两段式曝气生物滤池处理含石油废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油勘探开发及石油化工行业的发展,含石油废水已经成为工业水污染源中较为重要的组成部分。含油废水具有毒性大、COD含量高、可生化性差等特点,对水体、土壤以及动植物健康都有较大危害。鉴于此,寻求一种经济高效、操作简单、管理方便的含油废水处理工艺具有广泛的现实意义。本文针对含石油废水的特点,采用“水解-曝气生物滤池”两段式工艺对陕西某油田经过滤后的含油废水原水进行处理,分别考察了水解段和好氧段的运行效果,确定了两段式工艺的最优工况,并对影响系统运行效果的主要因素进行了深入的试验研究和理论分析。
     (1)试验研究表明:水解段能够显著改善含油废水的可生化性、有效截留原水中的SS,并且具有较强的抗污染冲击负荷能力,能够为后续好氧段的生物降解提供稳定、良好的进水条件。在保证水力停留为7h条件下,水解池出水的BOD/COD比进水提高了0.18左右、对SS去除率可达80%以上,同时对COD和油的去除率分别可以达到34.5%和23.7%。
     (2)水力负荷、进水COD浓度、气水比是影响好氧段曝气生物滤池运行效果的重要因素。试验确定了好氧段最佳运行条件为:水力负荷为0.2,气水比为5:1。正交试验确定了各因素影响作用的大小顺序依次为水力负荷、气水比、进水COD浓度。曝气生物滤池不同高度范围的滤料层内污染物降解速度也存在着较大差异,滤柱的前30cm段COD降解效率最高,可以占到总去除率的45.7%。
     (3)通过对水解段和好氧段不同工况组合条件下出水COD、石油类的监测,确定两段式工艺的HRT为12h,(其中水解段7h,好氧段5h),好氧段气水比为5:1。COD和石油类的去除率可以分别达到94.70%和92.44%,出水COD浓度为36.4-47.1mg/L,石油类浓度为3.47-4.86mg/L,均符合GB8987-1996规定的石化废水一级排放标准。此外,工艺系统在进水油浓度不超过70mg/L时,对进水石油类具有良好的耐受性;在进水中含盐量发生突变时,系统具有较强的抗冲击负荷能力,可以有效的保证出水水质。
As the development of oil prospecting and petroleum chemical industry, oil wastewater has been one of the most important industrial pollution source. Oil wastewater has some characteristics such as high toxicity, high COD and weak biodegradability and it is harmful for the water environment, soil and the health of animals and plants. In order to solve these problems, it is widely significant to seeking for a technique which is effective feasibility, credible economy, convenient for management.
     In this paper, with respect to some characteristics of oil wastewater above mentioned, the "HOBAF" two stages type system which means the combination of Hydrolyzing and Acidification reactor, and the Biological Aerated Filter has been used to treating the oil wastewater after filtration from certain oil field of Shanxi. The running behavior of hydrolysis stage and aerobic stage was inspected respectively. At the same time, the most optimum operating condition was determined and the main factors affecting the running behavior of the systems were studied thoroughly by experimental investigation and theoretical analysis.
     The main results in this paper are listed as follows:
     (1) It is demonstrated that by the experimental results, as pretreatment device, the hydrolysis stage can enhance the biodegradability of oil wastewater significantly, intercepting SS of the influent, and it can resist the shock loading and provide stable water quality to aerobic stage. When the HRT of the two stages type system is kept in 7 hours, the BOD/COD of effluent of hydrolysis increased from 0.24 to 0.43 averagely, the SS removal rate can reach 80%. Besides, hydrolysis stage has certain contribution to the removal of oil and COD. On this condition above mentioned, removal rate of oil and COD can reach 23.7% and 34.5% respectively.
