H1foo在牛卵成熟及核移植过程中作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自Dolly诞生以来,多种哺乳动物已被成功克隆,但该技术仍然存在着克隆效率低下的问题。现在普遍认为克隆效率低是由核移植过程中受体卵母细胞对供体细胞核的不正确或不完全重编程所致,故而提高卵母细胞质量、并促进其对供体细胞核的完全重编程是提高核移植效率、完善该技术的重要突破点。卵特异型连接组蛋白(H1foo),作为一种仅存在于卵母细胞及早期胚胎中的连接组蛋白,对染色体结构及基因表达调控有重要功能。在小鼠上,H1foo在卵母细胞中的表达已被证明是成熟分裂所必需的。在爪蟾及小鼠核移植过程中,H1foo对体细胞型连接组蛋白的快速置换现象被认为是供体核发生重编程的必要过程。
     本研究以牛卵母细胞为材料,分别对H1foo在卵母细胞成熟及核移植过程中重编程的作用进行了探讨。首先,我们通过向成熟过程中的卵母细胞显微注射H1foo siRNA或体外合成的H1foo mRNA来干扰或超表达H1foo,以确定其在卵母细胞成熟中的作用。同时,我们以RFP(red fluorescent protein)-H1e(somatic linker histone H1e)稳定转染或正常的成纤维细胞为核供体,以超表达H1foo-Venus或正常的成熟卵为受体进行核移植试验,电融合后通过荧光观察以确定H1foo对H1e的置换过程。试验结果如下:
     1.本试验通过自制的卵母细胞裂解液,利用RT-PCR技术成功从微量(5个)牛卵中克隆得到H1foo CDS全长序列。荧光显微镜观察、RT-PCR、Western Blotting检测表明构建的真核表达载体pH1foo-Venus能够在细胞中正确表达及定位。将H1foo-Venus体外转录为mRNA后显微注射牛卵母细胞,其表达产物能准确定位于卵母细胞与极体的染色体上。同时我们利用脂质体共转染的方法来筛选H1foo的有效siRNA序列,结果显示siRNA-3干扰效率最高,可分别在mRNA和蛋白水平上沉默H1foo表达的90%和60%。最后我们通过显微注射的方法将H1foo mRNA或siRNA-3注射至成熟过程中的牛卵中,结果显示:与未注射对照组相比(71.2%),H1foo-Venus注射组和siRNA-3注射组的卵母细胞成熟率分别为88.7%和36.0%,表明H1foo超表达能显著促进卵母细胞成熟,而干扰其表达则明显降低卵母细胞的成熟率。
     2.由于体细胞型连接组蛋白H1e为单一外显子基因,故我们以牛成纤维细胞基因组DNA为模板成功克隆得到H1e CDS全长序列。荧光显微镜观察、RT-PCR检测表明构建的真核表达载体pdsred1-H1e能够在细胞中正确表达及定位。然后将其转染牛皮肤成纤维细胞,经G418连续筛选得到稳定表达H1e-RFP的细胞株,检测表明该细胞株正确表达H1e-RFP。最后我们以pDsRed1-H1e稳定转染或正常的成纤维细胞为核供体,以超表达H1foo-Venus或正常的成熟卵为受体进行核移植试验,结果显示:(1)以正常的MII期去核卵和稳定表达H1e-RFP的成纤维细胞进行核移植,电融合后5h可观察到红色荧光开始弥散变弱,8h后红色荧光即H1e从供体核上完全消失。(2)以表达H1foo-Venus的MII期去核卵和正常的成纤维细胞进行核移植,电融合后5h可观察到绿色荧光即H1foo已集中于供体细胞核上,8h后绿色荧光变强。(3)以表达H1foo-Venus的MII期去核卵和稳定表达H1e-RFP的成纤维细胞进行核移植,电融合后可观察到红色荧光即H1e的逐渐消失和绿色荧光即H1foo在供体核上的不断积累。8h后,红色荧光完全消失。
     本试验结果表明:H1foo表达能促进牛卵母细胞成熟,其表达是卵母细胞成熟所必需的;与在小鼠上研究结果一致,在牛体细胞核移植过程中,组蛋白互换现象同样发生。这说明H1foo在卵母细胞成熟及核移植过程中的作用并非仅局限于啮齿类动物,而可能是在哺乳动物上高度保守的,这为进一步探究核移植重编程的机理提供了相关证据。
Since the cloned sheep Dolly was generated using somatic cell nuclear transfer (SCNT), a number of mammalian species have been successfully cloned. However, the success rate is still very low and the relevant mechanisms involved in reprogramming are largely unknown. The main cause of these problems may be attributed to the uncompleted reprogramming of the donor genome. Therefore, trying to improve the quality of oocyte and promote the efficient reprogramming of donor nuclear will response well to these problems. As one of the linker histones, the expression of oocyte specific linker histone (H1foo) is restricted in oocytes and early embryos, which makes them have a specific chromosome structure and gene expression pattern. In mouse oocyte, H1foo is indispensable for meiotic maturation. During the process of SCNT either amphibians Xenopus or mammalians mouse, the rapid linker histone H1 transitions can be observed, which is considered to be essential for donor nuclear reprogramming.
