几个小麦重要抗源品种(系)抗条锈病基因的遗传分析与分子作图
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是由条锈菌(Puccinia striiformis f.sp.tritici)引起的世界性小麦病害,在我国曾多次大流行,给小麦生产造成重大损失。目前,虽然我国小麦抗病品种数量众多,但其抗源的单一化、同质化严重,从而导致病害频繁流行。所以,许多小麦条锈病工作者提出了明确现有品种(系)抗病特点和抗病基因分布、挖掘新的抗源和抗条锈病基因、增加小麦抗源多样性、发掘高品位抗病基因等策略,以稳定小麦病害系统。因此许多研究者已把注意力集中到深入研究利用外源基因和重要小麦抗病基因上,试图解决小麦品种抗病性丧失难题。研究含有外源抗病基因种质资源的重要抗病品种的抗条锈性遗传机制和抗病基因,将增加小麦抗条锈病基因的多样性,为小麦抗病性遗传改造提供丰富的物质贮备,对控制小麦条锈病危害具有重要意义。
     本研究对生产上已推广和即将推广使用的具有外源抗病基因的5个品种(系)和已知抗条锈基因载体品种进行了遗传分析和分子作图,取得以下结果:
     1.经典遗传学分析表明,中梁88375对CYR31的抗病性由一对显性核基因控制,把该基因暂命名为Yr88375。BSA结合分子标记的方法,一方面建立了与Yr88375连锁的6个微卫星标记Xgwm335、Xwmc289、Xwmc810、Xgdm116、Xbarc59与Xwmc783,并将Yr88375定位于小麦5BL,距离Yr88375最近的两个微卫星位点是Xgdm116、Xwmc810,遗传距离分别是3.1 cM和3.9 cM,最远的标记Xwmc783与Yr88375之间的遗传距离为13.5 cM。另一方面利用RGA标记法结合缺四体定位法,将Yr88375定位于小麦5B染色体,并找到了两个与之连锁的RGA标记Yr88375-RG1和Yr88375-RG2,与Yr88375的遗传距离分别为3.6 cM和4.2 cM。系谱分析结合分子标记结果表明,Yr88375很有可能是一个来自于中间偃麦草(E.intermedium),并与已知抗条锈病基因不同的新基因。
     2.中梁22号与铭贤169杂交F2代群体苗期抗条锈病遗传分析结果表明,中梁22号含有3-5对抗条锈基因。中梁22号对CYR31的抗病性由一对显性核基因(暂命名YrZhong22)和一对隐性胞质基因共同控制,用SSR标记结合集群分离分析法(BSA),建立了与YrZhong22连锁的4个微卫星标记,分别是Xwmc289、Xwmc810、Xgdm116和Xbarc232,并将YrZhong22定位于小麦5BL染色体。YrZhong22与相邻微卫星位点Xwmc810和Xgdm116的遗传距离分别是2.7 cM和4.4 cM。系谱分析及分子标记分析表明,YrZhong22可能是一个来自中间偃麦草的新抗条锈病基因。
     3.采用生理小种CYR30、CYR31、SU11-4、SU11-11对易位系M8657-1进行遗传分析发现,对CYR30的抗病性由一对隐性核基因控制;对CYR31的抗病性由两对显性核基因(互补作用)控制;对SU11-4的抗病性由一对显性基因控制;对SU11-11的抗病性由一对隐性核基因控制。利用BSA法对SSR引物进行筛选,获得了3个与易位系M8657-1主效抗条锈病基因YrElm1连锁的多态性SSR标记,它们分别是Xgwm636、Xwmc522和Xwmc453,与目的基因的遗传距离依次为8.9 cM、5.9 cM和10.3 cM。根据这些扩增位点的染色体位置,可推出YrElm1位于小麦2AS染色体上,而目前定位于2AS染色体上的抗条锈基因只有Yr17,通过对抗病基因来源以及基因的抗病性综合分析可知,YrElm1和Yr17是完全不同的,因此,YrElm1可能是一个位于小麦2AS染色体上的新的抗条锈病基因。
     4.采用生理小种CYR29、CYR31、SU11-4、SU11-11对易位系M853-2进行遗传分析,结果表明,对CYR29的抗病性由两显一隐的三对核基因共同控制;针对CYR31的抗病性由两对显性核基因(互补作用)控制;对SU11-4的抗病性由两对显性基因(互补作用)和一显一隐的(呈独立或重叠遗传)胞质基因共同控制;对SU11-4的抗病性由一对显性核基因控制。BSA法结合SSR标记分析,筛选到1个位于4BL上的SSR标记Xgwm495,连锁分析表明,YrElm2与Xgwm495的遗传距离为7.6 cM,YrElm2位于小麦4BL染色体上。通过与已定位在4BL染色体上其它基因的比较可知,YrElm2是一个来自于柔软滨麦草、不同于已知基因的抗条锈病基因。
     5.对易位系M853-4接种生理小种CYR29、CYR30、CYR31、SU11-11进行遗传分析,结果表明,M853-4对CYR29、CYR30、CYR31的抗病性均由一对显性核基因控制;对SU11-11的抗病性由一显一隐的两对核基因(呈独立或重叠遗传)共同控制。利用微卫星标记的方法筛选到3个与M853-4主效抗条锈病基因YrElm4连锁的多态性SSR标记,它们分别是Xwmc654、Xgwm304和Xgwm129,与目的基因的遗传距离依次为5.8 cM、7.1 cM和10.3 cM。根据小麦微卫星遗传图谱可知,这些扩增位点位于小麦5AS上,因此YrElm4位于小麦5AS染色体上。
     6.对条锈病已知基因载体品种Gaby的抗锈遗传规律进行了系统分析,用CYR29、CYR32和SU11-11对该品种进行了抗条锈性遗传分析。研究结果表明,Gaby对CYR29的抗锈性表现为一对显性抗病基因控制(暂命名为YrGaby);对CYR32,其为母本时抗病性由两对基因控制(可能是两对隐性基因,也可能是存在累加作用的两对显性基因),为父本时抗病基因由一对显性基因和两对隐性抗病基因控制;对SU11-11,其为母本时抗病性由三对显性基因控制(其中两对表现为累加作用),为父本时抗病性由一对完全显性抗病基因和一对隐性基因控制。为确定YrGaby染色体位置,利用BSA法从320对SSR引物中进行筛选,获得4个位于小麦4AL染色体的SSR标记位点,这些标记分别是Xgwm397、Xwmc161、Xwmc698和Xwmc760,与目的基因的遗传距离依次为13.8 cM、8.6 cM、5.1 cM和16.6 cM。另一方面,利用RGA标记法结合一整套缺四体定位法,将YrGaby定位于小麦4A染色体,并找到了2个与之连锁的RGA标记YrGaby-RG1和YrGaby-RG2,二者与YrGaby的遗传距离分别为4.2 cM和9.1 cM。与抗病基因YrGaby连锁的分子标记的获得,为该品种的合理利用、抗病基因合理布局以及分子标记辅助育种提供了可靠的依据。
Stripe rust, caused by Puccinia striiformis f.sp. tritici, is one of the most serious diseases of wheat in the worldwide. China is the largest epidemic region in the world and severe losses in grain yield have been reported. At present, the simplicity and homology of stripe rust resistance background in commercial wheat cultivars have not changed all though a lot of cultivars are used in wheat production. Identification and excavation new stripe rust resistance genes is an important method for controlling stripe rust. Geneticists and plant breeders pay more attention to wild relatives and elite cultivars carring durable resistance in order to search new resistant germplasms.
