Sirt1对血管平滑肌细胞迁移的影响及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究Sirt1通过AP-1抑制基质金属蛋白酶MMP-9 (matrix metalloproteinase-9)的表达及活性继而抑制血管平滑肌的迁移反应。
     背景:Sirtl(Sirtuin 1)是酵母染色质沉默因子(Silent information regulator 2,Sir2)的哺乳动物同源体,属于Ⅲ类组蛋白去乙酰化酶,在人类的七个Ⅲ类组蛋白去乙酰化酶成员中Sirt1与Sir2同源性最高。Sirt1在许多生理病理过程包括胚胎发育、组织分化、代谢调节和抵御损伤方面发挥重要作用。Sirt1作为去乙酰化酶不仅可以去乙酰化组蛋白(H3,H4),而且可以与很多转录因子和转录辅因子相互作用,通过调节它们的转录活性来实现其应激抵抗、损伤修复、抗炎、抗氧化、抗凋亡及延缓衰老等功能,这些转录因子包括:p53,FOXO家族,NF-κBp65,MyoD等;转录辅因子包括:NcoR, p300, PGC-1α等。
     血管重塑是一个多因素参与的复杂的动态过程,包括血管容积、组成成分、构型和弹性等的改变;其内容至少包括血管平滑肌细胞的增殖、迁移、凋亡以及基质成分合成、降解及重新排列等过程;血管重塑又是血管对外界刺激的复杂反应过程,包括信号的感受、转导和调节因子的合成、释放,最后产生血管结构变化。不适当的血管重塑是动脉粥样硬化、肺动脉高压、系统性高血压、腹主动脉瘤及经皮腔内血管成形术后再狭窄等心血管疾病的重要病理基础。基质金属蛋白酶表达及活性异常是导致血管重塑的重要分子机制。基质金属蛋白酶主要功能是降解和再塑造细胞外基质,维持细胞外基质的动态平衡。血管重塑中VSMC的增殖、迁移及细胞外基质的降解都有MMPs的参与。其中基质金属蛋白酶MMP-9在血管重塑中扮演了重要的角色。在正常状态下,血管平滑肌中MMP-9表达量极少,而在血管重塑的驱动因素如炎性细胞因子、激素、生长因子刺激和氧化应激作用下其表达量上升。
     材料和方法:本实验首先应用RT-PCR、Western blotting、免疫荧光、免疫组化等方法检测了Sirt1在球囊损伤的颈总动脉和TNF-α处理的血管平滑肌细胞中的表达变化。随后通过过表达和干扰Sirt1,应用损伤愈合实验和跨膜迁移实验观察基础水平和TNF-α诱导后Sirt1对血管平滑肌细胞迁移能力的影响。用荧光素酶报告系统、免疫共沉淀、免疫荧光、ChIP、Western blotting检测Sirt1通过去乙酰化c-Jun/c-Fos,抑制AP-1的活性,并对AP-1下游基因MMP-9表达及功能的影响。最后采用Western blotting及免疫组化的方法观察了动脉血管平滑肌特异性Sirt1转基因鼠颈总动脉结扎模型中MMP-9的表达和活性变化。
     结果:本研究发现球囊损伤的大鼠颈总动脉和TNF-α处理的血管平滑肌细胞中Sirt1表达升高。实验表明腺病毒介导的Sirt1过表达可以抑制基础水平和TNF-α诱导的原代血管平滑肌细胞的迁移能力,而干扰Sirt1之后,增加了其迁移能力。并且发现Sirt1抑制与血管平滑肌细胞迁移密切相关的基质金属蛋白酶MMP-9的表达及活性,这在一定程度上诠释了Sirt1抑制血管平滑肌迁移的分子机制。进一步研究表明Sirt1在血管平滑肌中通过与AP-1的两个亚基c-Jun/c-Fos相互作用并使之去乙酰化继而影响了AP-1的转录活性,这可能是导致Sirt1抑制MMP-9表达变化的分子基础。动脉血管平滑肌特异性Sirt1转基因鼠颈总动脉结扎1天的模型中进一步验证了Sirt1对MMP-9表达和活性的抑制作用。
     结论:我们首次发现在球囊损伤的大鼠颈总动脉和TNF-α处理的血管平滑肌细胞中Sirt1表达上调。在血管平滑肌中,Sirt1通过与c-Jun/c-Fos结合并降低c-Jun/c-Fos乙酰化水平,抑制AP-1转录活性,从而降低MMP-9的表达及活性并抑制血管平滑肌的迁移反应。因此,提高Sirt1的表达和活性可以作为逆转血管重塑早期血管平滑肌迁移反应,继而影响血管重塑病理过程,改善血管重塑相关疾病的一个新手段。
Target-To investigate the effects of Sirtl on TNF-a-induced VSMC migration and further elucidate the possible underlying mechanisms.