     In our study, the bovine oocyte is used to determine the function of H1foo during the process of oocyte maturation and SCNT. To examine the effect of H1foo expression on oocyte maturation, we microinjected effective siRNA against H1foo or H1foo mRNA transcripted in vitro into the maturing bovine oocytes. Meanwhile, to determine whether the replacement occurs during bovine nuclear transfer, we performed the nuclear transfer, using RFP-taged somatic linker histone H1e stable transfected donor cells and MII oocytes expressing exogenous fusion protein H1foo-Venus. After fusion, the replacement of linker histones can be real-time monitored under fluorescence microscope. The results of the project are as follows:
     1. We successfully established an improved RT-PCR, which is efficient for gene cloning from trace oocytes. The complete coding sequence of H1foo was cloned from 5 bovine oocytes, which was totally identical with previous reports. After the recombinant plasmid pVenus-H1foo was transfected into Hela cells, H1foo was efficiently expressed identified by Fluorescence microscopy observation、RT-PCR and Western Blotting. H1foo was localized accurately on chromosomes of the oocyte and polar body after H1foo mRNA transcripted in vitro was microinjected into bovine oocytes. Then we co-transfected the pVenus-H1foo and the 4 siRNAs into Hela cells respectively to screen a valid candidate sequence. Fluorescence microscopy observation、RT-PCR and Western Blotting indicated that siRNA-3 had a higher efficiency, which decreased the H1foo expression 90% and 60% in mRNA and protein level, respectively. Finally, we microinjected H1foo mRNA or siRNA-3 into the maturing bovine oocytes, and the results showed that compared to un-injected control group (71.2%), the maturation rate of H1foo-Venus injected group and siRNA-3 injected group is 88.7% and 36.0%, respectively, which indicated that knowdown of H1foo significantly impaired oocyte maturation, and overexpression of H1foo can apparently promote oocyte maturation.
     2. Since there are no introns existing in linker histone H1e, we successfully amplified the complete coding sequences of H1e from genome DNA of the bovine fibroblast cells. Fluorescence microscopy observation and RT-PCR detection showed that the recombinant plasmid pdsred1-H1e was efficiently expressed in Hela cells. The plasmid pdsred1-H1e was transfected into bovine skin fibroblast cells, and the stable transfected cell lines were successfully established after 3-4 weeks of selection with neomycine (G418). RT-PCR and Western Blotting showed that H1e-RFP mRNA and fusion protein were expressed in these cell lines, and the fluorescence was localized accurately on nuclear. Finally, to determine whether the replacement occurs during bovine nuclear transfer, the different treated fibroblasts were injected into the perivitelline space of different treated enucleated MII-arrested oocytes. Under fluorescence microscope, release of H1e in the donor nucleus, acquisition of H1foo by donor chromosome and H1foo-to-H1e transition were observed. However, unlike that in mouse, the replacement in bovine was slower. Subdued but diffused red fluorescence (H1e) in donor nucleus was still detectable, while green fluorescence (H1foo) has incorporated into the donor chromosome at 5 h, and the complete replacement occurred until 8 h after fusion.