     The genitic mechanism of 5 variaties derived from alien resistant resources and Gaby to stripe rust were studied in this research,The results are as follow:
     1. Genetic analysis of Zhongliang 88375 indicated that resistance to race CYR31 was controlled by a single dominant gene, temporarily designated as Yr88375. To molecular map Yr88375, a F2 segregating population consisted of 163 individuals was constructed on the basis of the hybridization between Zhongliang 88375 and a susceptible wheat line Mingxian169.On the one hand, six SSR markers,Xgwm335, Xwmc289, Xwmc810, Xgdm116, Xbarc59 and Xwmc783 linked to Yr88375 , as they were all located on chromosome 5BL , Yr88375 was also located on that chromosome arm, closely linked to Xgdm116 and Xwmc810 with genetic distances of 3.1 and 3.9 cM, respectively. The furthest marker Xwmc783 was 13.5 cM toYr88375. On the other hand, the resistance gene Yr88375 was located on chromosome 5B by RGA tagging and the 21 Chinses Spring nulli-tetrasomic. Hence, pedigree analysis of Zhongliang 88375 combined with SSR markers support on the conclusion that the highly resistance gene Yr88375 derived from Elytrigia intermedium, is a novel gene for resistance to stripe rust in wheat.
     2. To identify and tag new resistance genes to stripe rust in a wheat cultivar Zhongliang 22, Genetic analysis indicated that Zhongliang 22 contains three to five resistance genes and one dominant nucleic gene (temporarily designated as Yrzhong22) and one recessive CYR31 toplasmic gene conditioned stripe rust rust resistance in Zhongliang 22 inoculated with CYR31.Using SSR markers combined with bulked segregation analysis (BSA) revealed that four SSR markers located on chromosome 5BL were linked to Yrzhong22. The genetic distances between Yrzhong22 and its nearest markers Xwmc810 and Xgdm116 were 2.7 cM and 4.4 cM, respectively. Yrzhong22 is probably a novel resistance gene to wheat stripe rust donated from Elytrigia intermedium on the basis of pedigree analysis and molecular result.
     3. Genetic analysis of translocation line M8657-1 indicated that resistance gene conferring to CYR30 was controlled by one recessive gene, resistance genes conferring to CYR31 controlled by two dominant karyoplasms genes (complementary); resistance gene conferring to SU11-4 was controlled by one dominant gene temporarily designated as YrElm1,resistance gene conferring to SU11-11 was controlled by one single recessive karyoplasms gene. Through SSR and analysis with resistance pool and susceptible pool, Three SSR markers on the short arm of chromosome 2A were found linked to YrElm1. The SSR markers were Xgwm636、Xwmc522 and Xwmc453 and their genetic distances from YrElm1 were 8.9 cM、5.9 cM and 10.3 cM, respectively. At present, stripe rust resistance gene Yr17 have been located to chromosome 2AS.Based on the origin of resistance genes and seedling test pattern, The result showed that YrElm1 is probably a new stripe rust resistance gene.
     4. Inheritance of translocation line M853-2 by artificial inoculation with different races at seedlings. The results showed resistance gene conferring to race CYR29 was controlled by two dominant and one recessive genes independently, the resistance to race CYR30 was controlled by two dominant and one recessive genes (they are karyplasms genes) and three recessive cytoplasmic genes, and the resistance gene to CYR31 was controlled by two dominant complement genes, and the resistance to SU11-4 was controlled by one dominant and one recessive karyplasms gene and two dominant cytoplasmic genes ,while the resistance to the race SU11-11 was controlled by one dominant gene, temporarily designated as YrElm2. To develop molecular markers for YrElm2, bulk segregation analysis combined with 320 SSR markers were used for, one SSR marker, Xgwm495 on the 4BL was associated with YrElm2. The genetic distance between Xgwm495 and YrElm2 was about 7.6cM. YrElm2 was located on the 4BL. By comparision with other genes on 4B chromosome, we could conclude that YrElm2 is probably a novel gene origin from Elymus mo11is (Trin.) Hara.
     5. Genetic analysis of translocation line M853-4 indicated that resistance gene conferring to races CYR29,CYR30,CYR31 were all controlled by a single dominant karyoplasms gene; Resistance of M853-4 conferring to SU11-11 was controlled by one dominant and one recessive genes. A total of 320 SSR primers were used to test the parents as well as resistant and susceptible bulks. Three SSR markers on the short arm of chromosome 5A were found linked to YrElm4. The SSR markers were Xwmc654、Xgwm304 and Xgwm129,and their genetic distances from YrElm4 were 5.8 cM、7.1 cM and 10.3 cM,respectively.
