BCL-6与非霍奇金淋巴瘤的发生及白血病细胞K562分化和凋亡的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是淋巴瘤的高发地区之一,其中非霍奇金淋巴瘤(NHL)占淋巴瘤总数的90%,是我国最常见的淋巴造血系统恶性肿瘤之一。NHL的发病机制及同一组织类型的NHL在临床中表现出预后差异悬殊的原因一直悬而未决。随着被认为能够决定淋巴细胞最终命运的原癌基因BCL-6(B cell lympoma-6)的发现,给最终破解NHL的发病机制增加了希望。因为在非NHL中BCL-6基因调控区容易发生改变,其改变的频率可高达50%—87.5%。于是有人认为,相当一部分NHL的发生可能因为BCL-6基因调控区改变导致其表达产物BCL-6蛋白表达失调,表达失调的BCL-6又可致淋巴细胞正常分化受阻,最终导致淋巴瘤的发生。但目前仍有许多问题未能解决,如BCL-6是否同样表达于其它正常组织和肿瘤组织中?在NHL中BCL-6的表达水平是否与其基因调控区变化有必然联系?为了解决以上问题,我们进行了以下研究:
     用常规免疫组织化学方法对人的淋巴组织、肝、肠、乳腺等10余种肿瘤组织及相应瘤旁组织中BCL-6表达情况进行了研究,染色阴性的标本用敏感性更高的免疫组织化学催化信号扩增法(CSA)进行验证。结果显示BCL-6特异地表达于反应性增生淋巴组织(RLH)的生发中心细胞及生发中心细胞起源的滤泡性淋巴瘤(FL)和86%弥漫性大B细胞淋巴瘤(DLBCL)。但BCL-6表达水平有显著区别,100%(17/17)RLH和77%(10/13)
    
     第口旱民大学协士学位枉文·+义纫昙
     FL为中等阳性强度表达,23%(3/13)FL和 72%(ZI/29)DLBCL为强阳性表
     达,肝、肠、乳腺等肿瘤组织和肿瘤旁组织以及小淋巴细胞淋巴瘤(SLL)、
     套细胞淋巴瘤(MCL)、经典型霍奇金淋巳瘤均未见表达。通过PCR、克隆、
     测序方法比较不同水平表达BCL-6 FL调控区序列改变倩况发现,强表达
     BCL-6的FL其基因调控区均有不同程度突变,而中等强度表达的FL调控
     区未见突变发生。BCL-6特异地表达于正常淋巴组织生发中心细胞,说明
     BCL-6在生发中心形成过程中发挥了重要作用。对基因调控区变化分析结
     果说明部分FL强表达BCL-6可能因其基因调控区变化所致,而强表达
     BCL-6又可能与这部分FL的发生密切相关。
     研究表明,BCL-6不仅与淋巴瘤的发生密切相关,在某些白血病细胞
     分化时,其表达水平上调’川,还与其它多种肿瘤细胞的分化、凋亡密切相
     关,甚至多数情况下,BCL-6单基因激活即可导致肿瘤细胞的分化或凋亡
     ””皿知。而失分化和凋亡障碍正是白血病细胞的共性,研究如何诱导白血
     病细胞分化和凋亡以及探讨诱导其分化和凋亡过程中发挥重要作用的关
     键基因正是目前攻克白血病的主要突破口’““。为此,我们研究了BCL-6
     在诱导白血病细胞分化和凋亡中的作用。主要研究内容及结果如下:
     l.分别以 HMBA(Hex。ethylene Bisacetamlde)、TPA(0-Tetra decanoy
     lphofbOI 13-aCBtsts)和h(hydTOXyeres)为诱导剂复策 K562细胞向单核
     巨噬系、红细胞系及巨核细胞系分化的模型。在对模型进行形态学、细胞化
     学及免疫组织化学的鉴定后,用 Northern Blot和 Western Blot方法检测了
     对照组及向不同细胞系分化的K562细胞BCL-6表达情况。发现诱导前K562
     细胞BCL-6 InRNA表达阴性,而在诱导其向不同细胞系分化时,K562细胞BCL-6
     InRNA均有不同程度表达上调,但其向巨核细胞分化时BCL-6 InRNA表达水平
     最高,分别是向单核细胞分化的1.5倍和向红细胞分化的3倍,而BCL-6蛋
     白只在K562细胞向巨核细胞分化时表达阳性。用BCL-6反义寡核昔酸可有效
     阻滞BCL-6表达及TPA诱导的K562向巨核细胞分化,说明BCL-6在TPA诱导
     的K562细胞向巨核细胞分化过程中起到了重要作用。
     2.用从传统中药中纯化的苦参碱诱导K562细胞,制备了K562细胞的
     凋亡模型。在对这一模型进行系统鉴定后,用 Northern Blot和 Western Blot
     方法检测发现,苦参碱可诱导K562细胞BCL-6在InRNA及蛋白质水平上表达
     -3-
    