     Our results indicate that overexpression of H1foo can apparently promote bovine oocyte maturation, while knowdown of H1foo significantly impaired oocyte maturation, which is agreement with that in mouse. During the bovine SCNT, the linker histones transition was observed, which demonstrates that the phenomenon perhaps is sufficiently conserved among different species rather than specific just in rodent oocytes. Our findings provided further evidence for its important role in nuclear reprogramming.
引文
隋进强,云彦,刘文强,殷吉庆,胡勇策,雷安民。牛生发泡期裸卵体外成熟培养体系的建立[J]。农业生物技术学报,2010,18(1):198-204.
    Alami R, Fan Y, Pack S, Sonbuchner TM, Besse A, Lin Q, Greally JM, Skoultchi AI, Bouhassira EE. Mammalian linker-histone subtypes differentially affect gene expression in vivo [J]. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 5920-5925.
    Albig W, Doenecke D. The human histone gene cluster at the D6S105 locus [J]. Hum Genet, 1997, 101: 284-294.
    Albig W, Meergans T, Doenecke D. Characterization of the H1.5 gene completes the set of human H1 subtype genes [J]. Gene, 1997, 184: 141-148.
    Arents G, Moudrianakis EN. The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization [J]. Proc Natl Acad Sci USA, 1995, 92: 11170-11174.
    Arnold DR, Francon P, Zhang J, Martin K, Clarke HJ. Stem-loop binding protein expressed in growing oocytes is required for accumulation of mRNAs encoding histones H3 and H4 and for early embryonic development in the mouse [J]. Dev Biol, 2008, 313(1): 347-358.
    Baguisi A, Behboodi E, Melican DT Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overstrom EW, Echelard. Production of goats by somatic cell nuclear transfer [J]. Nat Biotechnol, 1999, 17(5): 456-461.
    Baxevanis AD, Arents G, Moudrianakis EN, Landsman D. A variety of DNA binding and multimeric proteins contain the histone fold motif [J]. Nucleic Acids Res, 1995, 23: 2685-2691.
    Behboodi E, Ayres SL, Memili E, Ocoin M, Chen LH, Reggio BC, Landry AM, Gavin WG, Meade HM, Godke RA, Echelard Y. Health and reproductive profiles of malaria antigen-producing transgenic goats derived by somatic cell nuclear transfer [J]. Cloning Stem Cells, 2005, 7(2): 107-118.
    Bordignon V, Clarke HJ, Smith LC. Developmentally regulated loss and reappearance of immunoreactive somatic histone H1 on chromatin of bovine morula-stage nuclei following transplantation into oocytes [J]. Biol Reprod, 1999, 61(1): 22-30.
    Bordignon V, Clarke HJ, Smith LC. Factors controlling the loss of immunoreactive somatic histone H1 from blastomere nuclei in oocyte cytoplasm: a potential marker of nuclear reprogramming [J]. Dev. Biol., 2001, 233: 192-203.
    Bustin M, Catez F, Lim JH. The dynamics of histone H1 function in chromatin [J]. Mol. Cell, 2005, 17: 617-620.
    Campbell KH, Mcwhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line [J]. Nature, 1996, 380(6569): 64-66.
    Capecchi MR. Altering the genome by homologous recombination [J]. Science 1989, 244(4910): 1288-1292.
    Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications [J]. Nat Rev Genet, 2010, 11(5): 319-330.
    Chesne P, Adenot PG, Viglietta C Baratte M, Boulanger L, Renard JP. Cloned rabbits produced by nuclear transfer from adult somatic cells [J]. Nat Biotechnol, 2002, 20(4): 366-369.
    Choi T, Aoki F, Mori M, Yamashita M, Nagahama Y, Kohmoto K. Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos [J]. Development, 1991, 113: 789-795.
    Cibelli JB, Campbell KH, Seidel GE West MD, Lanza RP. The health profile of cloned animals [J]. Nat Biotechnol, 2002, 20: 13-14.
    Cibelli JB, Stice SL, Golueke PJ Kane JJ, Jerry J, Blackwell C, Ponce de Leon FA, Robl JM. Cloned transgenic calves produced from nonquiescent fetal fibroblasts [J]. Science, 1998, 280(5367): 1256-1258.