     6. It had proved that wheat cultivar Gaby is an important resistant resource to stripe rust. Genetic analysis of Gaby indicated that resistance gene conferring to CYR29 was controlled by one dominant gene temporarily designated as YrGaby. To CYR32, Gaby has two genes resisted(they possibly are either recessive or present addition effect) when it is female parent ,and it possibly has one dominant and two recessive genes when it is male parent. To SU11-11 strain, Gaby has three genes (two of them present additive effect) when it is female parent, and has one dominant and one recessive genes when it is male parent .Bulk segregation analysis combined with 320 SSR markers were used for, Four SSR markers on the long arm of chromeosome4A were found linked to YrGaby ,they were Xgwm397、Xwmc161、Xwmc698and Xwmc760,and their genetic distances from YrGaby were 13.8 cM、8.6 cM、5.1 cM and 16.6 cM,respectively. In addition, the resistance gene YrGaby was located on chromosome 4A by RGA tagging and the 21 Chinses Spring nulli-tetrasomic, and two RGA markers were linked to YrGaby with genetic distance was 4.2 cM and 9.1 cM, repectively.
引文
[1] 李振岐,曾士迈.中国小麦锈病[M]. 中国农业出版社,2002.
    [2] 万安民,赵中华,吴立人,等.2002 年我国小麦条锈病发生回顾[J].植物保护,2003,29(2):5-8.
    [3] 李振岐.李振岐院士论文选集[M].杨陵:西北农林科技大学出版社,1999.
    [4] 王保通,李高宝,李强,等.2001~2005 年陕西省麦条锈菌生理小种变化动态[J].西北农林科技大学学报(自然科学版),2007,35(3):209-216.
    [5] 王凤乐,吴立人,徐世昌,等.中国条锈菌新小种条中30、31号的研究[J].植物保护学报,1996,23(1):39-44.
    [6] 贾秋珍,金社林,曹世勤,等. 小麦条锈菌生理小种条中 32 号及水源 14 致病类型在甘肃的流行与发展趋势[J].植物保护学报,2007,34(3):263-267.
    [7] 杨作民,解超杰,孙其信.后条中32时期我国小麦条锈抗源之现状[J].作物学报,2003, 29 (2):161-168.
    [8] Wan A M, Zhao Z H, Chen X M, etc. Wheat stripe rust epidemic and virulence of Puccinia striiformis f.sp.tritici in China in 2002[J]. Plant Disease, 2004, 88: 896-904.
    [9] Stakman E C. Principles of plant pathology[R]. Ronald Press New York,1957.
    [10] Flor, H. H. Current status of the gene-for-gene concept[J]. Annu. Rev. Phytopathol. 1971, 9: 275-296.
    [11] Sears E.R. The aneuploids of common wheat[J]. Mo. Agric. Exp. Sta. Res. Bull, 1954,572: 1-58.
    [12] Browder L E. Parasite, host, environment specificity in cereal rusts[J]. Ann Rev Phytopath,1985,23:201-222.
    [13] 赵淑清, 武维华. DNA 分子标记和基因定位[J]. 生物技术通报,2000,6:1-4.
    [14] 宋建荣, 岳维云, 吕莉利, 等. 抗旱、抗病、丰产冬小麦新品种中梁 22 号及其栽培技术[J].麦类作物学报,2004,24(3):136.
    [15] 宋建荣,廖文孝,岳维云. 冬小麦新品系中梁 88375 选育报告[J]. 甘肃农业科技,2000,1:10-12.
    [16] 傅杰,陈漱阳,张安静. 八倍体小滨麦的形成及细胞遗传学研究[J]. 遗传学报,1999,20(4):317-323.
    [17] 井金学,郭萍,李落叶,等. 柔软滨麦草及其杂交后代抗条锈性的研究[J]. 西北农林科技大学(自然科学版),2001(6):107-110.
    [18] 郭萍,井金学,傅杰,等. 柔软滨麦草及其杂交后代抗条锈性的组织病理学研究[J]. 植物病理学报,2002,(32):272-277.
    [19] Flor, H.H. Current status of the gene-for-gene concept[J]. Annu.Rev. Phytopathol, 1971, 9:275-296.
    [20] Staskawicz B J, Ausubel F M, Baker B J, etc. Molicular genetics of plant Disease resistance [J].Science, 1995, 268(5): 661-667.
    [21] Johal G.S. and Briggs S.P. Reductase activity encoded by the Hml disease resistance gene in maize[J]. Science,1992, 258(5084):985-987.
    [22] Martin G B, Brommmonschenkel S H,Chunwongse J, etc. Map-based cloning of a protein kinase gene conferring disease resistance in tomato[J]. Science,1993, 262: 1432-1436.
    [23] Liu Jin ling,Liu Xiong un,Dai Liangying, etc.Recent Progress in Elucidating the Structure, Function and Evolution of Disease Resistance Genes in Plants[J]. Journal of Genetics and Genomics,September 2007, 34(9): 765-776.
    [24] Martin G.B.,Brommonschenkel S.H.,Chunwongse J., etc. Map-based cloning of a protein lcinase gene conferring disease resistance in tomato[J]. Science,1993,262(26): 1432-1436.
    [25] Mindrinos M.,Katagiri F.,Yu G.,etc. The thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats[J]. Cell,1994,78:1089-1099.
    [26] Song W Y.,Wang G.L.,Chen L.L.,etc. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21[J]. Science,1995,270(15):1804-1806.
    [27] Stein N, Feuillet C, Wicker T, etc. Subgenome chromosome walking in wheat: a 450-kb physical conting in Triticum monococcum L. Spans the Lr10 resistance locus in hexaploid wheat(Triticum aestivum L.) [J]. Proc. Natl. Acad. Sci. USA,2000, 97(24): 13436-13441.