     剪口旱巨大学俗士学应沦文·+丈匐昙
     上调,采用反义技术作为“基因封条”特异封闭BCL-6蛋白表达时,苦参碱
     诱导K562细胞的调亡细胞数也随之下降,说明BCL-6参与了苦参碱诱导K562
     细胞凋亡的作用。
     3.为进一步研究苦参碱诱导K562细胞凋亡的内部机制及BCLAs在这一
     过程中的作用和地
China is among the countries afflicted by high incidence of lymphomas. Of all the malignant lymphomas, non-Hodgkin's lymphoma (NHL) makes up 90 percent. However, its pathogenesis and the significantly different clinical prognosis of the same kind of NHL remain to be revealed. With the discovery of BCL-6 proto-oncogene, which as is reported, regulates lymphocyte cell fate decisions, the discovery of the pathogenesis of lymphoma is almost with our reach. Because the 5'noncoding regulatory region of BCL-6 gene is found susceptible to translocation, mutation and deletion, the change frequency was up to 87.5% in NHL. Based upon this, some researchers think that the change in the regulatory region of BCL-6 will lead to the deregulation of expression of BCL-6 protein, and hi turn, the deregulated BCL-6 might result in lymphoma. However, there are still many questions to be answered, such as whether BCL-6 gene product is expressed widely in different human normal tissues and their neoplastic counterparts as well as whether the expression level of BCL-6 must be related to changes of regulatory region of BCL-6 gene. The present study was aimed at finding answers to the above questions.
    In the present study, expression of BCL-6 was studied in over 10 types of human normal tissues such as lymphoid node, liver, breast, intestine, etc. and
    
    
    
    their neoplastic counterparts with normal immunohistochemistry. Tissues with negative result were further tested with catalyzed signal amplification (CSA) for immunohistochemistry. The result indicates that expression of BCL-6 was localized specifically in the nuclei of cells of germinal center of all reactive hyperplasia lymphoid tissue (RHL), all the follicular lymphoma (FL) and 86 percent of 29 cases of diffuse large B-cell lymphoma (DLBCL). Nevertheless, BCL-6 expression levels in different tissues differed significantly . 100 percent of 17 RLH and 77% of 13 FL cases were positive with moderate expression; 23 percent of the rest of FL cases and 72 percent of 24 positive DLBCL cases were positive with intensive expression; and BCL-6 expression was negative in all other tissues. The difference in hypermutation of the 5' noncoding region of BCL-6 gene between FLs with BCL-6 moderate expression and FLs with BCL-6 intensive expression was analyzed by using PCR, cloning and sequencing, mutations of the 5 non coding region of BCL-6 gene were found hi all 2 cases of FLs with BCL-6 intensive expression, and the changes were not found in FLs with BCL-6 moderate expression. The specific expression of BCL-6 in germinal center cells of normal lymphoid tissue may indicate the formation of the germinal center; and the mutation of regulatory region of BCL-6 gene may be the cause of intensive BCL-6 expression in a considerably small number of FLs; the intensive BCL-6 expression may be related to the pathogenesis of the relatively few FLs.
    Many researchers have reported that BCL-6 is closely related not only to pathogenesis of lymphoma but also to cell differentiation and apoptosis of many kinds of tumors. Expression of BCL-6 was increased when some kinds of leukemia cells were induced to differentiate. In most cases, activation of the single gene of BCL-6 induces cell differentiation or apoptosis, whereas the loss of differentiation and the apoptosis obstruction are the common characteristics of different leukemia cells. The study on how to induce leukemia cell differentiation and apoptosis and induce leukemia cells to differentiation or to apoptosis as well as the study on how to find the key
    