     Background- Sirtl (Sirtuinl), which belongs to classⅢhistone deacetylase (HDAC), is the closest homology to yeast Sir2 in the seven members of human classⅢHDAC. Human Sirtl plays important roles in embryonic development, differentiation, metabolic regulation and stress resistance. As a deacetylase, Sirtl exerts its protective function in apoptosis, stress resistance, cell senescence and inflammation through deacetylating a broad array of targets, including histones (H3, H4), many important transcription factors (p53, FOXO, Ku70, NF-KBp65) and transcription coactivators such as p300, NcoR, PGC-1αand so on.
     Vascular remodeling presents a complicated dynamic process, including the vascular alteration of capacity, components, configuration and elasticity; and comprising vascular smooth muscle cell proliferation, migration, apoptosis and matrix synthesis, degradation and rearrangement. The biologic process of vascular remodeling may be divided into the following steps:the detection of signals due to changes in hemodynamic conditions and humoral factors (sensors); the relay of signals within the cell and to adjacent cells (transducers); the synthesis and release or activation of substances that influence cell growth, death, or migration or the composition of the extracellular matrix (mediators); and the resultant structural changes in the vessel wall (both cellular and noncellular components). Inappropriate vascular remodeling underlies the pathogenesis of major cardiovascular diseases, such as atherosclerosis, pulmonary hypertension, systemic hypertension, abdominal aneurysm and restenosis after angioplasty. Matrix metalloproteinases (MMPs) potentially participate the vascular remodeling evolve and change through degradation and reorganization of the extracellular matrix (ECM) scaffold of the vessel wall, and regulation VSMCs proliferation and migration. Among them, MMP-9 plays a pivotal role in vascular migration. There is so little MMP-9 expression in quiescent condition, however, the major drivers of vascular remodeling, hemodynamics, injury, inflammation, and oxidative stress, increase MMP-9 expression and activity severely.
     Methods-Using luciferase reporter assay, immunofluorescence,immunohistochemistry, RT-PCR and Western blotting, we examined the expression of Sirtl in VSMCs incubated with and without TNF-a and in rat carotid artery with balloon injury. Following that we observed the effects of Sirtl on VSMCs migration capability through wound closure and transwell migration assays. Using immunoprecipitation, immunofluorescence, luciferase reporter assay, Western blotting and ChIP, we identified the deacetylase function of Sirtl to c-Jun/c-Fos (AP-1), further more, examined the effect of Sirtl on MMP-9, one of classic AP-1 target genes. Using Western blotting and immunohistochemistry we further detected the effects of Sirtl on MMP-9 expression and activity in VSMC -specific Sirtl transgenic mice subjected carotid artery ligation injury.
     Results-Sirtl is up-regulated in carotid artery balloon injury model or in VSMCs treated with TNF-a. Overexpression of Sirtl represses VSMCs migration capability in basic or TNF-a-induced state and vice versa. Sirtl interacts with and deacetylates c-Jun/c-Fos (two subunits of AP-1), and decreases the transcriptional activity of AP-1. The expression of MMP-9, a typical AP-1 target gene, is inhibited in VSMCs transfected with adenovirus-mediaced Sirtl, The similar findings are also observed in VSMC -specific Sirtl transgenic mice subjected carotid artery ligation injury.
     Conclusion- To our knowledge, this report demonstrates for the first time that Sirtl is up-regulated in TNF-a-induced VSMCs and artery under injury. VSMCs migration capability is repressed by Sirtl. Sirtl can interact with and deacetylate c-Jun/c-Fos. to regulate its transcriptional activity and its target gene MMP-9 in VSMCs and mice model. We conclude that Sirtl exerts its protective role through inhibiting the expression of MMP-9 in VSMC migration which may ameliorate the impairment of inappropriate vascular remodeling.
引文
Abdelmohsen, K., R. Pullmann, Jr., et al. (2007).“Phosphorylation of HuR by Chk2 regulates SIRT1 expression.”Mol Cell 25(4):543-57.
    Angel, P., M. Imagawa, et al. (1987).“Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor.”Cell 49(6):729-39.
    arger, J. L., T. Kayo, et al. (2008).“A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice.”PLoS ONE 3(6):e2264.
    Baumbach, G. L. and D. D. Heistad (1989).“Remodeling of cerebral arterioles in chronic hypertension.”Hypertension 13(6 Pt 2):968-72.
    Braunwald, E. (1997).“Shattuck lecture-cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities.”N Engl J Med 337(19):1360-9.