    [28] Feuillet C.,Schachermayr G., Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat[J]. The Plant Journal, 1997,11(1): 45-52.
    [29] Liang P, Parde A.B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J]. Science, 1992,257(14): 967-971.
    [30] Diatchenko L.,Lau Y C.,Campbell A.P., etc. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proc. Natl. Acad. Sci. USA,1996,93:6025-6030.
    [31] Boys D C, Nam J, Dang J, etc.The Arabidobisis thaliana RPMI disease resistance gene product is a peripheral plasma membrane protein that is degrade coincident with the hypersensitive response [J].Proc Natl Acad Sci USA,1998, 95: 15849-15854.
    [32] Bostjian K, Johann D. The Leucine-rich repeat: A versatile binding motif [J]. TIBS, 1994,19:415-421.
    [33] Bent A F. Plant disease resistance genes: function meets structure [J].The plant cell, 1996, 8:1757-1771.
    [34] Brighthill H D, Libraty D H, Krutzik S R, etc. Host defence mechanisms triggered by microbial lipoproteins through Toll-like recepters [J].Science,1999,285: 732-739.
    [35] Lawrence G J, Finnegen E J, Ayliffe M A, etc. The L6 gene for flax rust resistance is related to the Arabidopis bacterial resistance gene RPS2 and the tobacco viral resistance gene N [J]. Plant Cell,1995, 7: 1195-1206.
    [36] Collins N C, Drake J, Ayliffe M, etc. A. Molecularcharacterization of the maize RP1-D rust resistance haplotype and its mutants [J]. The Plant cell,1999, 11:1365-1376.
    [37] Chen X M, Line R F, Leung H. Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis [J].Theor Appl Genet,1998, 97: 345-355.
    [38] Donald T M, Pellerone F, Adam-Blondon A-F, etc.Identification of resistance gene analogs linked to powdery mildew resistance locus in grapevine[J]. Theor Appl Genet, 2002, 104: 610-618.
    [39] Leister D, Ballvora A, Salamini F, etc. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants [J]. Nature Genet, 1996,14: 421-429.
    [40] Hunger S., Gaspero G.,Mohring S., etc. Isolation and linkage analysis of expressed disease-resistance gene analogues of sugar beet. Genome,2003, 46 (1):70-72.
    [41] Radwan,Bouzidi M.F., Vear F., etc. Identification of non-TIR-NBS-LRR markers linked to the P15/P18 loucus for resistance to downy mildew in sunflower[J]. Theor Appl Genet,2003, 106(8):1438-1446.
    [42] Yu Y G, Buss G R, Saghai Maroof M A. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site [J]. Proc. Natl. Acad. Sci. USA,1996,93: 11751-11756.
    [43] KanazinV.,M arekL .F.,ShoemakerR .C..Resistance gene analogs are conserved a nd clustered in soybean[J].PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES,1996,93: 11746-11750.
    [44] Leister D, Kurth J, Laurie D A, etc.Rapid reorganization of resistance gene homologues in cereal genomes [J]. Proc Natl Acad Sci USA, 1998, 95: 370-375.
    [45] Collins N C, Webb C A, Seal S, etc. The isolation and mapping of disease resistance gene analogs in maize [J]. Mol Plant-Microbe Interact, 1998, 11: 968-978.
    [46] 陈观水, 周以飞, 林生, 等. 甘薯NBS类抗病基因类似物的分离与序列分析[J]. 中国农业科学,2006,39(8):1558-1564.
    [47] 王海燕,杨文香,刘大群,等.小麦NBS-LRR 类抗病基因同源序列的分离与鉴定[J]。植物病理学报,2007,37(3):317-320.
    [48] Biffen R.H. Mendel's law of in heritance and wheat breeding[J].Journal of Agricultural Science,1905,1: 4-48.
    [49] Lupton.F.G.H, Macer.R.C.F. Inheritance of resistance to yellow rust (Puccincia glumarrum erikss. Henn) in seven varieties of wheat[J]. Trans.Brit.Mycol.Soc,1962, 45:21-45.
    [50] Johnson R. The concept of durable resistance[J].Phytopath. 1979,69:198-199.
    [51] Zadoks J C. Yellow rust on wheat, studies in epidemiology and physiologic specialization.Tidschriirt over Plantenziekten,1961,67:69-256.
    [52] Lewellen R T,Sharp E L.Iheritance of minor reaction gene combination in wheat to puccinia striiformis at two temperature profiles[J].Can.Jour.of Bot,1968,46:21-26.
    [53] 徐世昌,张敬源,赵文生,等.小麦京核891-1抗条锈主效、微效基因的遗传分析[J]. 中国农业科学,2001,34(3):272-276.
    [54] Qayoum A, Line RF. High-temperature adult plant resistance to stripe rust of wheat[J]. Phytopathology,1985,75:1121-1125.
    [55] Milus E A, Line R.F. Gene action for inheritance of durable, high-temperature, adult-plant resistance to stripe rust in wheat[J].Phytopath,1986, 76:435-441.
    [56] 商鸿生. 小麦对条锈病的高温抗病性研究[J]. 中国农业科学,1998,31(4):46-50.
    [57] 何家泌. 植物抗病遗传学[M]. 北京: 中国农业出版社,1994.
    [58] 张建诚,谢三刚,韩满仓,等. 小麦核质互作抗条锈类型的发现及其遗传机制分析[J].华北农学报,1992.7(1):14-18.
    [59] Chen X.M, and Line, R. F. Inheritance of stripe rust resistance in wheat cultivars postulated to have resistance genes at Yr3 and Yr4 loci[J]. Phytopath,1993,382-388.
    [60] Sears E.R. The aneuploids of common wheat[J].Missouri Agricultural Experiment Station Research. Bulletin,1954,57 2:pp.59.
    [61] Chen X.M,Jones S.,Line R.F. Chromosomal location of genes for stripe rust re sistance in spring wheat cultvars Compair,Fielder,Lee,and Lemhi and Interactions of Aneuploid wheats with Races of Puccinia striiformis [J].Genetic, 1995,85,375-381.
