-RACE确定SIRT7转录起始位点
     提取小鼠肝脏和人急性白血病细胞HL60RNA,利用SIRT7特异引物以及5'-RACE连接子内外引物进行巢式PCR,得到长度为650bp的扩增产物,结果显示SIRT7基因在人和鼠中存在单一的转录起始位点。转录起始位点为C碱基,转录起始位点上游没有典型的TATA box和GC box,也没有明显的CpG岛。
     3克隆并鉴定SIRT7启动子区
     我们首次克隆并鉴定了SIRT7启动子区。实验结果表明SIRT7的转录起始位点到上游-2Kb的DNA片段具有启动子活性,并且这种启动子活性具有细胞特异性。通过启动子删切实验表明,-312/-174的DNA片段为SIRT7启动子的关键区域。通过生物信息学的方法确定该区域含有保守的C/EBPα转录因子结合位点。
     4Doxorubicin能够影响SIRT7蛋白稳定性, SIRT7蛋白稳定性受泛素蛋白酶体
     途径调控.
     我们发现在DNA损伤过程中,MCF7细胞内SIRT7蛋白水平快速下降。而SIRT7mRNA水平却不下降。表明SIRT7蛋白调控过程发生于转录后水平。外源表达的SIRT7蛋白和内源的SIRT7蛋白具有较短的半衰期,其稳定性受泛素蛋白酶体的调控。体内泛素化实验表明,SIRT7在细胞内能够发生多聚泛素化。
     5SIRT7在细胞内的亚细胞定位.
     免疫荧光显示在HEK293T细胞和MCF7细胞和Huh7细胞中,外源表达的Flag-SIRT7并不定位于核仁,而是分布在细胞核内,并且在核膜内侧富集。在细胞分裂期,Flag-SIRT7不与染色体结合。而全长的人源EGFP-SIRT7却主要定位在核仁,在有丝分裂期,EGFP-SIRT7与染色体紧密结合。结果表明外源表达的SIRT7蛋白在细胞内的定位依赖于表达量和融合标签类型。鉴于商业化SIRT7抗体特异性差,我们首次生产了识别小鼠SIRT7蛋白362-379位氨基酸的多克隆抗体,并证明了SIRT7多克隆抗体的特异性。使用SIRT7多克隆抗体,通过免疫荧光法,发现内源SIRT7在HEK293T, Huh7, MCF7细胞内以点状分布于细胞核,并且分布区域DAPI染色较浅。
     6尝试鉴定SIRT7的去乙酰化酶的活性
     我们纯化原核表达的GST融合的SIRT7蛋白,在体外建立组蛋白去乙酰化反应体系。结果表明原核表达的SIRT7没有组蛋白H4K16的去乙酰化的活性。用免疫荧光法发现在MCF7细胞内,外源表达的SIRT7没有H3K9Ac, H3K14Ac, H4K5AC, H4K8AC, H4K12Ac, H4K16Ac和P53的去乙酰化酶活性。
The chromatin silencing factor Sir2(silent information regulator-2) catalyses NAD+-dependent histone deacetylation to regulate genomic stability and cellular senescence in budding yeast.
     Sirtuins in mammals constitute a family of seven genes (SIRT1-SIRT7) recently been proposed to be involved in the control of critical metabolic pathways as well as apoptosis, stress responses, DNA repair, cell cycle, genomic stability and gene expression.
     SIRT7is the only Sirtuin located in nucleolus, and is the only Sirtuin protein for which a clear enzymatic activity has remained elusive. Previous studies suggest sirt7is an activator of RNA polymerse1transcription. It over expression enhances rDNA transcription. An elevated Sirt7expression has been detected in several human cancers such as breast cancer. The study of SIRT7regulation is valuable for us to understand the exact roles of SIRT7in tumorgensis and metabolic pathways.
     Here we try to definite the SIRT7gene promoter and investigate the role of ubiquitin-mediated proteasomal degradation in regulation of SIRT7levels. We also examine the sirt7for its cellular localization; protein deacetylase activity.These works will develop our understanding of the role of SIRT7.