    Brunet, A., L. B. Sweeney, et al. (2004).“Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase.”Science 303(5666):2011-5.
    Chen, B. P., Y. S. Li, et al. (2001).“DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress.”Physiol Genomics 7(1):55-63.
    Chen, D. and L. Guarente (2007).“SIR2:a potential target for calorie restriction mimetics.”Trends Mol Med 13(2):64-71.
    Chen, J., Y. Zhou, et al. (2005).“SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling.”J Biol Chem 280(48):40364-74.
    Chen, Y., R. C. Budd, et al. (2006).“Augmentation of proliferation of vascular smooth muscle cells by plasminogen activator inhibitor type 1.”Arterioscler Thromb Vasc Biol 26(8):1777-83.
    Chicoine, E., P. O. Esteve, et al. (2002).“Evidence for the role of promoter methylation in the regulation of MMP-9 gene expression.”Biochem Biophys Res Commun 297(4):765-72.
    Cho, A. and M. A. Reidy (2002).“Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury.”Circ Res 91(9):845-51.
    Clark, I. M., T. E. Swingler, et al. (2008).“The regulation of matrix metalloproteinases and their inhibitors.”Int J Biochem Cell Biol 40(6-7):1362-78.
    Cohen, H. Y, S. Lavu, et al. (2004).“Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis.”Mol Cell 13(5):627-38.
    Couillard, J., M. Demers, et al. (2006).“The role of DNA hypomethylation in the control of stromelysin gene expression.”Biochem Biophys Res Commun 342(4):1233-9.
    Csiszar, A., N. Labinskyy, et al. (2008).“Vasoprotective effects of resveratrol and SIRT1:attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations.”Am J Physiol Heart Circ Physiol 294(6):H2721-35.
    Daitoku, H., M. Hatta, et al. (2004).“Silent information regulator 2 potentiates Foxol-mediated transcription through its deacetylase activity.”Proc Natl Acad Sci U S A 101(27):10042-7.
    Dickhout, J. G. and R. M. Lee (1997).“Structural and functional analysis of small arteries from young spontaneously hypertensive rats.”Hypertension 29(3):781-9.
    Feldman, L. J., M. Mazighi, et al. (2001).“Differential expression of matrix metalloproteinases after stent implantation and balloon angioplasty in the hypercholesterolemic rabbit.”Circulation 103(25): 3117-22.
    Ferns, G. A., E. W. Raines, et al. (1991).“Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF.”Science 253(5024):1129-32.
    Fontana, L., T. E. Meyer, et al. (2004).“Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans.”Proc Natl Acad Sci U S A 101(17):6659-63.
    Frame, M. D. and I. H. Sarelius (2000).“Flow-induced cytoskeletal changes in endothelial cells growing on curved surfaces.”Microcirculation 7(6 Pt 1):419-27.
    Frye, R. A. (1999).“Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity.” Biochem Biophys Res Commun 260(1):273-9.
    Fu, M., M. Liu, et al. (2006).“Hormonal control of androgen receptor function through SIRT1.”Mol Cell Biol 26(21):8122-35.
    Fulco, M., R. L. Schiltz, et al. (2003).“Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state.”Mol Cell 12(1):51-62.
    Fung, Y. C. and S. Q. Liu (1993).“Elementary mechanics of the endothelium of blood vessels.”J Biomech Eng 115(1):1-12.
    Gavin, P. J., S. E. Crawford, et al. (2003).“Systemic arterial expression of matrix metalloproteinases 2 and 9 in acute Kawasaki disease.”Arterioscler Thromb Vasc Biol 23(4):576-81.
    Gerhart-Hines, Z., J. T. Rodgers, et al. (2007).“Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha.”Embo J 26(7):1913-23.
    Gibbons, G. H. and V. J. Dzau (1994).“The emerging concept of vascular remodeling.”N Engl J Med 330(20):1431-8.
    Godin, D., E. Ivan, et al. (2000).“Remodeling of carotid artery is associated with increased expression of matrix metalloproteinases in mouse blood flow cessation model.”Circulation 102(23):2861-6.
    Guarente, L. (2000).“Sir2 links chromatin silencing, metabolism, and aging.”Genes Dev 14(9): 1021-6.
    Guarente, L. and F. Picard (2005).“Calorie restriction—the SIR2 connection.”Cell 120(4):473-82.
    Hamet, P., D. deBlois, et al. (1996).“Apoptosis and vascular wall remodeling in hypertension.”Can J Physiol Pharmacol 74(7):850-61.