    [62] 齐莉莉,陈佩度,刘大钧,等. 小麦白粉病新抗源基因Pm2l[J].作物学报,1995,21(3):257-262.
    [63] 徐琼芳,马有志,辛志勇,等. 应用原位杂交和RAPD技术标记抗黄矮病小麦-中间偃麦草染色体异附加系[J]. 遗传学报,1999,26(1):49-53.
    [64] 周充晨,张相岐,王献平,等. 滨麦抗条锈病基因的染色体定位和分子标记[J]. 遗传学报,2001,28(9):864-869.
    [65] 王献平,初敬华,张相岐. 小麦异源易位系的高效诱导和分子细胞遗传学鉴定[J]. 遗传学报,2003,30(7):619-624.
    [66] 武军, 赵继新, 陈新宏. 普通小麦-华山新麦草衍生后代的细胞学特点及GISH分析[J]. 麦类作物学报,2007,27(5):772-775.
    [67] Michelmore R W,Paran I,Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating segregation populations[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88: 9828-9832.
    [68] Williams J G K,Kubelik A R,Kenneth J L, etc.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acide Res,1990, 18:6531-6535.
    [69] John Welsh, Michael McClelland. Fingerprinting genomes using PCR with arbitrary prime[J]. Nucleic Acids Research,1990,18(24):7214-7218.
    [70] 牛永春,刘红彦,吴立人,等.小麦品种“Lee”中抗条锈病基因的 RAPD 标记[J].高技术通讯,1998,12:11-14.
    [71] Chague V, Fahima T, Dahan A, etc. Isolation of microsatellite and RAPD markers flanking the Yr15 of wheat using NILs bulked segregant analysis[J].Genome,1999, 42:1050-1056.
    [72] Obert O., Abelard C, Dedryver F.,etc.Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat[J]. Molecular Breeding, 1999, 5:167-175.
    [73] 钟鸣,牛永春,徐世昌,等. 小麦品种 Triticum Spelta album 中抗条锈病基因 Yr5 的 RAPD 标记[J]. 遗传学报,2002,29(8):719-722.
    [74] 陈晓红,牛永春,胡宝忠. 用变性 PAGE-银染法鉴定小麦抗条锈基因 Yr5 的 RAPD 标记[J]. 遗传学报,2004,31(3):270-274.
    [75] Flavell R.B, Bennett MD, Smith JB. Genome size and proportion of repeated nucleotide sequence DNA in plants[J]. Biochemical Genetics,1974,12:257-269.
    [76] Condit RaHSP. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes[J].Genome, 1991, 34:66-71.
    [77] Zhao X, Wu T. Genome specific repetitive sequences in the genus Oryza[J]. Theor. Appl. Genet,1989,78:201-209.
    [78] Song Q J, Fickus E W, Cregan P B. Characterization of trinucleotide SSR motifs in wheat[J] Theor.Appl.Genet.,2002,104:286-293.
    [79] Litt MaJAL. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. Am.J.Hum.Genet.,1989,44:397-401.
    [80] Korzun VM, Nikitin AI. Asymmetry of the chaetae in fleas (Citellophilus tesquorum) as a possible marker of their capacity for blocking[J]. Med.Parazitol.(Mosk), 1997,5:34-36.
    [81] Buerstmayr H, Lemmens M, Hartl L, etc.Molecular mapping of QTLs for Fusarium head blightresistance in spring wheat. Resistance to fungal spread(Type II resistance)[J].Theor Appl Genet,2002,104:84-91.
    [82] Dholakia B B, Ammiraju J S, Santra DK, etc.Molecular marker analysis of protein content using PCR-based markers in wheat[J]. Biochem.Genet, 2001, 39:325-338.
    [83] Liu M, Smith M, Gill S. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6[J].Theor.Appl.Genet., 2002,104:1042-1048.
    [84] Bell Cjaejr. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis [J]. Genomics,1994,19:137-144.
    [85] Areshchenkova Tagwm. Long tomato microsatellites are predominantly associated with centromeric regions[J]. Genome,1999,42:536-544.
    [86] Cho Y G,M SR,K MK, etc.Intergrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.)[J]. Theor Appl Genet, 1998, 97:370-380.
    [87] Taramino G, Tingey S. Simple sequence repeats for germplasm analysis and mapping in maize [J].Genome,1996,39:277-287.
    [88] Liu K, Somerville S. Cloning and characterization of a highly repeated DNA sequence in Hordeum vulgare [J].Genome,1996,39:1159-1168.
    [89] R?der MS, Plaschke J, Konig SU, etc. Abundance,variability and chromosomal location of microsatellites in wheat[J]. Mol.Gen.Genet., 1995,246:327-333.
    [90] Nicot N, Chiquet V, Gandon B, etc. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs)[J]. Theor Appl.Genet, 2004.
    [91] Gao L F, Jing R L, Huo N X, etc. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat[J]. Theor Appl Genet.,2004, 108:1392-1400.
    [92] Eujayl I, Sorrells ME, Baum M, etc.Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat[J]. Theor Appl Genet, 2002, 104:399-407.
    [93] Varshney RK, Thiel T,Stein N, etc.In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species[J].Cell Mol.Biol.Lett.,2002,7:537-546.
    [94] Altinkut A, Gozukirmizi N. Search for microsatellite markers associated with water-stress tolerance in wheat through bulked segregant analysis[J]. Mol.Biotechnol.,2003,23:97-106.
    [95] Zabeau M., Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting. European Patent Application number 924026297; Publication number 0534858A1,1993.
    [96] Vos P, Hogerss R, Bleeker M, etc. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Res.,1995,23(21):4407-4414.
    [97] Williams CE, Collier CC, Sardesai N, etc. Phenotypic assessment and mapped markers for H31, a new wheat gene conferring resistance to Hessian fly (Diptera: Cecidomyiidae)[J]. Theor Appl Genet, 2003, 107:1516-1523.