    
    genes that respond to the differentiation and apoptosis of the induced leukemia cells are critical to a breakthrough in the therapy of leukemia.
    To identify the effects of BCL-6 gene on differentiation and apoptosis of induced leukemia cells, we conducted some experiments as follows.
    1. Three differentiation models of leukemia cell line K562 were established. HMBA (Hexamethylene Bisacetamide), TPA (0-Tetradecanoyl phorbol 13-acetate) and Hu (hydroxyurea) were selected to induce K562 cells directi
引文
1.张家华,黄平。现代血液病治疗学。北京:人民军医出版社,1997:380—381
    2. Staudt LM, Dent AL, Shaffer AL, et al. Regulation lymphocyte cell fate decisions and lymphomagensis by BCL-6. Int Rev Immunol, 1999;18(4): 381-403
    3. Chaganti SR, Chen W, Parsa N, et al. Involvemem of BCL-6 in chromosomal aberrations affecting band 3q27 in B-cell non-Hodgkin lymphoma. Genes Chromosomes Cancer, 1998; 23(4): 323-327
    4.陶琨,朱雄增,BCL-6与弥漫性B细胞淋巴瘤。中华病理学杂志,1998;27(6):405-406
    5. Dent AL, Shaffer AL, Yu X, ea al. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science ,1997; 276(5312):589-92
    6. Shaffer AL, Yu X, He Y, et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity, 2000; 13(2):199-212
    7. Albagli O, Lantoine D, Quief S, et al. Overexpressed BCL-6 (LAZ3) oncoprotein triggers apoptosis, delays S progression and associates with replication foci. Oncogene, 1999; 18(36): 5063-5075
    8. Yamochi T, Kaneita Y, Akiyama T, et al. Adenovirus-mediated high expression of BCL-6 in CV-1 cells induces apoptotic cell death accompanied by down-rehulation of BCL-2 and BCL-X_L. Oncogene, 1998; 18(2): 487-494
    9. Tang TT, Dowbenko D, et al. The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor. J Biol Chem, 2002; 277(16):14255-14265
    10. Ye BH, Lista F, Coco FL, et al. Alterations of zinc finger-encoding gene,
    
    bcl-6, in diffuse large-cell lymphoma. Science, 1993; 262:747-750
    11. Albagli O, Dhordain P, Lantoine D, et al. Increased expression of the LAZ3 (BCL6) proto-oncogene accompanies murine skeletal myogenesis. Differentiation. 1998 ; 64(1) :33-44.
    12. Toney LM, Cattoretti G, Graf JA, et al. BCL-6 regulates chemokine gene transcription in macrophages. Nat Immunol, 2000; 1(3) : 214-220
    13. Takeshita M, Iwasnita A, Kurihara K, et al. Histologic and immunohistologic findings and prognosis of 40 cases of gastric large B-cell lymphoma. AM J Surg Pathol, 2000; 24(12) : 1641-1649
    14. Jerkeman M, Aman P, Cavallin-Stahl E, et al. Prognostic implications of BCL-6 rearrangement in uniformly treated patients with diffuse large B-cell lymphoma-a Nordic Lymphoma Group study. Int J Oncol, 2002; 20(1) :161-165
    15. Baron BW, Nucifora G, McCabe N, et al. Identification of the gene associated with the recurring chromosomal translocations t(3;14) (q27;qq32) and t(3;22) (q27;q11) in B-cell lymphomas. PNAS, 1993; 90:5262-5266
    16. Kerckaert JP, Deweindt C, Tilly H, et al. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet, 1993; 5: 66-70
    17. Miki T, Kawamata N, Arai A, et al. Molecular cloning of the breakpoint for 3q27 translocation in B-cell lymphomas and leukemias. Blood , 1994; 83:217-222,
    18. Kawamata N, Miki T, Fukada T, et al. The organization of the bcl-6 gene. . Leukemia, 1994; 8:1327-1335
    19. Onizuka T, Moriyama M, Yamochi T, et al. BCL-6 gene product, a 92-to 98-KD nuclear phosphoprotein, is highly expressed in germinal center B cells and their neoplastic counterparts. Blood, 1995; 86:28-37
    20. 陶琨,朱雄增,徐薇苓等。原癌基因BCL-6在淋巴组织增生性疾病中表达及意义。临床与实验病理学杂志, 2000; 16 (2) : 93-95.
    21. Ruppert JM, Kinzler KW. Wong AJ, et al. The GLI-Kruppel family of
    