     1SIRT7mRNA ubiquitously expressed.
     The mRNA level of SIRT7gene was detected by Northern blotting or RT-PCR. Data shows SIRT7mRNA was expressed in all mouse tissues examined, and was most abundant in liver. Human SIRT7mRNA was also expressed in several cell lines such as HEK293T, MCF7, Huh7, HepG2, and HeLa except H1299cells.
     2The transcription site of SIRT7was determined by5'-RACE assay.
     Using SIRT7primer and5'RACE outer primer, we amplified a650bp fragment by nest PCR from total mouse live RNA and HL60RNA The data showed that there is only one transcription initiation sites on sirt7gene, and the site is47bp apart from sirt7translation start site ATG. Characterization of the5'-flanking genomic region, which precedes the sirt7transcription initiation site, revealed a TATA-and GC-box less promoter that lacks CpG islands.
     3Functional identification of the SIRT7gene promoter.
     A2.1Kb5'-flangking region of human Sirt7was cloned and characterized. Promoter deletion assays suggested the constructed (-312/+30) contained a conserved C/EBPα binding site can efficiently drove luciferase activity.
     4Anticancer agent doxorubicin can induce the SIRT7degradation and the degradation is mediated by26s proteasome. SIRT7can polyubiquitination of SIRT7in vivo.
     The SIRT7protein levels but not mRNA levels are decreased by doxorubicin treatment. And the SIRT7is a short-lived protein and the effect on the SIRT7protein degradation is MG132dose and time dependent. SIRT7might be regulated by ubiquitin-mediated proteasomal degradation.
     5Cellular localization of Sirt7protein.
     Exogenous expressed Flag-tagged full length human SIRT7locate in nucleus but not in nucleoli in HEK293T and MCF7by immnofluorescence analysis. And it mainly concentrates near nuclear envelope. During M phase, when nucleoli disintegrate, SIRT7did not bind to the condensed mitotic chromatin. In contrast, GFP-SIRT7is mainly located in nucleoli. During M phase, EGFP-SIRT7remained bound to the condensed mitotic chromatin. Antibodies were raised against the amino acids363-379of mSIRT7. And we demonstrate the antibody can specifically recognize the mSIRT7protein. Using anti-SIRT7C-terminal antibodies for immunofluorescence co focal Microscopy, we found SIRT7proteins mainly locate in nucleus of HEK293T, Huh7, MCF7cells.
     6The deaceylation activity of SIRT7
     We Purify GST-fusion SIRT7protein and total histone and set up the vitro deacetylation assay. Data shows SIRT7does not deacetylase H4K16in vitro. SIRT7don't show deacetylase activity on histone H3K9Ac, H3K14Ac, H4K5AC,H4K8AC, H4K12Ac, H4K16Ac in MCF7cells. SIRT7does not deacetylate p53in MCF7cells.
引文
1. Haigis, M.C. and B.A. Yankner, The aging stress response. Mol Cell,2010.40(2):p.333-44.
    2. Longo, V.D. and B.K. Kennedy, Sirtuins in aging and age-related disease. Cell,2006.126(2):p. 257-68.
    3. Frye, R.A., Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun,2000.273(2):p.793-8.
    4. Greiss, S. and A. Gartner, Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol Cells,2009.28(5):p.407-15.
    5. Michishita, E., et al., Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell,2005.16(10):p.4623-35.
    6. Johnsson, A.E. and A.P. Wright, The role of specific HAT-HDAC interactions in transcriptional elongation. Cell Cycle,2010.9(3):p.467-71.
    7. Perkel, J.M., Histone code-breakers:the technologies of an epigenetic enigma. Biotechniques. 48(3):p.185-91.
    8. Dieker, J. and S. Muller, Epigenetic Histone Code and Autoimmunity. Clin Rev Allergy Immunol, 2009.
    9. Johnsson, A.E. and A.P. Wright, The role of specific HAT-HDAC interactions in transcriptional elongation. Cell Cycle.9(3):p.467-71.