    Clarke HJ, Oblin C, Bustin M. Developmental regulation of chromatin composition during mouse embryogenesis: somatic histone H1 is first detectable at the 4-cell stage [J]. Development, 1992, 115(3): 791-799.
    Dimitrov S, Wolffe AP. Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1°from chromatin and the acquisition of transcriptional competence [J]. EMBO J, 1996, 15(21): 5897-5906.
    Dworkin-Rastl E, Kandolf H, Smith RC. The maternal histone H1 variant, H1M (B4 protein), is the predominant H1 histone in Xenopus pregastrula embryos [J]. Dev Biol, 1994, 161(2): 425-439.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos [J]. Nature, 1981, 292: 154-156.
    Fan Y, Nikitina T, Morin-Kensicki EM, Zhao J, Magnuson TR, Woodcock CL, Skoultchi AI. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo [J]. Mol. Cell. Biol., 2003, 23: 4559-4572.
    Fan Y, Nikitina T, Zhao J, Fleury TJ, Bhattacharyya R, Bouhassira EE, Stein A, Woodcock CL, Skoultchi AI. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation [J]. Cell, 2005, 123: 1199-1212.
    Fan Y, Sirotkin A, Russell RG, Ayala J, Skoultchi AI. Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1°replacement subtype [J]. Mol. Cell. Biol., 2001, 21: 7933-7943.
    Fu G, Ghadam P, Sirotkin A, Khochbin S, Skoultchi AI, Clarke HJ. Mouse Oocytes and Early Embryos Express Multiple Histone H1 Subtypes [J]. Biol. Reprod., 2003, 68: 1569-1576.
    Furuya M, Tanaka M, Teranishi T, Matsumoto K, Hosoi Y, Saeki K, Ishimoto H, Minegishi K, Iritani A, Yoshimura Y. H1foo is indispensable for meiotic maturation of the mouse oocyte [J]. J. Reprod. Dev., 2007, 53: 895-902.
    Galli C, Lagutina I, Crotti G Colleoni S, Turini P, Ponderato N, Duchi R, Lazzari G. Pregnancy: a cloned horse born to its dam twin [J]. Nature, 2003, 424(6949): 635.
    Gan Q, Yoshida T, McDonald OG Owens GK. Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells [J]. Stem Cells, 2007, 25(1): 2-9.
    Gao S, Chung Y, Parseghian MH, King GJ, Adashi EY, Latham KE. Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice [J]. Dev Biol, 2004, 266(1): 62-75.
    Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Maller JL. Cyclin is a component of maturation-promoting factor from Xenopus [J]. Cell, 1990, 60: 487-494.
    Gunjan A, Alexander BT, Sittman DB, Brown DT. Effects of H1 histone variant overexpression on chromatin structure [J]. J. Biol. Chem., 1999, 274: 37950-37956.
    Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles [J]. J Embryol Exp Morph, 1962, 10: 622-640.
    Hackett JA, Feldser DM, Greider CW. Telomere dysfunction increases mutation rate and genomic instability [J]. Cell, 2001, 106: 275-286.
    Happel N, Schulze E, Doenecke D. Characterization of human histone H1x [J]. Biol. Chem, 2005, 386: 541-551.
    Hashimoto N, Kishimoto T. Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation [J]. Dev Biol, 1988, 126: 242-252.
    Herbert M, Levasseur M, Homer H, Yallop K, Murdoch A, McDougall A. Homologue disjunction in mouse oocytes requires proteolysis of securing and cyclinB1 [J]. Nat Cell Biol, 2003, 5: 1023-1025.
    Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency [J]. Nature, 2006, 441(7097): 1061-1067.
    Imsoonthornruksa S, Lorthongpanich C, Sangmalee A, Srirattana K, Laowtammathron C, Tunwattana W, Somsa W, Ketudat-Cairns M, Parnpai R. Abnormalities in the transcription of reprogramming genes related to global epigenetic events of cloned endangered felid embryos [J]. Reprod Fert Develop, 2010, 22(4): 613-624.
    Jenuwein T, Allis CD. Translating the histone code [J]. Science, 2001, 293(5532):1074-1080.