    human genes. Mol Cell Bill, 1988; 8: 3104-3113
    22. Martinez-Valdex H, Guret C, De BO, et al. Human germinal center B cells express the apoptosis-inducing genes Fas, c-myc, P53, and Bax but not the survival gene bcl-2. J Exp Med, l996;183(3) :971-977
    23. Seto M, Jaeger U, Hockett RD, et al. Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymp. EMBO J, 1988;7(1) : 123-31.
    24. Flenghi L, Bigerna B, Fizzotti M, et al. Monoclonal antibodies PG-B6a and PG-B6p recognizw,respectively, a highly conserved and a formao-resistant epitope on the human BCL-6 protein amino-terminal region. Am J Pathol, 1996; 148(5) : 1543-1555
    25. Falini B, Bigema B, Psaqualucci L, et al. Distinctive expression pattern of the BCL-6 protein in nodular lymphocyte predominance Hodgkin's disease. Blood, 1996; 87(2) :465-471
    26. Ree HJ, Yang WI, Kim CW, et al. Coexpression of Bcl-6 and CD10 in diffuse large B-cell lymphomas: significance of Bcl-6 expression patterns in identifying germinal center B-cell lymphoma. Hum Pathol , 2001;32(9) :954-62
    27. Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood 2002; 99(6) : 1959-64
    28. Kikuchi M, Miki T, Kumagai T, Fukuda T, et al. Identification of negative regulatory regions within the first exon and intron of the BCL6 gene. Oncogene, 2000; 19(42) : 4941-494
    29. Izidore SL, Ronald L. Higher-grade transformation of follicle center lymphoma is associated with somatic mutation of the 5' noncoding regulatory region of the BCL-6 gene. Blood, 2000; 96(2) : 635-639
    30. Wong L, Xu LZ, Jin XL, et al. Analysis of hypermutation of the 5' noncoding region in the BCL-6 gene. Chin Med J, 2001; 114(3) : 286-290.
    31. Offot K, Lo Coco F, Louie DC, et al. Rearrangenent of the bcl-6 gene as a prognoste marker in drffuse large-cell lymphoma. N Eng J Med, 1994; 331:
    
    74-80.
    32. Migliazza A, Martinotti S, Chen W, et al. Frequent somatic hypermutation of the 5-prime noncoding region of the BCL6 gen in B-cell lymphoma. PNAS, 1995; 92: 12520-12524.
    33. Migliazza A, Ye BH, Chaganti RS, et al. Mutation of the 5' non-coding region of the bcl-6 in NHL. Blood, 1994; 84: 84.
    34. Artiga MJ, Saez AI, Romero C, et al. A Short Mutational Hot Spot in the First Intron of BCL-6 Is Associated with Increased BCL-6 Expression and with Longer Overall Survival in Large B-Cell Lymphomas. Am J Pathol, 2002;160(4) :1371-1380
    35. Nakamura Y. Internal deletions within the BCL6 gene in B-cell non-Hodgkin's lymphoma. Leuk Lymphoma, 2000; 38:505-512
    36. Wong CW, Privalsky ML. Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6. J Biol Chem 1998; 273(42) :27695-702
    37. Melnick A, Carlile G, Ahmad KF, et al. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol Cell Biol 2002; 22(6) : 1804-18
    38. Yamochi T, Kitabayashi A, Hirokawa M, et al. Regulation of BCL-6 gene expression in human myeloid/monocytoid leukemic cells. Leukemia, 1997; 11(5) :694-700
    39. Hosokawa Y, Maeda Y, Seto M. Target genes downregulated by the BCL-6/LAZ3 oncoprotein in mouse Ba/F3 cells. Biochem Biophys Res Commun 2001 11; 283 (3) :563-8
    40. Reljic R, Wagner SD, Peakman LJ, et al. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J Exp Med, 2000 18; 192(12) :1841-8
    41. Abbas AK, Murphy KM, Sher A. functional diversity of helper T lymphocytes. Nature, 1996; 38(3) :13823-13828
    42. Romagnani S. The Th1/Th2 paradigm. Immunol Today, 1997; 18:263-266
    