    10. Sleiman, S.F., et al., Putting the 'HAT back on survival signalling:the promises and challenges of HDAC inhibition in the treatment of neurological conditions. Expert Opin Investig Drugs,2009. 18(5):p.573-84.
    11. Hawse, W.F., et al., Structural insights into intermediate steps in the Sir2 deacetylation reaction. Structure,2008.16(9):p.1368-77.
    12. Wang, C.L., J. Landry, and R. Sternglanz, A yeast sir2 mutant temperature sensitive for silencing. Genetics,2008.180(4):p.1955-62.
    13. Moynihan, K.A., et al., Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab,2005.2(2):p.105-17.
    14. North, B.J. and E. Verdin, Sirtuins:Sir2-related NAD-dependent protein deacetylases. Genome Biol,2004.5(5):p.224.
    15. Mostoslavsky, R., et al., Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell,2006.124(2):p.315-29.
    16. Ford, E., et al., Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev,2006.20(9):p.1075-80.
    17. Grob, A., et al., Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J Cell Sci,2009.122(Pt 4):p.489-98.
    18. Vakhrusheva, O., et al., Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res,2008.102(6):p.703-10.
    19. Ashraf, N., et al., Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer,2006.95(8):p.1056-61.
    20. Vaquero, A., et al., SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev,2006.20(10):p.1256-61.
    21. Cheng, H.L., et al., Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A,2003.100(19):p.10794-9.
    22. Luo, J., et al., Negative control of p53 by Sir2alphapromotes cell survival under stress. Cell,2001. 107(2):p.137-48.
    23. Vaziri, H., et al., hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell,2001. 107(2):p.149-59.
    24. Brooks, C.L. and W. Gu, p53 Activation:a case against Sir. Cancer Cell,2008.13(5):p.377-8.
    25. Imai, S., et al., Sir2:an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb Symp Quant Biol,2000.65:p.297-302.
    26. Rogina, B. and S.L. Helfand, Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A,2004.101(45):p.15998-6003.
    27. Lustig, A.J., Mechanisms of silencing in Saccharomyces cerevisiae. Curr Opin Genet Dev,1998. 8(2):p.233-9.
    28. Rainey, M.D., et al., Chk2 is required for optimal mitotic delay in response to irradiation-induced DNA damage incurred in G2 phase. Oncogene,2008.27(7):p.896-906.
    29. Lee, S.M., et al., Induction of G2/M arrest and apoptosis by water extract of Strychni Semen in human gastric carcinoma AGS cells. Phytother Res,2008.22(6):p.752-8.
    30. Tsai, Y.C., et al., Functional Proteomics Establishes the Interaction of SIRT7 with Chromatin Remodeling Complexes and Expands Its Role in Regulation of RNA Polymerase I Transcription. Mol Cell Proteomics,2012.11(5):p.60-76.
    31. Jiang, W., et al., Acetylation regulates gluconeogenesis by promoting PEPCKI degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell,2011.43(1):p.33-44.
    32. Henderson, M.J., et al., EDD, the human hyperplastic discs protein, has a role in progesterone receptor coactivation and potential involvement in DNA damage response. J Biol Chem,2002. 277(29):p.26468-78.
    33. Fuja, T.J., et al., Somatic mutations and altered expression of the candidate tumor suppressors CSNKI epsilon, DLGI, and EDD/hHYD in mammary ductal carcinoma. Cancer Res,2004.64(3): p.942-51.
    34. Henderson, M.J., et al., EDD mediates DNA damage-induced activation of CHK2. J Biol Chem, 2006.281(52):p.39990-40000.
    35. Munoz, M.A., et al., The E3 ubiquitin ligase EDD regulates S-phase and G(2)/M DNA damage checkpoints. Cell Cycle,2007.6(24):p.3070-7.
    36. O'Brien, P.M., et al., The E3 ubiquitin ligase EDD is an adverse prognostic factor for serous epithelial ovarian cancer and modulates cisplatin resistance in vitro. Br J Cancer,2008.98(6):p. 1085-93.