     (2) Hydraulic loadings, influent COD concentration and g/w ratio were leading factors affecting the running behavior of the BAR By the experiment, the optimum operating condition was be determined as follows:hydraulic loading is 0.2m3/m2.h, g/w ratio is 5:1. The ranking order of these leading factors was determined by orthogonal experiment as follows:hydraulic loading, g/w ratio and influent COD concentration. On the optimum operating condition, pollutants removal rate of different range of height layer of BAF is differ from one another. In the scope of the first 30cm of filter, the efficiency of COD removal rate is at the peak and the rate of the degradation is the fastest of the whole filter, accounting for 45.7% of the total removal rate.
     (3) It can be determined by the COD and petroleum types rate under combination of different operating condition that the most optimum parameters of two stages type system is HRT=12h,(hydrolysis stage is kept in 7h, aerobic stage is kept in 5h), the g/w ratio of aerobic is 5:1.On this condition, removal rate of COD and petroleum type can reach 94.7% and 92.44% respectively, effluent COD concentration is in the scope of 36.4-47.1mg/L, effluent petroleum type is in the scope of 3.47-4.86 mg/L, both of two can satisfy the request of the first grade standard about oil wastewater of GB8987-1996. In addition, when the influent oil is not exceeding 70mg/L, the two stages type system has good tolerance to the petroleum type. Meanwhile, the two stages type system has excellent ability to resist shock loading formed by sudden change of salinity, then the system can ensure the effluent water quality effectively.
引文
[1]国家环保总局.2008年中国环境质量公报[S].北京:环境科学出版社,2009:9-11.
    [2]中华人名共和国水利部.2008年中国水资源公报[R].北京:中国水利水电出版社,2009:4-5.
    [3]董国永.石油环保技术进展[M].北京:石油工业出版社,2006:34-36.
    [4]D.D.Truax, R.Brittu, J.H.Sherrard. Beneh.scalt. Studies of reactor based treatment of fuel contaminated soil[J].Waste Management 1995,115 (5-6):351-357.
    [5]、国家环保总局.石油石化工业废水处理[M].北京:中国环境科学出版社,1992:27-28.
    [6]国务院.中华人民共和国国民经济和社会发展第十一个五年规划纲要[S].北京:人民日报出版社,2006:15-16.
    [7]韩丽娟,张淑芝.采油污水处理工艺探讨[J].水资源保护,2006,22(6):62-66.
    [8]龙川,柯水洲.含油废水处理技术的研究进展[J].工业水处理,2007,27(8):36-38.
    [9]桑义敏,李发生,何绪文,李绪宝.含油废水性质及其处理技术[J].化工环保,2004,24(21):72-74.
    [10]李芳,郭辉,张轮秋.含油废水处理技术[J].油气田地面工程,2008,27(9):69-71.
    [11]高宝玉,岳钦艳,王秀芬.油田含油污水净化处理[J].环境工程,2003,12(3):12-15.
    [12]Richard G. Luthy,Robert E. Selleck,Terry R. Galloway. Surface properties of petroleum refinery waste oil emulsions Environmental Science & Technology,1977:11 (13) 1211-1217.
    [13]张鸣郭.含油废水处理研究[J].环境技术,2004,01:25-27.
    [14]张德新.炼油厂污水处理回用工艺[J].能源与环境,2008,06:36-39.
    [15]杨铁殉,蒋翼,王媛媛,段军.含油废水处理技术的研究进展[J].2007,28(5):29-32.
    [16]陈美荣,高崇峻,金美娟,孙宁.石油化工工业废水处理工艺研究[J].环境保护科学,2000,26(1):16-20.
    [17]周珊,金焰.絮凝法处理含油废水的试验研究[J].湖北师范学院学报(自然科学版),2003,23(11):55-57.
    [18]林忠胜.混凝吸附法处理含油废水的技术研究[D].大连理工大学,2004:12-13.
    [19]戴军,袁惠新,俞建峰.技术在含油废水处理中的应用[J].科学与技术,2003,5(4):35-38.
    [20]王城.超临界水氧化技术处理含石油污水的研究[J].干旱环境监测,2001(12):25-28.