    
    43. Allman D, Jain A, Dent A, et al. BCL-6 expression during B-Cell Activation. Blood, 1996; 87(12) : 5257-5268
    44. Qin XF, Reichlin A, Luo Y, et al. OCA-B integrates B cell antigen receptor-, CD40L-and IL 4-mediated signals for the germinal center pathway of B cell development. EMBO J. 1998;17(17) :5066-75.
    45. Berberich I, Shu GL, Clark EA. Cross-linking CD40 on B cells rapidly activates nuclear factor-kappa B. J Immunol, 1994; 153: 4357-4368
    46. Tang TT, Kowbenko D, Jackson A, et al. The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional represser. J Biol Chem, 2002;277(16) :14255-14265
    47. Shaffer AL, Yu X, He Y, Boldrick J, et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity, 2000; 13: 199-212
    48. Toney LM. BCL-6 regulates chemokine gene transcription in macrohpages. Nat. Immunol, 2000; 1: 214-200
    49. Ihle JN. Stats: sigmal transducers and activators of transcription. Cell, 1996; 84: 331-334
    50. Dent A, Vasanwala F, Toney L. Regulation of gene expression by the proto-oncogene BCL-6. Hematol Oncol, 2002; 41: 1-9
    51. Zhang H, Okada S, Hatano M, et al. A new functional domain of Bcl6 family that recruits histone deacetylases. Biochim Biophys Acta. 2001; 26; 1540(3) : 188-200
    52. Seyfert VL, Allman D, He Y, et al. Transcriptional repression by the proto-oncogene BCL-6. Oncogene, 1996;12: 1953-1961
    53. Chang CC, Ye BH, Chaganti RS, et al. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. PNAS USA, 1996; 93: 6947-6952
    54. Baron BW. BCL-6 can repress transcription from the human immunodeficiency virus type I promoter/enhancer region. Genes Chromosomes. Cancer, 1997; 19:14-21
    
    
    55. Deweindt C.The LAZ3/BCL6 oncogene encodes a sequence-specific transcriptional inhibitor: a novel function for the BTB/POZ domain as an autonomors repressing domain. Cell Growth Differ, 1995; 6: 1495-1503
    56. Albagli O, Dhordain P, Bemardin F, et al. Multiple domains participate in distance-independent LAZ3/BCL6-mediated transcriptional repression. Biochem Biophys Res Commun, 1996; 220: 911-915
    57. Huynh KD, Bardwell VJ. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene, 1998; 17: 2473-2484
    58. Dhordain P. Corepressor SMRT binds the BTB/POZ re pressing domain of the LAZ3/BCL6 oncoprotein. PNAS, 1997; 94: 10762-10767
    59. Huynh KD, Fischle W, Verdin E, Bardwell VJ. BcoR, a novel corepressor involved in BCL-6 repression. Genes Dev, 2000; 14: 1810-1823
    60. Burke Lj, Baniahmad A. Co-repressors. FASEB J, 2000; 14: 1876-1888
    61. Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer, J Cell Physiol, 2000; 184: 1-16
    62. Ng HH, Bird A. Histone deacetylases: silencers tor Hire. Trends Biochem Sci, 2000; 25: 121-126
    63. Kumagai T, Miki T, Kikuchi M, et al. The proto-oncogene Bc16 inhibits apoptotic cell death in differentiation-induced mouse myogenic cells. Oncogene 1999 14;18(2) :467-475.
    64. Hsieh T, Wu JM. Apoptosis and restriction of G(1) /S cell cycle by fenretinide in Burkitt's lymphoma mutu I cell line accessed with bcl-6 down-regulation. Biochem Biophys Res Commun 2000; 276 (3) :1295-301
    65. Schena M. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. PNAS, 1996: 93: 10614-10619
    66. Derisi J. Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat Genet, 1996: 14:457-460
    67. Sheldon EN. Matrix DNA hybridization. Clin Chem, 1993; 39:4913-4918
    68. Fan J. Genetic mapping: Finding and analyzing single-nucleotied
    