    1. Haigis, M.C. and B.A. Yankner, The aging stress response. Mol Cell,2010.40(2):p.333-44.
    2. Longo, V.D. and B.K. Kennedy, Sirtuins in aging and age-related disease. Cell,2006.126(2):p. 257-68.
    3. Frye, R.A., Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun,2000.273(2):p.793-8.
    4. Greiss, S. and A. Gartner, Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol Cells,2009.28(5):p.407-15.
    5. Michishita, E., et al., Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell,2005.16(10):p.4623-35.
    6. Johnsson, A.E. and A.P. Wright, The role of specific HAT-HDAC interactions in transcriptional elongation. Cell Cycle,2010.9(3):p.467-71.
    7. Perkel, J.M., Histone code-breakers:the technologies of an epigenetic enigma. Biotechniques. 48(3):p.185-91.
    8. Dieker, J. and S. Muller, Epigenetic Histone Code and Autoimmunity. Clin Rev Allergy Immunol, 2009.
    9. Johnsson, A.E. and A.P. Wright, The role of specific HAT-HDAC interactions in transcriptional elongation. Cell Cycle.9(3):p.467-71.
    10. Sleiman, S.F., et al., Putting the 'HAT' back on survival signalling:the promises and challenges of HDAC inhibition in the treatment of neurological conditions. Expert Opin Investig Drugs,2009. 18(5):p.573-84.
    11. Hawse, W.F., et al., Structural insights into intermediate steps in the Sir2 deacetylation reaction. Structure,2008.16(9):p.1368-77.
    12. Wang, C.L., J. Landry, and R. Sternglanz, A yeast sir2 mutant temperature sensitive for silencing. Genetics,2008.180(4):p.1955-62.
    13. Moynihan, K.A., et al., Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab,2005.2(2):p.105-17.
    14. North, B.J. and E. Verdin, Sirtuins:Sir2-related NAD-dependent protein deacetylases. Genome Biol,2004.5(5):p.224.
    15. Mostoslavsky, R., et al., Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell,2006.124(2):p.315-29.
    16. Ford, E., et al., Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev,2006.20(9):p.1075-80.
    17. Grob, A., et al., Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J Cell Sci,2009.122(Pt 4):p.489-98.
    18. Vakhrusheva, O., et al., Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res,2008.102(6):p.703-10.
    19. Frye, R., "SIRT8" expressed in thyroid cancer is actually SIRT7. Br J Cancer,2002.87(12):p. 1479.
    20. Ashraf, N., et al., Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer,2006.95(8):p.1056-61.
    21. Ramji, D.P. and P. Foka, CCAAT/enhancer-binding proteins:structure, function and regulation. Biochem J,2002.365(Pt 3):p.561-75.
    22. Yeh, W.C. and S.L. McKnight, Regulation of adipose maturation and energy homeostasis. Curr Opin Cell Biol,1995.7(6):p.885-90.
    23. Wang, N.D., et al., Impaired energy homeostasis in C/EBP alpha knockout mice. Science,1995. 269(5227):p.1108-12.
    24. Timchenko, N.A., et al., CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through thep2I (WAF-I/CIP-1/SDI-I)protein. Genes Dev,1996.10(7):p.804-15.
    25. Chen, P.L., et al., Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs. Genes Dev,1996.10(21):p.2794-804.
    26. Vaquero, A., et al., SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev,2006.20(10):p.1256-61.
    27. Cheng, H.L., et al., Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRTI)-deficient mice. Proc Natl Acad Sci U S A,2003.100(19):p.10794-9.
    28. Luo, J., et al., Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell,2001. 107(2):p.137-48.
    29. Vaziri, H., et al., hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell,2001. 107(2):p.149-59.
    30. Brooks, C.L. and W. Gu, p53 Activation:a case against Sir. Cancer Cell,2008.13(5):p.377-8.
    31. Vakhrusheva, O., et al., Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging. J Physiol Pharmacol,2008.59 Suppl 9:p. 201-12.