    Hamet, P., P. Moreau, et al. (1996).“The time window of apoptosis:a new component in the therapeutic strategy for cardiovascular remodeling.”J Hypertens Suppl 14(5):S65-70.
    Hay, D. C., C. Beers, et al. (2003).“Activation of NF-kappaB nuclear transcription factor by flow in human endothelial cells.”Biochim Biophys Acta 1642(1-2):33-44.
    Heeneman, S., J. C. Sluimer, et al. (2007).“Angiotensin-converting enzyme and vascular remodeling.” Circ Res 101(5):441-54.
    Hsueh, W. A., S. Jackson, et al. (2001).“Control of vascular cell proliferation and migration by PPAR-gamma:a new approach to the macrovascular complications of diabetes.”Diabetes Care 24(2): 392-7.
    Hursting, S. D., J. A. Lavigne, et al. (2003).“Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans.”Annu Rev Med 54:131-52.
    Jalil, J. E., J. S. Janicki, et al. (1991).“Coronary vascular remodeling and myocardial fibrosis in the rat with renovascular hypertension. Response to captopril.”Am J Hypertens 4(1 Pt 1):51-5.
    Jenkins, G. M., M. T. Crow, et al. (1998).“Increased expression of membrane-type matrix metalloproteinase and preferential localization of matrix metalloproteinase-2 to the neointima of balloon-injured rat carotid arteries.”Circulation 97(1):82-90.
    Jovinge, S., A. Hultgardh-Nilsson, et al. (1997).“Tumor necrosis factor-alpha activates smooth muscle cell migration in culture and is expressed in the balloon-injured rat aorta.”Arterioscler Thromb Vasc Biol 17(3):490-7.
    Kaeberlein, M., M. McVey, et al. (1999).“The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms.”Genes Dev 13(19):2570-80.
    Karin, M. (1995).“The regulation of AP-1 activity by mitogen-activated protein kinases.”J Biol Chem 270(28):16483-6.
    Karin, M., Z. Liu, et al. (1997).“AP-1 function and regulation.”Curr Opin Cell Biol 9(2):240-6.
    Kume, S., M. Haneda, et al. (2007).“SIRT1 Inhibits Transforming Growth Factor beta-Induced Apoptosis in Glomerular Mesangial Cells via Smad7 Deacetylation.”J Biol Chem 282(1):151-158.
    Kyriakis, J. M. and J. Avruch (2001).“Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.”Physiol Rev 81(2):807-69.
    Labinskyy, N., A. Csiszar, et al. (2006).“Vascular dysfunction in aging:potential effects of resveratrol, an anti-inflammatory phytoestrogen.”Curr Med Chem 13(9):989-96.
    Lake, A. C., A. Bialik, et al. (2003).“CCN5 is a growth arrest-specific gene that regulates smooth muscle cell proliferation and motility.”Am J Pathol 162(1):219-31.
    Langley, E., M. Pearson, et al. (2002).“Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence.”Embo J 21(10):2383-96.
    Lee, B. and S. K. Moon (2005).“Resveratrol inhibits TNF-alpha-induced proliferation and matrix metalloproteinase expression in human vascular smooth muscle cells.”J Nutr 135(12):2767-73.
    Lee, H. Y., J. W. Chung, et al. (2007).“Forkhead transcription factor FOXO3a is a negative regulator of angiogenic immediate early gene CYR61, leading to inhibition of vascular smooth muscle cell proliferation and neointimal hyperplasia.”Circ Res 100(3):372-80.
    Leibiger, I. B. and P. O. Berggren (2006).“Sirtl:a metabolic master switch that modulates lifespan.” Nat Med 12(1):34-6; discussion 36.
    Lekakis, J., L. S. Rallidis, et al. (2005).“Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease.”Eur J Cardiovasc Prev Rehabil 12(6): 596-600.
    Liu, Y, B. P. Chen, et al. (2002).“Shear stress activation of SREBP1 in endothelial cells is mediated by integrins.”Arterioscler Thromb Vasc Biol 22(1):76-81.
    Liu, Z., Y. Song, et al. (2005).“Effects of trans-resveratrol on hypertension-induced cardiac hypertrophy using the partially nephrectomized rat model.”Clin Exp Pharmacol Physiol 32(12): 1049-54.
    Lovett, J. K. and P. M. Rothwell (2003).“Site of carotid plaque ulceration in relation to direction of blood flow:an angiographic and pathological study.”Cerebrovasc Dis 16(4):369-75.
    Luo, J., A. Y. Nikolaev, et al. (2001).“Negative control of p53 by Sir2alpha promotes cell survival under stress.”Cell 107(2):137-48.