    [21]Pradeep Verma, Petr Baldrian, Frantisek Nerud. Decolorization of structurally different synthetic dyes using cobalt(Ⅱ)/ascorbic acid/hydrogen peroxide system [J].Chemosphere,2003, 50:975-979.
    [22]Shyh-Fang Kang, Chih-Hsaing Liao, Mon-Chun Chen. Preoxidation and coagulation of textile wastewater by the Fenton process.Chemosphere,2002,46 (6):923-928.
    [23]P. Hap Pritchard, Charles F.Costa. EPA's Alaska oil spill bioremediation project. Part 5 Environ. Sci. Technol.,1991,25 (3),372-379.
    [24]李丽,张利平,张元亮.石油烃类化合物降解菌的研究概况[J].微生物学通报,2001,28(5):89-92.
    [25]李习武,刘志培.石油烃类的微生物降解菌[J].微生物学通报,45(6):764-767.
    [26]袁红莉,杨金水等.降解石油微生物菌种的筛选用降解特性[J].中国环境科学,2003,23(2):157-161.
    [27]聂麦茜.多环芳烃降解菌的分离及降解特性研究[D].西安建筑科技大学博士论文,12-13
    [28]林力,杨惠芳,贾省芬.石油污染土壤的生物整治研究[J].上海环境科学,2000,19(7):117-119.
    [29]Jeffrey M. Morris, Song Jin, Microbial fuel cell in enhancing anaerobic biodegradation of diesel[J].Chemical Engineering Journal 2008,12(6):145-148.
    [30]柏松林,丁雷.水解酸化工艺改善油田采出水生物降解性能[J].哈尔滨商业大学学报(自然科学版),2006,22(5):878-880.
    [31]张自杰.排水工程[M].北京:中国建筑工业出版社,2000:21-23.
    [32]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998,46-48.
    [33]赵健良等,厌氧(水解酸化)-好氧生物处理工艺及其在我国难降解有机废水处理中的应用[J].苏州大学学报,2002,22(2):84-55.
    [34]AIVASIDISA, WANDROYC. Recent developments in process and reactor design for anaerobic wastewater[J]. Wat Sci Tech,1998,20(1):211-218.
    [35]Kluge C. et al.. Anaerobic metablism of resorcyclic acid and resorcinol in a fermentation and in a denitrifying bacterium[J].Arch. Microbiol.,1990,01:68-74.
    [36]Vogel T. M.et al.. Incorporation of oxygen from water into toluene and beniene during anaerobic fermentative transformation[J]. Appl. Eniron. Microbiol.,1986,02:200-202.
    [37]彭永臻,王建龙,王淑莹,高永青.污水复合式厌氧水解酸化预处理实验研究[J].北京工业大学学报,2008,34(1):80-83.
    [38]张羽陶博.兼氧接触水解酸化预处理化工废水的试验研究[J].工业用水与废水,2008,39(4):40-43.
    [39]彭娟华,彭栩,李旭东.水解酸化改善钻井废水可生化性[J].钻井液与完井液,2007,24(5):68-70.
    [40]沈耀良,王宝贞.水解酸化工艺及其应用研究[J].哈尔滨建筑大学学报,1999,32(6):35-38.
    [41]于红兵,林学钰,杨雪梅,张兰英.超高温厌氧水解酸化特征与效果研究[J].中国环境科学,2005,25(1):75-79.
    [42]朱文亭,颜玲.污水的水解(酸化)-好氧生物处理工艺[J].城市环境与城市生态,2000,13(5):43-45.
    [43]胡天媛徐伟张秀零.水解酸化-氧化沟-BAF工艺处理皮革废水[J].给水排水,2009,35(1):59-61.
    [44]舒志明,陈忠喜等.水解酸化处理含油污水试验[J].油气田地面工程,2002,21(6):62-63.
    [45]王凯军.再论厌氧(水解)与好氧生物处理工艺-理论探讨与实践[C],污(废)水处理工程技术论文集.中国环境科学出版社,1998:21-25.