    32. Imai, S., et al., Sir2:an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb Symp Quant Biol,2000.65:p.297-302.
    33. Rogina, B. and S.L. Helfand, Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A,2004.101(45):p.15998-6003.
    34. Lustig, A.J., Mechanisms of silencing in Saccharomyces cerevisiae. Curr Opin Genet Dev,1998. 8(2):p.233-9.
    35. Rainey, M.D., et al., Chk2 is required for optimal mitotic delay in response to irradiation-induced DNA damage incurred in G2 phase. Oncogene,2008.27(7):p.896-906.
    36. Lee, S.M., et al., Induction of G2/M arrest and apoptosis by water extract of Strychni Semen in human gastric carcinoma AGS cells. Phytother Res,2008.22(6):p.752-8.
    37. Tsai, Y.C., et al., Functional Proteomics Establishes the Interaction of SIRT7 with Chromatin Remodeling Complexes and Expands Its Role in Regulation of RNA Polymerase I Transcription. Mol Cell Proteomics,2012.11(5):p.60-76.
    38. Jiang, W., et al., Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell,2011.43(1):p.33-44.
    39. Henderson, M.J., et al., EDD, the human hyperplastic discs protein, has a role in progesterone receptor coactivation and potential involvement in DNA damage response. J Biol Chem,2002. 277(29):p.26468-78.
    40. Fuja, T.J., et al., Somatic mutations and altered expression of the candidate tumor suppressors CSNK1 epsilon, DLGI, and EDD/hHYD in mammary ductal carcinoma. Cancer Res,2004.64(3): p.942-51.
    41. Henderson, M.J., et al., EDD mediates DNA damage-induced activation of CHK2. J Biol Chem, 2006.281(52):p.39990-40000.
    42. Munoz, M.A., et al., The E3 ubiquitin ligase EDD regulates S-phase and G(2)/M DNA damage checkpoints. Cell Cycle,2007.6(24):p.3070-7.
    43. O'Brien, P.M., et al., The E3 ubiquitin ligase EDD is an adverse prognostic factor for serous epithelial ovarian cancer and modulates cisplatin resistance in vitro. Br J Cancer,2008.98(6):p. 1085-93.
    44. Yang, T., et al.,SIRT1 and endocrine signaling. Trends Endocrinol Metab,2006.17(5):p.186-91.
    45. Haigis, M.C. and L.P. Guarente, Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev,2006.20(21):p.2913-21.
    46. Dali-Youcef, N., et al., Sirtuins:the 'magnificent seven', function, metabolism and longevity. Ann Med,2007.39(5):p.335-45.
    47. Sauve, A.A., et al., The biochemistry of sirtuins. Annu Rev Biochem,2006.75:p.435-65.
    48. Vaquero, A., et al., Human SirTl interacts with histone HI and promotes formation of facultative heterochromatin. Mol Cell,2004.16(1):p.93-105.
    49. Liszt, G., et al., Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem, 2005.280(22):p.21313-20.
    50. Michishita, E., et al., SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature,2008.452(7186):p.492-6.
    51. North, B.J., et al., The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell,2003.11(2):p.437-44.
    52. Jing, E., S. Gesta, and C.R. Kahn, SIRT2 regulates adipocyte differentiation through FoxOl acetylation/deacetylation. Cell Metab,2007.6(2):p.105-14.
    53. Wallace, D.C., Mitochondria and cancer:Warburg addressed. Cold Spring Harb Symp Quant Biol, 2005.70:p.363-74.
    54. Shi, T., et al., SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem,2005.280(14):p.13560-7.
    55. Lombard, D.B., et al., Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol,2007.27(24):p.8807-14.
    56. Scher, M.B., A. Vaquero, and D. Reinberg, SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev,2007.21(8):p. 920-8.
    57. Haigis, M.C, et al., SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell,2006.126(5):p.941-54.
    58. Fulco, M., et al., Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell,2003.12(1):p.51-62.
    59. Muth, V., et al., Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J,2001.20(6):p.1353-62.
    60. Chambers, S.M., et al., Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol,2007.5(8):p. e201.