    Ma, Z., R. C. Shah, et al. (2004).“Coordination of cell signaling, chromatin remodeling, histone modifications, and regulator recruitment in human matrix metalloproteinase 9 gene transcription.”Mol Cell Biol 24(12):5496-509.
    Malek, A. M., S. L. Alper, et al. (1999).“Hemodynamic shear stress and its role in atherosclerosis.” Jama 282(21):2035-42.
    Mason, D. P., R. D. Kenagy, et al. (1999).“Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery.”Circ Res 85(12):1179-85.
    McMillan, W. D. and W. H. Pearce (1999).“Increased plasma levels of metalloproteinase-9 are associated with abdominal aortic aneurysms.”J Vasc Surg 29(1):122-7; discussion 127-9.
    Mehta, P. K. and K. K. Griendling (2007).“Angiotensin Ⅱ cell signaling:physiological and pathological effects in the cardiovascular system.”Am J Physiol Cell Physiol 292(1):C82-97.
    Miyazaki, R., T. Ichiki, et al. (2008).“SIRT1, a longevity gene, downregulates angiotensin Ⅱ type 1 receptor expression in vascular smooth muscle cells.”Arterioscler Thromb Vasc Biol 28(7):1263-9.
    Motta, M. C., N. Divecha, et al. (2004).“Mammalian SIRT1 represses forkhead transcription factors.” Cell 116(4):551-63.
    Moynihan, K. A., A. A. Grimm, et al. (2005).“Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice.”Cell Metab 2(2):105-17.
    Nemoto, S., M. M. Fergusson, et al. (2004).“Nutrient availability regulates SIRT1 through a forkhead-dependent pathway.”Science 306(5704):2105-8.
    Nerem, R. M., R. W. Alexander, et al. (1998).“The study of the influence of flow on vascular endothelial biology.”Am J Med Sci 316(3):169-75.
    Newby, A. C. (2006).“Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates.”Cardiovasc Res 69(3): 614-24.
    Newby, A. C., R. P. Fabunmi, et al. (1995).“Neointimal fibrosis in vascular pathologies:role of growth factors and metalloproteinases in vascular smooth muscle proliferation.”Exp Nephrol 3(2):108-13.
    Ota, H., M. Akishita, et al. (2007).“Sirtl modulates premature senescence-like phenotype in human endothelial cells.”J Mol Cell Cardiol 43(5):571-9.
    Pagans, S., A. Pedal, et al. (2005).“SIRT1 regulates HIV transcription via Tat deacetylation.”PLoS Biol 3(2):e41.
    Pearson, K. J., J. A. Baur, et al. (2008).“Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span.”Cell Metab.
    Peng, L., N. Bhatia, et al. (2002).“Endogenous vitronectin and plasminogen activator inhibitor-1 promote neointima formation in murine carotid arteries.”Arterioscler Thromb Vasc Biol 22(6):934-9.
    Penumathsa, S. V., M. Thirunavukkarasu, et al. (2007).“Statin and resveratrol in combination induces cardioprotection against myocardial infarction in hypercholesterolemic rat.”J Mol Cell Cardiol 42(3): 508-16.
    Pfluger, P. T., D. Herranz, et al. (2008).“Sirtl protects against high-fat diet-induced metabolic damage.”Proc Natl Acad Sci U S A 105(28):9793-8.
    Porter, K. E., J. Naik, et al. (2002).“Simvastatin inhibits human saphenous vein neointima formation via inhibition of smooth muscle cell proliferation and migration.”J Vasc Surg 36(1):150-7.
    Porter, K. E. and N. A. Turner (2002).“Statins for the prevention of vein graft stenosis:a role for inhibition of matrix metalloproteinase-9.”Biochem Soc Trans 30(2):120-6.
    Prozorovski, T., U. Schulze-Topphoff, et al. (2008).“Sirtl contributes critically to the redox-dependent fate of neural progenitors.”Nat Cell Biol 10(4):385-94.
    Rajendrasozhan, S., S. R. Yang, et al. (2008).“SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease.”Am J Respir Crit Care Med 177(8):861-70.
    Rodgers, J. T., C. Lerin, et al. (2005).“Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1.”Nature 434(7029):113-8.
    Rogina, B. and S. L. Helfand (2004).“Sir2 mediates longevity in the fly through a pathway related to calorie restriction.”Proc Natl Acad Sci U S A 101(45):15998-6003.
    Shyy, J. Y. and S. Chien (2002).“Role of integrins in endothelial mechanosensing of shear stress.”Circ Res 91(9):769-75.
    Sluijter, J. P., D. P. de Kleijn, et al. (2006).“Vascular remodeling and protease inhibition—bench to bedside.”Cardiovasc Res 69(3):595-603.