    Jin JY, Cai Y, Yao T, Gottschalk AJ, Florens L, Swanson SK, Gutierrez JL, Conaway FW. A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex [J]. J Biol Chem, 2005, 280(50): 41207-41212.
    Jullien J, Astrand C, Halley-Stott RP, Garrett N, Gurdon JB. Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation [J]. Proc Natl Acad Sci USA, 2010, 107(12): 5483-5488.
    Kamakaka RT, Biggins S. Histone variants: deviants [J]. Genes Dev, 2005, 19: 295-310.
    Kang YK, Koo DB, Park JS Choi YH, Chung AS, Lee KK, Han YM. Aberrant methylation of donor genome in cloned bovine embryos [J]. Nat Genet, 2001, 28: 173-177.
    Kasinsky HE, Lewis JD, Dacks JB, Ausio J. Origin of H1 linker histones [J]. FASEB J, 2001, 15: 34-42.
    Kato Y, Tani T, Sotomaru Y Kurokawa K, Kato J, Doguchi H, Yasue H, Tsunodu Y. Eight calves cloned from somatic cells of a single adult [J]. Science, 1998, 282(5396): 2095-2098.
    Kato Y, Tani T, Tsunoda Y. Cloing of calves from various somatic cell types of male and female adult, newborn and fetal cows [J]. J Repord Fertil, 2000, 120(2): 231-237.
    Khorasanizadeh S. The nucleosome: from genomic organization to genomic regulation [J]. Cell, 2004, 116: 259-272.
    Kornberg R, Thomas JO. Chromatin structure: Oligomers and histones [J]. Science, 1974, 184: 865-868.
    Kouzarides T. Chromatin modifications and their function [J]. Cell, 2007, 128: 693-705.
    Labbe JC, Picard A, Peaucellier G, Cavadore JC, Nurse P, Doree M. Purification of MPF from starfish: identification as the H1 histone kinase p34cdc2 and a possible mechanism for its periodic activation[J]. Cell, 1989, 57: 253-263.
    Landsman D. Histone H1 in Saccharomyces cerevisiae: a double mystery solved [J]. Trends Biochem. Sci, 1996, 21: 287-288.
    Lanza RP, Cibelli JB, Blackwell C, Cristofalo VJ, Francis MK, Baerlocher GM, Mak J, Schertzer M, Chavez EA, Sawyer N, Lansdorp PM, West MD. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells [J]. Science, 2000, 288: 665-669.
    Lee BC, Kim MK, Jang G, Oh HJ, Yuda F, Kim HJ, Hossein MS, Kim JJ, Kang SK, Schatten G, Hwang WS. Dogs cloned from adult somatic cells [J]. Nature 2005, 436(7051): 641.
    Lever MA, Th'ng JP, Sun X, Hendzel MJ. Rapid exchange of histone H1.1 on chromatin in living human cells [J]. Nature, 2000, 408: 873-876.
    Lin Q, Inselman A, Han X, Xu H, Zhang W, Handel MA, Skoultchi AI. Reductions in linker histone levels are tolerated in developing spermatocytes but cause changes in specific gene expression [J]. J. Biol. Chem., 2004, 279: 23525-23535.
    Liu GH, Kato YK, Tsunoda YK. Aging of recipient Oocytes reduces the development of cloned embryos receiving cumulus cells [J]. J Reprod Develop, 2007, 53(4): 785-790.
    Luger K, M?der AW, Richmond RK Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution [J]. Nature, 1997, 389: 251-260.
    Maalouf WE, Liu Z, Brochard V Renard JP, Debey P, Beaujean N, Zink D. Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term [J]. BMC Dev Bio, 2009, 9: 11.
    Malenko GP, Stepanov OI, Komissarov AV, Antipova TA, Pinyugina MV, Prokofiev MI. Efficiency of Asynchronously In Vitro-Matured Oocytes as Recipients for Nuclear Transfer and of Blind Enucleation in Zona-Free Bovine Cloning [J]. Cloning and Stem Cells, 2009, 11(2): 287-292.
    Mandl B, Brandt WF, Supurti-Furga G, Graninger PG, Birnstiel ML, Busslinger M. The five cleavage- stage (CS) histones of the sea urchin are encoded by a maternally expressed family of replacement histone genes: functional equivalence of the csH1 and frog H1M (B4) proteins [J]. Mol Cell Biol, 1997, 17(3): 1189-1200.