    polymorphisms with high-density DNA arrays. Am J Hum Genet. 1997; 61(suppl):A275-277
    69. Livache T. Polypyrrole DNA chip on a silicon device: ezample of hepatitis C virus genotyping. Anal Biochem, 1998; 225: 18-194
    70. Gingeras TR. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobbacterium DNA arrays. Genome Res, 1998; 8: 225-230
    71. Wallraff G. DNA sequencing on a chip. Chem Tech, 1997: 2:22-32
    72. Cheung VG. Likage-disequilibrium mapping without genotyping. Nat Genet, 1998; 18: 225-231
    73. Kozal MJ. Extensive Polymorphisms observed in HIV-1 clsde B Protease gene using high-density oligonucleotide arrays. Nat Med. 1996; 2:753-759
    74. Hacia JG. Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-color fluorescence analysis. Nat Genet, 1996; 14: 441-447
    75. Heller RA. Discovery and analysis of inflammatory disease-related genes using cDNA microarray. PNAS. 1997; 94: 2150-2155
    76. Maskos U. A novel method for the paallel analysis of multiple mutations in multiple samples. NAR, 1993; 21: 2269-2270
    77. Cheng JJ, Wu R, Yang PC, et al. Profiling expression patterns and isolating differentially expressed gene by cDNA microarry system with colorinety detection. Genomics, 1998; 51(3) : 313-324
    78. 刘厚淳,段发平。DNA芯片技术及其在医学上的进展。医学与哲学, 2001; 22 (11) : 32-34
    79. Ramsay G. Dna chip: state-of-the-art. Nat Biotechnol, 1998;16(1) : 40-44
    80. Cheng J. Degenerate oligonucleotide primed-polymerase chain reaction and capillary electrophoretic analysis of human DNA on microchip-based devices. Anal Biochem, 1998; 257:101-106
    81. Foder S, Rava R, Huang X, et al. Multiplesed biochemical assays with biological chips. Nature, 1998; 364: 555-556
    
    
    82.王俊学,王国俊。苦参碱及氧化苦参碱的药理作用及临床应用。中华肝脏病学杂志,2000;5(2):116-118
    83.司维柯,张广运,马立强等。苦参碱对HepG_2细胞系增殖力的影响。第三军医大学学报,2000;22(5):451—458
    84. Zhang LP, Jiang JK, Tam JW, et al. Effects of Matrine on proliferation and differentiation in K-562 cells. Leuk Res, 2001;25(9):793-800
    85.张莉萍,蒋纪恺,谭荣安等。苦参碱对K562细胞珠端粒酶活性和细胞周期的影响。中华肿瘤杂志,1998;20(5):328-329
    86.张彦,蒋纪恺,刘小珊等。苦参碱诱导K562白血病细胞分化和凋亡的实验研究。癌症,2000;756-758
    87.张燕军,夏天,赵建斌。苦参碱对SMMC-7721细胞系的诱导分化作用。第四军医大学学报,1998;19(3):340-343
    88.刘北忠,蒋纪恺,钟梁等。测定K562细胞培养液中苦参碱浓度变化的反相离子对HPLC研究。重庆医科大学学报,1997;22(4):302-304
    89.李旭芬,张苏展,郑树等。苦参碱对K562及其多药耐药细胞K562/vin、K562/dox的诱导凋亡作用。实用癌症杂志,2000;15(6):566-568
    90.毛慧生,刘洪,李川等。苦参碱对肿瘤细胞恶性表型及免疫功能的调控作用。中国肿瘤临床,1996;23(11):799-803
    91. Lo WL, Chang FR, Liaw CC, et al. Cytotoxic Coumaronochromones from the Roots of Euchresta formosana. Planta Med, 2002;68(2):146-151
    92. Liu YH, Liu YF, Guo XX. Current studies on anti-endotoxic chemical components of traditional Chinese medicine in China. Acta Pharmacol Sin 2001;22(12):1071-10777
    93.梁萍,薄爱华,薛贵平等。苦参碱抗免疫性肝损伤机制的研究。世界华人消化杂志,1999;7(2):104-108
    94.冯亚珍,周蓉,魏新峰等。苦参对小鼠免疫功能的抑制作用,河南中医,1997;17(5):277-278
    95.李文瑜,李舜华,崔克义等。苦参碱逆转白血病多药耐药细胞系K562/A02对柔红霉素耐药性的研究。中国病理生理杂志 1998;14(5):521-524
    