    Southgate, K. M., M. Fisher, et al. (1996).“Upregulation of basement membrane-degrading metalloproteinase secretion after balloon injury of pig carotid arteries.”Circ Res 79(6):1177-87.
    Spinale, F. G, M. L. Coker, et al. (1998).“Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure:relation to ventricular and myocyte function.”Circ Res 82(4):482-95.
    Tissenbaum, H. A. and L. Guarente (2001).“Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans.”Nature 410(6825):227-30.
    Touyz, R. M. (2005).“Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension:role of angiotensin Ⅱ.”Exp Physiol 90(4):449-55.
    Touyz, R. M. (2005).“Molecular and cellular mechanisms in vascular injury in hypertension:role of angiotensin Ⅱ.”Curr Opin Nephrol Hypertens 14(2):125-31.
    Ungvari, Z., Z. Orosz, et al. (2007).“Resveratrol increases vascular oxidative stress resistance.”Am J Physiol Heart Circ Physiol 292(5):H2417-24.
    Van den Steen, P. E., B. Dubois, et al. (2002).“Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9).”Crit Rev Biochem Mol Biol 37(6):375-536.
    Vaquero, A., M. Scher, et al. (2004).“Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin.”Mol Cell 16(1):93-105.
    Vaziri, H., S. K. Dessain, et al. (2001).“hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase.”Cell 107(2):149-59.
    Walsh, K., R. C. Smith, et al. (2000).“Vascular cell apoptosis in remodeling, restenosis, and plaque rupture.”Circ Res 87(3):184-8.
    Wang, C., L. Chen, et al. (2006).“Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage.”Nat Cell Biol 8(9):1025-31.
    Wilson, T., T. J. Knight, et al. (1996).“Resveratrol promotes atherosclerosis in hypercholesterolemic rabbits.”Life Sci 59(1):PL15-21.
    Wolf, G. (2006).“Calorie restriction increases life span:a molecular mechanism.”Nutr Rev 64(2 Pt 1): 89-92.
    Yan, C. and D. D. Boyd (2007).“Regulation of matrix metalloproteinase gene expression.”J Cell Physiol 211(1):19-26.
    Yan, C., H. Wang, et al. (2003).“Repression of 92-kDa type IV collagenase expression by MTA1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation.”J Biol Chem 278(4):2309-16.
    Yeung, F., J. E. Hoberg, et al. (2004).“Modulation of NF-kappaB-dependent transcription and cell survival by the SIRTI deacetylase.”Embo J 23(12):2369-80.
    Zhang, L., K. Peppel, et al. (2004).“Vein graft neointimal hyperplasia is exacerbated by tumor necrosis factor receptor-1 signaling in graft-intrinsic cells.”Arterioscler Thromb Vasc Biol 24(12):2277-83.
    Zhang, Y., C. Liu, et al. (2007).“PGC-1 alpha inhibits oleic acid induced proliferation and migration of rat vascular smooth muscle cells.”PLoS ONE 2(11):e1137.
    Zimmerman, M. A., C. H. Selzman, et al. (2002).“Lack of TNF-alpha attenuates intimal hyperplasia after mouse carotid artery injury.”Am J Physiol Regul Integr Comp Physiol 283(2):R505-12.
    1. Kannel, W. B. Vital epidemiologic clues in heart failure.J. Clin. Epidemiol.53, 229-235 (2000).
    2. Hobbs, R. E. Guidelines for the diagnosis andmanagement of heart failure. Am. J. Ther.11,467-472(2004).
    3. Levy, D. et al. Long-term trends in the incidence of andsurvival with heart failure. N. Engl. J.Med.347,1397-1402 (2002)
    4. Zannad, F. et al. Incidence, clinical and etiologicfeatures, and outcomes of advanced chronic heartfailure:the EPICAL study. Epidemiologie del'Insuffisance Cardiaque Avancee en Lorraine. J. Am.Coll. Cardiol.33,734-742 (1999)
    5. Haldeman, G. A., Croft, J. B., Giles, W. H.&Rashidee, A. Hospitalization of patients with heartfailure:national hospital discharge survey,1985 to 1995. Am. Heart J.137,352-360(1999).
    6. Malek, M. Health economics of heart failure. Heart 82(Suppl.4), Ⅳ11-Ⅳ13 (1999)
    7. Wilkins, B. J.& Molkentin, J. D. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem. Biophys. Res. Commun.322,1178-1191(2004).
    8. Wu, X. et al. Local InsP(3)-dependent perinuclear Casignaling in cardiac myocyte excitation-transcriptioncoupling. J. Clin. Invest.116,675-682 (2006)..