    Mannironi C, Bonner WM, Hatch CL. H2A.X. a histone isoprotein with a conserved C-terminal sequence is encoded by a novel mRNA with both DNA replication type and poly(A) 3′processing signals [J]. Nucleic Acids Res, 1989, 17: 9113-9126.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by terato-carcinoma stem cells [J]. Proc Natl Acad Sci USA, 1981, 78: 7634-7638.
    Mcgraw S, Vigneault C, Tremblay K, Sirard MA. Characterization of linker histone H1FOO during bovine in vitro embryo development [J]. Mol Reprod Dev, 2006, 73(6): 692-699.
    McLay DW, Clarke HJ. Remodelling the paternal chromatin at fertilization in mammals [J]. Reproduction, 2003, 125(5): 625-633.
    Misteli T, Gunjan A, Hock R, Bustin M, Brown DT. Dynamic binding of histone H1 to chromatin in living cells [J]. Nature, 2000, 408: 877-881.
    Mizusawa Y, Kuji N, Tanaka Y, Tanaka M, Ikeda E, Komatsu S, Kato S, Yoshimura Y. Expression of human oocyte-specific linker histone protein and its incorporation into sperm chromatin during fertilization [J]. Fertil Steril, 2010, 93: 1134-41.
    Moon JH, Jee BC, Ku SY et al. Spindle position and their distribution in vivo and in vitro matured mouse oocytes [J]. Hum Reprod, 2005, 20(8): 2207-2210.
    Murga M, Jaco I, Fan Y, Soria R, Martinez PB, Cuadrado M, Yang SM, Blasco MA, Skoultchi AI, Fernandez-Capetillo O. Global chromatin compaction limits the strength of the DNA damage response [J]. J. Cell Biol, 2007, 178: 1101-1108.
    Naldi M, Calonghi N, Masotti L, Parolin C, Valente S, Mai A, Andrisano V. Histone post-translational modifications by HPLC-ESI-MS after HT29 cell treatment with histone deacetylase inhibitors [J]. Proteomics, 2009, 9(24): 5437-5445.
    Oback B, Wells DN. Donor cell differentiation, reprogramming, and cloning efficiency: Elusive or illusive correlation? [J]. Mol Reprod Dev, 2007, 74(5): 646-654.
    Olins AL, Olins DE. Spheroid chromatin units (νbodies). Science, 1974, 183: 330-332.
    Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry AC. Pig cloning by microinjection of fetal fibroblast nuclei [J]. Science, 2000, 289(5482): 1188-1190.
    Orrego M, Ponte I, Roque A, Buschati N, Mora X, Suau P. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin [J]. BMC Biol, 2007, 5: 22.
    Oudet P, Gross BM, Chambon P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit [J]. Cell, 1975, 4: 281-300.
    Parseghian MH, Hamkalo BA. A compendium of the histone family of somatic subtypes: an elusive cast of characters and their characteristics [J]. Biochem. Cell. Biol, 2001, 79: 289-304.
    Parseghian MH, Newcomb RL, Winokur ST, Hamkalo BA. The distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin: distribution in human fetal fibroblasts [J]. Chromosome Res, 2000, 8: 405-424.
    Patterson HG, Landel CC, Landsman D. The biochemical and phenotypical characterization of Hho1p, the putative linker histone H1 of Saccharomyces cerevisiae [J]. J Biol Chem, 1998, 273: 7268-7276.
    Peretti M, Khochbin S. The evolution of the differentiation-specific histone H1 gene basal promoter [J]. J. Mol. Evol, 1997, 44: 128-134.
    Phair RD. Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins [J]. Mol. Cell. Biol., 2004, 24: 6393-6402.
    Poirier MG, Oh E, Tims HS, Widom J. Dynamics and function of compact nucleosome arrays [J]. Nat Struct Mol Biol, 2009, 16(9): 938-U59.
    Polejaeva IA, Chen SH, Vaught TD Page RL, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares DL, Colman A, Campbell KH. Cloned pigs produced by nuclear transfer from adult somatic cells [J]. Nature, 2000, 407(6800): 86-90.