    [98] Xing Q H, Ru Z G, Zhou C J, etc.Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene (wtms1) in wheat[J].Theor Appl Genet, 2003,107:1500-1504.
    [99] Singrun C, Hsam SL, Hartl L, etc. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat(Triticum aestivum L. em Thell.)[J].Theor Appl Genet, 2003,106:1420-1424.
    [100] Guo P G, Bai G H, Shaner GE. AFLP and STS tagging of a major QTL for Fusarium head blight resistance in wheat[J].Theor Appl Genet,2003,106:1011-1017.
    [101] Gervais L, Dedryver F, Morlais JY, etc. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat[J]. Theor Appl Genet, 2003, 106:961-970.
    [102] Williams J, Taylor P, Bogacki P, etc. Mapping of the root lesion nematode (Pratylenchus neglectus) resistance gene Rlnn1 in wheat[J].Theor Appl Genet, 2002,104:874-879.
    [103] Raman H, Moroni S, Sato K, etc.Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley ( Hordeum vulgare L.)[J]. Theor Appl Genet,2002,105:458-464.
    [104] Bednarek PT, Lewandowska R, Golas T, etc.The chromosomal location of rye AFLP bands [J].Cell Mol.Biol.Lett.,2003,8:955-961.
    [105] Ozkan H, Brandolini A, Schafer-Pregl R, etc. AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey[J]. Mol.Biol.Evol.,2002,19:1797-1801.
    [106] Serizawa N, Nasuda S, Endo TR. Barley chromosome addition lines of wheat for screening of AFLP markers on barley chromosomes[J]. Genes Genet Syst.,2001, 76:107-110.
    [107] Anamthawat-Jonsson K. Genetic and genomic relationships in Leymus Hochst[J]. Hereditas, 2001,135: 247-253.
    [108] Milla R, Gustafson J P. Genetic and physical characterization of chromosome 4DL in wheat [J].Genome,2001, 44:883-892.
    [109] Smith P H, Korbner R, Michin P N, etc.The isolation of yellow rust resistance genes from wheat[C]. Proceedings of the 10th cereal Rusts and Powdery Mildews conference,2000, 35:91-93.
    [110] 张超,徐如宏,思彬彬,等. 用AFLP标记来自偏凸山羊草的抗条锈病新基因YrG775[J]. 中国农业科学,2006,39(4):673-678.
    [111] 曹张军,王献平,王美南,等. 小麦背景中来自华山新麦草的抗条锈病基因的遗传学分析和分子标记[J]. 遗传学报,2005,32(7):738-743.
    [112] 张娜,杨文香,门红飞,等. 小麦抗叶锈病基因Lr45的AFLP标记[J]. 中国农业科学,2005,38(7):1364-1368.
    [113] 韩洁,胡楠,李玉阁,等. 菊花品种资源遗传多样性的AFLP分析[J]. 园艺学报,2007, 34(4): 1041-1046.
    [114] Yan G P,Chen X.M., Line R.F, etc. Resistance gene-analog polymorphism markers cosegregating with the Yr5 gene for resistance to wheat stripe rust[J].Theor appl Genet,2003,106(4):636-643.
    [115] Shi Z.X., Chen X.M, Line R.F,etc. Development of resistance gene analog polymorphism markers for the Yr9 Gene resistance to wheat stripe rust.Genome,2001,44(4):509-516.
    [116] Yong G Y, Glenn R B, Saghaim M A. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site[J]. Proc. Natl. Sci USA,1993:11751-11756.
    [117] Leister D, Kurth J, Laurie D A, et al. Rapid reorganization of resistance gene homologues in cereal genomes [J]. Proc Natl Acad Sci USA, 1998, 95: 370-375.
    [118] Catherine F, Christophe R, Per K. Molecular characterization of a new type of receptor-like kinase(wlrk)gene family in wheat[J]. Plant Molecular Bilology, 1998,37:943-953.
    [119] TOhmori, Muratam, Motoyoshi F. Characterization of disease resistance gene-like sequences innear-isogenic lines of tomato[J].Theor. Appl.Genet,1998,96:331-338.
    [120] Katherine AS, Blake CK, Nurul MIF. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance gene in lettuce[J]. MIPI,1998,11(8):815-823.
    [121] Mark G M A, Bas T L H, Eric B H. Identification of R-gene homologous DNA fragment genetically linked to disease resistance loci in Arabidopsis thaliana[J]. MPMI,1998,11(4)251-258.
    [122] Li G and Quiros C F. Sequence-related amplified poly- morphism (SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brossica[J].Theor.Appl.Genet, 2001, 103 (2-3) :455-461 .
    [123] Faris J D, B.S.Gill. Genomic targeting and highresolution mapping of the domestication gene Q in wheat[J].Genome.,2002,45:706-718.
    [124] Anamthawat-Jonsson K. Genetic and genomic relationships in Leymus Hochst[J]. Hereditas,2001, 135:247-253.
    [125] Huang L, Brooks SA, Li W, etc.Map-Based Cloning of Leaf Rust Resistance Gene Lr21 From the Large and Polyploid Genome of Bread Wheat[J]. Genetics , 2003,164:655-664.
    [126] Werner M A, T.R.Endo, B.S.Gill. Towards cytogenetically based physical map of the wheat genome [J]. Proc.Natl.Acad.Sci.,1992, 89:11307-11311.
    [127] Ritsert C.Jansen, Jan-Peter Nap. Genetical genomics: the added value from segregation[J]. Trends in Genetics, 2001, 17:388-391.
    [128] Bart Brugmans, Asun Fernandez, Carmen, etc. A novel method for the construction of genome wide transcriptome maps[J]. The Plant Journal., 2002, 31:211-222.
    [129] Bevan M, Bancroft I, Bent E, etc. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature., 1998,391:485-488.
    [130] Chang Y L, Tao Q, Scheuring C, etc. An Integrated Map of Arabidopsis thaliana for Functional Analysis of Its Genome Sequence[J].Genetics., 2001, 159:1231-1242.