    9. Ross, R. S.& Borg, T. K. Integrins and themyocardium. Circ. Res.88,1112-1119 (2001)
    10. Brancaccio, M. et al. Melusin, a muscle-specificintegrin β1-interacting protein, is required to preventcardiac failure in response to chronic pressureoverload. Nature Med.9,68-75 (2003)
    11. Heineke, J. et al. Attenuation of cardiac remodelingafter myocardial infarction by muscle LIM proteincalcineurinsignaling at the sarcomeric Z-disc. Proc.Natl Acad. Sci. USA 102,1655-60(2005)
    12. Zou, Y. et al. Mechanical stress activates angiotensin Ⅱtype 1 receptor without the involvement ofangiotensin Ⅱ. Nature Cell Biol.6,499-506 (2004)
    13. Garrington,T.P.& Johnson, G. L. Organization andregulation of mitogen-activated protein kinasesignaling pathways. Curr. Opin. Cell Biol.11,211-218(1999).
    14. Sugden, P. H.& Clerk, A.‘Stress-responsive’mitogen activated protein kinases (c-Jun N-terminal kinase sand p38 mitogen-activated protein kinases) in themyocardium. Circ. Res.83,345-352 (1998).
    15. Yamamoto, S. et al. Activation of Mstl causes dilatedcardiomyopathy by stimulating apoptosis withoutcompensatory ventricular myocyte hypertrophy.J. Clin. Invest. 111,1463-1474(2003)
    16.. Bueno, O. F. et al. The MEK1-ERK1/2 signalingpathway promotes compensated cardiac hypertrophyin transgenic mice. EMBO J.19,6341-6350(2000).
    17.. Sanna, B., Bueno, O. F., Dai, Y. S., Wilkins, B. J.&Molkentin, J. D. Direct and indirect interactionsbetween calcineurin-NFAT and MEK1 extracellularsignal-regulated kinase 1/2 signaling pathwaysregulate cardiac gene expression and cellular growth.Mol. Cell. Biol.25,865-878 (2005).
    18. Hunter, J. J., Tanaka, N., Rockman, H. A., Ross, J. Jr.& Chien, K. R. Ventricular expression of a MLC-2v-rasfusion gene induces cardiac hypertrophy and selectivediastolic dysfunction in transgenic mice. J. Biol. Chem.270,23173-23178 (1995).
    19. Molkentin, J. D.& Dorn, G. W.2nd. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol.63,391-426 (2001)
    20. Baccarini, M. Second nature:biological functions ofthe Raf-1‘kinase’. FEBS Lett.579,3271-3277(2005).
    21. Hindley, A.& Kolch, W. Extracellular signal regulatedkinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J. CellSci. 115,1575-1581(2002).
    22. Nicol, R. L. et al. Activated MEK5 induces serialassembly of sarcomeres and eccentric cardiachypertrophy. EMBO J.20,2757-2767 (2001).
    23. Liao, P. et al. The in vivo role of p38 MAPkinases in cardiac remodeling and restrictive cardiomyopathy.Proc. Natl Acad. Sci. USA 98,12283-12288(2001).
    24. Zhang, D. et al. TAK1 is activated in the myocardiumafter pressure overload and is sufficient to provokeheart failure in transgenic mice. Nature Med.6,556-563 (2000).
    25. Petrich, B. G. et al. c-Jun N-terminal kinase activation mediates downregulation of connexin43 incardiomyocytes. Circ. Res.91,640-647 (2002).
    26. Petrich, B. G., Molkentin, J. D.& Wang, Y. Temporal activation of c-Jun N-terminal kinase in adult transgenic heart via cre-loxP-mediated DNArecombination. FASEB J.17,749-751(2003)
    27. Molkentin, J. D. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordinationwith the MAPKs. Cardiovasc. Res.63,467-475(2004).
    28. Liang, Q. et al. c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk withcalcineurin-NFAT signaling. EMBO J.22,5079-5089(2003).
    29. Tachibana, H. et al. JNK1 is required to preservecardiac function in the early response to pressureoverload. Biochem. Biophys. Res. Commun.343,1060-1066 (2006).
    30. Kaiser, R. A. et al. Genetic inhibition or activation ofJNK1/2 protects the myocardium from ischemiareperfusion-induced cell death in vivo. J. Biol. Chem.280, 32602-32608 (2005).
    31. Braz, J. C. et al. Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy throughupregulation of calcineurin-NFAT signaling. J. Clin.Invest. 111,1475-1486(2003).
    32.. Molkentin, J. D. et al. A calcineurin-dependen ttranscriptional pathway for cardiac hypertrophy. Cell93,215-228 (1998).