    [46]Kupferle M J Galal A Bishop PL Electrolytic treatment of azo dye wastewaters:Impact of matrix chloride content[J] Journal of Environmental Engineering,2006,132 (5):514-518.
    .[47]刘军,郭茜,瞿永彬.厌氧水解生物法处理城市污水的研究[J].给水排水,2000,26(7):10-12.
    [48]沈文.水解酸化+好氧生物接触氧化处理难降解印染废水的试验研究[D].中国海洋大学硕士论文,2002:34-37
    [49]Rinzema A. et al. Bactericidal effect of long chain fatty acids in anaerobic digestion[J]. Water Environ. Res.,1994, (1):40-49.
    [50]闻岳,黄翔峰,裘湛,章非娟,周琪.水解酸化-好氧工艺处理油田废水的研究[J].给水排水2005,31(10):54-57.
    [51]钟华文,廖艳.含油废水氨氮生物降解的试验研究[J].石油炼制与化工,2004,24(3):35-38.
    [52]白琴,董延军曝气生物滤池工艺在炼油污水处理中的应用研究[J].现代商贸工业,2008,20(11):29-32.
    [53]崔康平,钟佐燊,沈照理.上流式曝气生物滤池处理含石油废水的研究[J].地学前缘,2005,(12):26-28.
    [54]肖秀梅.曝气生物滤池在含油废水处理中的应用[J].中国给水排水,2007,23(4):31-33.
    [55]邹茂荣,彭永臻,荣宏伟.HOBAF工艺处理石化废水生产性试验研究[J].哈尔滨工业大学学报,2004,20(2):195-198.
    [56]钟华文.二段BAF工艺处理炼油厂气提废水的研究[J].工业水处理,2004,24(5): 33-35.
    [57]祝威.不同温度条件水解酸化-好氧工艺处理高矿化度采油废水[J].环境工程学报,2008,26(6):25-27.
    [58]李善评.组合式生物法处理炼油废水的研究[J].环境污染与防治,2007,29(1):57-59.
    [59]赵听,倪晋仁.曝气生物滤池处理采油废水过程中有机物的降解[J].环境化学,2007,26(3):376-379.
    [60]Gulyas. Treatment of recalcitrant organic compounds in oil reclaiming wastewater by ozone/hydrogen peroxide and UV/titanium dioxide[J].Water Science and Technology,2002,29(9): 129-132.
    [61]G.D. Ji, T.H. Sun, J.R. Ni, J.J. Tong.Anaerobic baffled reactor (ABR) for treating heavy oil produced water with high concentrations of salt and poor nutrient Bioresource Technology [J] 2009,100(7):2162-2170.
    [62]Grazyna A. Reduction of Petroleum Hydrocarbons and Toxicity in Refinery Wastewater by Bioremediation[J].Bull Environ Contam Toxicol 2005,62(3) 415-420.
    [63]张翼.含油废水处理方法研究进展[J].化工进展,2008,27(8):1155-1161.
    [64]刘灿灿.影响曝气生物滤池反应器工作性能的主要因素[J].中国资源综合利用,2008,26(5):
    38-40.
    [65]Kent T D, et al. Testing of Biological Aerated Filter (BAF) Media [J]. Wat.Sci.Tech,1996,34(4): 363-370.
    [66]Rebecca Moore, et al.The Effects of Media Size on the Performance of Biological Aerated Filter [J]. Water Research,2001,35(10):2514-2522:
    [67]Moore RE, et al. Assessing the Potential of Foamed Clay as a Biological Aerated Filter (BAF) Medium [J]. Biotechnology Letter,1999,21(7):589-593.
    [68]. F.Seguret, Y.Racault.Hydrodynamic Behavior of a Full-Scale Suberged Biofilter and its Possible Influence on Performance [J]. Wat. Sci.Tech,1998,38(9):249-256.