    Pomerantz J, Blau HM. Nuclear reprogramming: a key to stem cell function in regenerative medicine [J]. Nat Cell Biol, 2004, 6(9): 810-816.
    Rentoft M, Kim K, Cho Y, Lee CH, Kim A. Enhancer requirement for histone methylation linked with gene activation [J]. Febs Journal, 2008, 275(23): 5994-6001.
    Richmond TJ, Davey C. The structure of DNA in the nucleosome core [J]. Nature, 2003, 423: 145-150.
    Robinson PJ, Fairall L, Huynh VA, Rhodes D. EM measurements define the dimensions of the“30-nm”chromatin fiber: evidence for a compact, interdigitated structure [J]. Proc. Natl. Acad. Sci. U. S. A.,2006, 103: 6506-6511.
    Robinson PJ, Rhodes D. Structure of the‘30 nm’fibre: a key role for the linker histone [J]. Curr. Opin. Struct. Biol., 2006, 16: 336-343.
    Ross PJ, Cibelli JB. Bovine somatic cell nuclear transfer [J]. Methods Mol Biol, 2010, 636: 155-177.
    Saeki H, Ohsumi K, Aihara H, Ito T, Hirose S, Ura K, Kaneda Y. Linker histone variants control chromatin dynamics during early embryogenesis [J]. Proc Natl Acad Sci USA, 2005, 102 (16): 5697-5702.
    Saito S, Liu B, Yokoyama K. Animal embryonic stem (ES) cells: self-renewal, pluripotency, transgenesis and nuclear transfer [J]. Hum Cell, 2004, 17(3): 107-115.
    Schalch T, Duda S, Sargent DF, Richmond TJ. X-ray structure of a tetranucleosome and its implications for the chromatin fibre [J]. Nature, 2005, 436: 138-141.
    Schlissel MS, Brown DD. The transcriptional regulation of Xenopus 5S RNA genes in chromatin: the roles of stable transfection complexes and histone H1 [J]. Cell, 1984, 37: 903-913.
    Shen X, Gorovsky MA. Linker histone H1 regulates specific gene expression but not global transcription in vivo [J]. Cell, 1996, 86: 475-483.
    Shiels PG, Kind AJ, Campbell KH Waddington D, Wilmut I, Colman A, Schnieke AE. Analysis of telomere lengths in cloned sheep [J]. Nature, l999, 399: 316-317.
    Shin T, Kraemer D, Pryor J Liu L, Rugila J, Howe L, Buck S, Murphy K, Lyons L, Westhusin M. A cat cloned by nuclear transplantation [J]. Nature 2002, 415(6874): 859.
    Simpson RT. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones [J]. Biochemistry, 1978, 17: 5524-5531.
    Sirotkin AM, Edelmann W, Chen G, Klein-Szanto A, Kucherlapati R, Skoultchi AI. Mice develop normally without the H1°linker histone [J]. Proc. Natl. Acad. Sci. U. S. A., 1995, 92: 6434-6438.
    Sleutels F, Baulow DP. The origins of genomic imprinting in mammals [J]. A dv Genet, 2002, 46: 119-163.
    Tanaka M, Hennebold JD, Macfarlane J, Adashi EY. A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog [J]. Development, 2001, 128(5): 655-664.
    Tanaka M, Kihara M, Hennebold JD, Eppig JJ, Viveiros MM, Emery BR, King GJ, Adashi EY. H1FOO is coupled to the initiation of oocytic growth [J]. Biol Reprod, 2005, 72(1): 135-142.
    Tanaka Y, Kato S, Tanaka M, Kuji N, Yoshimura Y. Structure and expression of the human oocyte-specific histone H1 gene elucidated by direct RT-nested PCR of a single oocyte [J]. Biochem Biophys Res Commun, 2003, 304(2): 351-357.
    Teranishi T, Tanaka M, Kimoto S, Ono Y, Miyakoshi K, Kono T, Yoshimura Y. Rapid replacement of somatic linker histones with the oocyte-specific linker histone H1foo in nuclear transfer [J]. Dev Biol, 2004, 266(1): 76-86.