    33. Wilkins, B. J. et al. Targeted disruption of NFATc3, butnot NFATc4, reveals an intrinsic defect in calcineurinmediatedcardiac hypertrophic growth. Mol. Cell. Biol.22, 7603-7613 (2002).
    34. Sanna, B. et al. Modulatory calcineurin-interactingproteins 1 and 2 function as calcineurin facilitatorsin vivo. Proc. Natl Acad. Sci. USA 103,7327-7332(2006).
    35. Zou, Y. et al. Calcineurin plays a critical role in thedevelopment of pressure overload-induced cardiachypertrophy. Circulation 104,97-101 (2001).
    36. Bueno, O. F. et al. Impaired cardiac hypertrophic response in calcineurin Aβ-deficient mice. Proc. NatlAcad. Sci. USA 99,4586-4591 (2002).
    37. Wilkins, B. J. et al. Calcineurin-NFAT couplingparticipates in pathological, but not physiological,cardiac hypertrophy. Circ. Res.94,110-118 (2004).
    38. Bueno, O. F. et al. Calcineurin Aβ gene targeting predisposes the myocardium to acute ischemiainducedapoptosis and dysfunction. Circ. Res.94,91-99 (2004).
    39. Oudit, G. Y. et al. The role of phosphorinositide-3 kinase and PTEN in cardiovascular physiology and disease. J. Mol. Cell. Cardiol.37,449-471 (2004).
    40. McMullen, J. R. et al. Phosphoinositide3-kinase(p110α) plays a critical role for the inductionof physiological, but not pathological, cardiachypertrophy. Proc. Natl Acad. Sci. USA 100,12355-12360 (2003).
    41. Luo, J. et al. Class IA phosphoinositide 3-kinaseregulates heart size and physiological cardiachypertrophy. Mol. Cell. Biol.25,9491-9502 (2005).
    42. Crackower, M. A. et al. Regulation of myocardialcontractility and cell size by distinct PI3K-PTENsignaling pathways. Cell 110,737-749 (2002).
    43. Chen, W. S. et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Aktl gene. Genes Dev.15,2203-2208 (2001).
    44. DeBosch, B. et al. Aktl is required for physiologicalcardiac growth. Circulation 113,2097-2104(2006).
    45. Shiojima, I. et al. Disruption of coordinated cardiachypertrophy and angiogenesis contributes to thetransition to heart failure. J. Clin. Invest.115,2108-2118 (2005).
    46. Shiraishi, I. et al. Nuclear targeting of Akt enhanceskinase activity and survival of cardiomyocytes. Circ.Res.94,884-891 (2004).
    47. Proud, C. G. Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc. Res.63,403-413(2004).
    48. McMullen, J. R. et al. Deletion of ribosomal S6kinases does not attenuate pathological, physiological,or insulin-like growth factor 1 receptorphosphoinositide3-kinase-induced cardiachypertrophy. Mol. Cell. Biol.24, 6231-6240(2004).
    49. Montagne, J. et al. Drosophila S6 kinase:a regulatorof cell size. Science 285, 2126-2129(1999).
    50. Vega, R. B. et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy throughnuclear export of histone deacetylase 5. Mol. Cell.Biol.24,8374-8385 (2004).
    51. Molkentin, J. D. Dichotomy of Ca in the heart:contraction versus intracellular signaling. J. Clin.Invest.116,623-626 (2006).
    52. Sparrow, D. B. et al. MEF-2 function is modified by anovel co-repressor, MITR. EMBO J.18,5085-5098(1999).
    53. Zhang, C. L. et al. Class Ⅱ histone deacetylases act assignal-responsive repressors of cardiac hypertrophy.Cell 110,479-488 (2002).
    54. Chang, S. et al. Histone deacetylases 5 and 9 governresponsiveness of the heart to a subset of stresssignals and play redundant roles in heartdevelopment. Mol. Cell. Biol. 24,8467-8476 (2004).
    55. Mei, S., Ho, A. D.& Mahlknecht, U. Role of histonedeacetylase inhibitors in the treatment of cancer(Review). Int. J. Oncol.25,1509-1519 (2004).
    56.Passier, R. et al. CaM kinase signaling induces cardiachypertrophy and activates the MEF2 transcriptionfactor in vivo. J. Clin. Invest.105,1395-1406(2000).
    57. Zhang, R. et al. Calmodulin kinase Ⅱ inhibitionprotects against structural heart disease. Nature Med.l 1,409-417 (2005).
    58. Takimoto, E. et al. Chronic inhibition of cyclic GMPphosphodiesterase 5A prevents and reverses cardiachypertrophy. Nature Med.11,214-222 (2005).