    [69]O.Francisco, H. Ernesto. Optimizatiom of bed material height in a submerged biological aerated filter. Journal of Environ. Engineering.2001,127(11):974-978.
    [70]Won-Seok Chang, Seok-Won Hong, Joonkyu Park. Effect of Zeolite Media for the Treatment of Textile Wastewater in a Biological Aerated Filter. Process Biochemistry,2002,37(7):693-698.
    [71]田文华,文湘华,崔燕平等.滤料粒径对曝气生物滤池硝化性能的影响[J].中国给水排水,2003,19(5):48-50.
    [72]王占生等.BAF在微污染源水生物预处理中的应用[J].中国给水排水,2003,19(2):21-23.
    [73]邱立平,杜茂安,冯琦.二段曝气生物滤池处理生活污水的试验研究[J].环境工程,2001,19(2):22-24.
    [74]邢丽贞,安莹,李飞.BAF中滤料的研究进展[J].科技情报开发与经济,2005,15(18):181-183.
    [75]王劲松,胡勇有.曝气生物滤池填料的研究进展[J].工业用水与废水,2002,33(5):7-10.
    [76]刘军等.运行方式对曝气生物滤池的影响研究[J].云南化工,2004,31(3):12-15.
    [77]王晓阳等.两种运行方式对曝气生物滤池的影响[J].当代化工,2004,33(3):175-178.
    [78]国家环保部.水和废水监测分析方法第四版[S].中国环境科学出版社,2002.:174-176.
    [79]L.G.Mendoza. Organic and Hydraulic Shock Loadings on a Biological Aerated Filter [J].Environmental Technology,2001,22(3):321-330.
    [80]Vincenzo Belgiorno, Giovanni De Feo, Rodolfo M.A.Napoli. Combined Carbonaceous and Nitrification with Biological Aerated Filter [J]. Journal of Environmental Science and Health,2003, A38 (10):2147-2156.
    [81]徐亚同,谢冰.活性污泥的培养、驯化及生物[J].上海化工,2007,32(1):33-36.
    [82]万金保,邓香平,王敬斌,吴永明.SBR挂前活性污泥培养与驯化的研究[J].环境工程学报,2009,3(2):57-59.
    [83]何苗,张晓健,瞿福平等.焦化废水中芳香族化合物及杂环化合物在活性污泥法处理中的去除特性[J].中国给水排水,1997,13(1):14-17.
    [84]Garrido J M. Simultaneous urea hydrolysis formal dehyde removal and denitrification in a multifid up flow filter under anoxic and anaerobic conditions. Wat. Res.,2001,35 (3):691-698.
    [85]张凡,程江,杨卓如,王华祥.废水处理用生物填料的研究进展[J].环境污染治理技术与设备,2004,5(4):8-12.
    [86]Dagmar K, Ece K, Kathryn J P, etal. Role for Glycine Betaine Transport in vibrio cholerae Osmoadaptation and Biofilm Formation within Microbial Communities[J]. Appl. Environ. Microbiol.2005,71(7):3840-3847.
    [87]程文,宋策,周孝德.曝气装置中气液两相流的数值模拟与实验研究[J].水利学报,2001,12:32-35.
    [88]万甜,程文,刘晓辉.曝气装置中气液两相流粒子图像测速技术[J].水力水电科技进展.2007,27(6): 99-102.
    [89]Grigson S J W, Wilkson A, Johnson P, Moflat C F and Mclntosh A D. Measurement of oilfield chemical residues in produced water discharges and marine sediments[J]. Rapid Commun, Mass Spectrom,2000,14(23):2210-2219.
    [90]叶丹.一体式生物反应器处理高盐含油废水的试验研究[D].长安大学硕士论文,2005:53-55.
    [91]Dincer A R, Kargi F. Performance of rotating biological dise system treating saline wastewater[J].Process Biochemistry,2001,36(8):901-906.
    [92]张德跃等.气水反冲洗滤池的工艺设计与施工[J].中国给水排水,2000,16(6):39-41.