    [131] Yamamoto K, Sasaki T. Large-scale EST sequencing in rice [J]. Plant Mol.Biol., 1997, 35:144.
    [132] Joen I., An G. Gene tagging in rice: a high throughput system for functional genomics [J]. Plant Sci., 2001, 161:211-219.
    [133] Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J]. Science, 1992, 257:967-971.
    [134] Malatrasi M, Close T J, Marmiroli N. Identification and mapping of a putative stress response regulator gene in barley[J]. Plant Mol.Biol.,2002, 50:143-152.
    [135] Benito E P, Prins T, van Kan J A. Application of differential display RT-PCR to the analysis of gene expression in a plant-fungus interaction[J].Plant Mol.Biol.,1996,32:947-957.
    [136] Momey T, Reader S, Qu L J,etc. AFLP-based mRNA finger printing[J]. Nucl.Acids.Res.,1996,24:2616-2617.
    [137] Van der Biezen EA, Juwana H, Parker JE, etc. cDNA-AFLP display for the isolation of Peronospora parasitica genes expressed during infection in Arabidopsis thaliana[J]. Mol Plant Microbe Interact.,2000,13:895-898.
    [138] Qin L, Overmars H, Helder J,etc. An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globoderaros to chiensis[J]. Mol PlantMicrobe Interact., 2000,13:830-836.
    [139] R?der M S,Korzun V,Wendehake K, etc. A microeatcllite map of wheat[J]. Genetics, 1998, 149: 2007-2023.
    [140] Stephenson P, Bryan G, Kirby J, etc.Fifty new microsatellite loci for the wheat genetic map[J]. Theor. Appl. Genet., 1998, 97:946-949.
    [141] Pestsova E, Ganal MW, Roder MS. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat[J]. Genome, 2000, 43:689-697.
    [142] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.) [J]. Theor.Appl.Genet., 2004, 109:1105-1114.
    [143] Song Q J, Shi J R,Sigh S, etc. Development and mapping of microsatellite (SSR) markers in wheat[J].Theor Appl Genet, 2005, 110(3):550-560.
    [144] Rzun V, R?der M S, wendehake K, etc. Integration of dinucleotide microsatellite from hexaploid bread wheat into a genetic linkage map of durum wheat[J]. Theor Appl Genet,1999,98:1202-1207.
    [145] Nachit M M, Elouafi L, Pagnotta M A, etc. Molecular linkage map for an Intraspecific recombinant inbred population of durum wheat(triticum turgidum L.)[J]. Theor Appl Genet, 2001,102:177-186.
    [146] Gupta P K, Varshney R K, Sharma P C, etc. Molecular markers and their applications in wheat breeding[J]. Plant Breeding,1999,118: 369-390.
    [147] Ma J.X.,Zhou R.H.,Dong Y.S., etc. Molecular mapping and detection of the stripe rust resistance gene Yr26 in wheat transferred from Triticum turgidumL Using microsatellite markers[J]. Euphyica,2001,120:219-226.
    [148] Li Z.F,Zheng T.C,He Z.H, etc. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheatline Zhou 8425B[J]. Theor Appl Genet,2006,112:1434-1440.
    [149] 程颖,宋伟,刘志勇,等. 小麦品种贵农21抗条锈病基因的SSR标记[J]. 中国农业科学,2006,32(12):1867-1872.
    [150] 林凤,徐世昌,张立军,等. 小麦抗条锈病基因Yr2的SSR标记[J]. 麦类作物学报,2005,25 (1):17-19.
    [151] 翁东旭, 徐世昌, 万安民,等. 小麦条锈菌鉴别寄主抗条锈病基因 Yr9 的微卫星标记[J]. 遗传学报, 2005,32: 937-941.
    [152] 刘亚萍,曹双河,王献平,等. 小麦抗条锈病基因Yr24的SSR标记[J].植物病理学报,2005,35(5):478-480.
    [153] H.S.Bariana, N.Parry, I.R.Barclay, etc. Identification and characterization of stripe rust resistance gene Yr34 in common wheat[J]. Theor Appl Genet,2006,112:1143-1148.
    [154] Li G Q, Li Z F, Yang W Y, etc. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26[J]. Theor Appl Genet,2006,112:1434-1440.
    [155] Vasu Kuraparthy, Parveen Chhuneja,Harcharan S Dhaliwal, etc. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat[J]. Theor Appl Genet,2007,114:1379–1389.
    [156] Liu Z Y,Sun Q X,Ni Z F ,etc. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat origi2nating from wild emmer [J].Euphytica , 2002 ,123 :21-29.
    [157] 赵军,王军,倪中福,等. 小麦品种 Grandin 抗白粉病基因的鉴定和 SSR 标记[J]. 麦类作物学报,2007, 27(4):570-576.
    [158] 刘素兰,王长有,王秋英,等. 小麦新种质N9628-2抗白粉病基因的SSR分析[J].作物学报,2008, 34(1):84-88.
    [159] 张勇, 程顺和, 马有志, 等. 小麦抗赤霉病基因的SSR标记筛选[J]. 扬州大学学报(农业与生命科学版),2004,25(4):12-15.
    [160] 张凯鸣,马鸿翔,陆维忠,等. 小麦赤霉病与DON积累的抗性及其相关SSR位点差异[J]. 作物学报,2006,132(112):1788-1795.
    [161] Stalker HT. Utilization of wild species for crop improvement[J]. Adv Agron,1980, 33: 111-147.
    [162] 刘佩,杨敏娜,周新力,等.普通小麦-华山新麦草易位系 H9020-1-6-8-3 抗条锈病基因的遗传分析和 SSR 标记[J].植物病理学报,2008,38(1):104-107.
    [163] 周新力,吴会杰,张如佳,等.来自簇毛麦抗条锈病新基因的 SSR 标记[J]. 植物病理学报,2008,38(1):69-74.