    Thoma F, Koller T, Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin [J]. J. Cell Biol., 1979, 83: 403-427.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts [J]. Science, 1998, 282(5391): 1145-1147.
    Tian XC, Xu J, Yang X. Normal telomere lengths found in cloned cattle [J]. Nature Genet, 2000, 26: 272-273.
    Tripputi P, Emanuel BS, Croce CM, Green LG, Stein GS, Stein JL. Human histone genes map to multiplechromosomes [J]. Proc Natl Acad Sci USA, 1986, 83: 3185-3188.
    Ushinsky SC, Bussey H, Ahmed AA, Wang Y, Friesen J, Williams BA, Storms RK. Histone H1 in Saccharomyces cerevisiae [J]. Yeast, 1997, 13: 151-161.
    Van Wijnen AJ, Wright KL, Massung RF, Gerretsen M, Stein JL, Stem GS. Two target sites for protein binding in the promoter region of a cell cycle regulated human H1 histone gene [J]. Nucleic Acids Res, 1988, 16: 571-592.
    Varga-Weisz PD, Becker PB. Regulation of higher order chromatin structures by nucleosome-remodelling factors [J]. Curr Opin Genet Dev, 2006, 16: 151-156.
    Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei [J]. Nature, 1998, 394(6691): 369-374.
    Walter L, Klinga-Levan K, Helou K, Albig W, Drabent B, Doenecke D, Gunther E, Levan G. Chromosome mapping of rat histone genes H1fv, H1d, H1t, Th2a and Th2b [J]. Cytogenet Cell Genet, 1996, 75: 136-139.
    Wang ZF, Krasikov T, Frey MR, Wang J, Matera AG, Marzluff WF. Characterization of the mouse histone gene cluster on chromosome 13: 45 histone genes in three patches spread over 1Mb [J]. Genome Res, 1996, 6: 688-701.
    Wang ZF, Tisovec R, Debry RW, Frey MP, Matera AG, Marzluff WF. Characterization of the 55-kb mouse histone gene cluster on chromosome 3 [J]. Genome Res, 1996, 6: 702-714.
    Wells D, Hoffman D, Kedes L. Unusual structure, evolutionary conservation and non-coding sequences and numerous pseudogenes characterize the human H3.3 histone multigene family [J]. Nucleic Acids Res, 1987, 15: 2871-2889.
    Wilmut I, Schnieke AE, Mcwhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells [J]. Nature, 1997, 385(6619): 810-813.
    Wisniewski JR, Zougman A, Krüger S, Mann M. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue [J]. Mol Cell Proteomics, 2007, 6: 72-87.
    Woodcock CL, Skoultchi AI, Fan Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length [J]. Chromosome Res, 2006, 14: 17-25.
    Woods GL, White KL, Vanderwall DK, Li GP, Aston KI, Bunch TD, Meerdo LN, Pate BJ. A mule cloned from fetal cells by nuclear transfer [J]. Science, 2003, 301(5636): 1063.
    Wouters-Tyrou D, Martinage A, Chevaillier P, Sautiere P. Nuclear basic proteins in spermiogenesis [J]. Biochimie, 1998, 80(2): 117-128.
    Zhao J, Ross JW, Hao Y, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS. Significant Improvement in Cloning Efficiency of an Inbred Miniature Pig by Histone Deacetylase Inhibitor Treatment after Somatic Cell Nuclear Transfer [J]. Biol Reprod, 2009, 81(3): 525-530.
    Zheng P, Si W, Wang H, Zou R, Bavister BD, Ji W. Effect of age and breeding season on the development capacity of oocytes from unstimulated and FSH-stimulated rhesus monkeys [J]. Biol Reprod, 2001, 64(5): 1417-1421.
    Zheng P. Effects of in vitro maturation of monkey oocytes on their developmental capacity [J]. Anim Reprod Sci, 2007, 98(1-2): 56-71.
    Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, Cherifi Y, Fraichard A, Cozzi J. Generation offertile cloned rats by regulating oocyte activation [J]. Science, 2003, 302(5648): 1179.
    Zlatanova J, Doenecke D. Histone H1 zero: a major player in cell differentiation [J]. FASEB J, 1994, 8: 1260-1268.