    [164] 井金学,傅杰,袁红旭,等. 三个小麦野生近缘种抗条锈性传递的初步研究[J]. 植物病理学报,1999,29(2):147-150.
    [165] 井金学, 郭萍,李落叶,等. 柔软滨麦草及其杂交后代抗条锈性的研究[J]. 西北农林科技大学(自然科学版),2001(6):107-110.
    [166] 王长有, 吉万全, 薛秀庄. 小麦-中间偃麦草异附加系条锈病抗性的研究[J]. 西北植物学报,1999, 19 (6) : 54-58.
    [167] 王长有, 吉万全, 王秋英,等. 小麦—中间偃麦草抗条锈衍生系的分子细胞遗传学研究[J].西北植物学报,2002, 22 (3) : 530-534.
    [168] 张宏, 罗恒, 吉万全, 等. 一个小麦-中间偃麦草异代换系抗条锈病的遗传研究[J].麦类作物学报,2003, 23 (1) : 31-33.
    [169] 胡英考, 辛志勇, 陈孝,等. 抗条锈病小麦—中间偃麦草异附加系的生化与分子标记[J]. 西北植物学报,2002, 22 (1) : 136-140.
    [170] 祁适雨,肖志敏,辛文利,等. “远中”号小偃麦在小麦育种中的应用[J]. 麦类作物学报,2000,20(1):l0-15.
    [171] 李振岐,商鸿生. 小麦锈病及其防治[M]. 上海科技出版社,1989.
    [172] 刘孝坤. 小麦抗源对条锈病的抗性遗传研究初报[J]. 植物保护学报,1988,15(1):33-39.
    [173] 王关林,方宏筠. 植物基因工程[第二版] [M]. 北京:科学出版社,2001.
    [174] Tixier MH, Sourdille P, Roder M, etc. Detection of wheat microsatellites using a non radioactive silver-nitrate staining method[J]. Genet. & Breed,1997,51:175-177.
    [175] 刘仁虎,孟金陵. MapDraw 在 Excel 中绘制遗传连锁图的宏[J]. 遗传,2003,25(3):317-321.
    [176] Chen X M,Jones S,Line R F. Chromosomal Location of Genes for Resistance to Puccinia striiformis in Seven Wheat Cultivars with Resistance Genes at the Yr3 and Yr4 Loci[J]. Phytopathology, 1996, 86: 1228-1233.
    [177] Chen X M, Jones S, Line R F. Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee, and Lemhi and interactions of A neuploid wheat with races of Puccinias triiformis[J]. Phytopathology, 1995, 85: 375-381.
    [178] Chen X.M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat[J].Can.J.Plant Patho,2005,27:314-337.
    [179] McIntosh R.A., Devos, K.M., Dubcovsky J, etc. Catalogue of gene symbols for wheat: 2004 supplement [online]. Available from http://grain.jouy.inra.fr/ggpages/wgc/2004upd.html [accessed 31 December 2004]. 2004.
    [180] 周祥椿, 杜久元, 鲁清林. 小麦条锈病抗源材料筛选和抗条锈病基因库组建研究[J]. 麦类作物学报, 2005, 25(1):6-12.
    [181] 王彦梅, 钟冠昌, 穆素梅, 等. 小麦品种“高优 503”抗条锈基因染色体定位[J]. 作物学报, 2001, 27: 384-386.
    [182] 钟冠昌. 优质面包小麦新品种高优 503 的选育与推广[J]. 中国科学院院刊,2001,6:438-440.
    [183] Bariana H.S., Hayden M. J.,Ahmed N.U., etc. Mapping of durable adult plant and seedling resistances to stripe rust and stemrust disease in wheat[J]. Australian Journal of Agricultural Research,2001,52:1247-1255.
    [184] Bariana H.S., McIntosh R.A. Cytogenetic studies in wheat XIV. Location of rust resistance genes in VPMl and their genetic linkage with other disease resistance genes in chromosome 2 A[J]. Genome,1993,36:476-482.
    [185] Riley R.,Chapman V., Johnson R.The incorporation of aliend isease resistancein wheat by genetic interference with there gulation of meiotic chromosomesynapsis[J]. Genetical Research Cambridge,1968b,12:199-219.
    [186] Eriksen L,Afshari E,Christiansen M.J,etc. Yr32 for resistance to stripe rust present in the wheat cultivar CarstensV[J]. Theoretical and Applied Genetics,2004,108:567-575.
    [187] Dilbirligi M, Erayman M, Sandhu D, etc. Identification of wheat chromosomal regions containing expressed resistance genes[J].Genetics, 2004, 166: 461-481.
    [188] 赵文生, 徐世昌, 张敬原, 等. 小麦条锈菌鉴别寄主尤皮Ⅱ号抗条锈性遗传分析[J]. 植物保护学报, 2004, 31(2): 127-133.
    [189] 井金学,徐智斌,王殿波,等. 小偃 6 号抗条锈性遗传分析[J]. 中国农业科学:2007,40(3):499-504.
    [190] H.S.Bariana,N.Parry,I.R.Barclay,etc.Identification and characterization of stripe rust resistance gene Yr34 in common wheat[J]. Theor Appl Genet,2006,112:1143-1148.
    [191] 姚秋燕. 小麦品种小偃 6 号高温抗条锈性遗传机制的研究[D]. 西北农林科技大学硕士论文. 2006.
    [192] 曹张军, 井金学, 王美南, 等. 国内重要抗源品种水源 11、水源 92 及 Hybrid46 抗条锈基因关系分析[J]. 西北植物学报,2003,23(1):64-68.
    [193] Chen X M, Jones S, Line R F. ChromosomaL location of Genes for Resistance to Puccinias triifurmis in Winter Wheat Cultivars Heines VII , Clement , Moro , lee , and Daws[J]. PHYTOPATHOLOGY,1995,.85(11):1362-1367.
    [194] 曹世勤, 金明安, 骆惠生. 2002~2003 年甘肃省小麦条锈菌生理小种监测结果[J]. 植物保护,2005,31(2):44-47.