    
    96.伍耀衡,刘伟胜,李柳宁等。苦参碱胸腔内注射治疗恶性胸水11例观察。中医杂志,1995;36(7):413-414
    97.黄曙,李洁,朱建丽等。吗特灵注射液治疗中晚期胃癌的临床观察。中国中西医结合杂志,1997;17(6):364-366
    98. Barrans SL, Carter Ⅰ, Owen RG, et al. Germinal center phenotype and bc1-2 expression combined with the International Prognostic Index improves patient risk stratification in diffuse large B-cell lymphoma. Blood, 2002;99(4):1136-1143
    99. Kawasaki C, Ohshim K, Suzumiya J, et al. Rearrangements of bc1-1, bc1-2, bc1-6, and c-myc in diffuse large B-cell lymphomas. Leuk Lymphoma, 2001;42(5):1099-1106
    100. Norton, AJ, Jordan S, Yeomans P. Brief, high-temperature heat denaturation (pressure cooking): a simple and effective method of antigen retrieval for routinely processed tissues. J Pathol, 1994;173:371-179
    101. Greet GJ, Wheeler CM, Manos MM. PCR amplification from paraffin-embedded tissues: sample preparation and the effects of fixation. PCR Primer: a laboratory manual. New York, Cold Spring Harbor Laboratory press, 1995:99-112
    102. Sanno N, Teramoto A, Sugiyama M, et al. Application of catalyzed signal amplification in immunodetection of gonadotropin subunits in clinically nonfunctioning pituitary adenomas. Am J Clin Pathol, 1996;106(1):16-21
    103. Raible MD, His ED, Alkan S. BCL-6 protein expression by follicle center lymphomas. A marker for differentiating follicle center lymphomas from other low-grade lymphoproliferative disorders. Am J Clin Pathol 1999;112(1):101-107
    104.王奇璐。恶性淋巴瘤的诊断与治疗。北京医科大学中国协和医科大学联合出版社;北京,1997(第一版):52-80
    105. Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood, 1975;45:321-334
    106. Rivero JA, Adunyah SE. Sodium butyrate induces tyrosine phosphorylaton and activation of MAP kinase (ERK-1) in human K562 cells. Biochem Biophys Res Commun. 1996;24:796-801
    
    
    107. Whalen AM, Galasinski SC, Shapiro PS, et al. Megakaryocytic differentiation induced by constitutive activation of mitogin-activated protein kinase. Mol Cell Biol, 1997;17:1947-1958
    108. Dang CD, LeeBK, Dim DW, et al. Signaling mechanism of PMA-induced differentiation of K562 cells. Biochem Biophys Res Commun, 1996:221:95-100
    109.张家华,黄平。现代血液病治疗学。北京。人民军医出版社,1997(第一版):332-335
    110. Samid D, Yeh A, Prasanna P. Induction of erythroid differentiation and fetal hemoglobin production in human leukemic cells treated with phenylacetate. Blood, 1992;80(6):1576-1581
    111. Green AR, Rockman S, DeLuca E, et al. Induced myeloid differentiation of K562 cells with downregulation of erythroid and megakaryocytic transcription factors: a novel experimental model for hemopoietic lineage restriction. Exp Hematol, 1993:21:525-531
    112. Yen A, Varvayanis S, Platko JD. 12-O-Tetradecanoylphorbol-13-acetate and staurosporine induce increased Retinoblastoma tumor suppressor gene expression with megakaryocytic differentiation of leukemic cells. Cancer Res, 1993;53:3085-3091
    113. Tani T, Yianne J, Virtanen I. Expression of megakaryocytic and erythroid properties in human leukemic cells. Expl Hematol, 1996;24:158-168
    114.郑德先,吴克复,褚建新。现代实验血液学研究方法与技术。北京医科大学中国协和医科大学联合出版社;北京,1999(第一版):57-69
    115.奥斯伯F,金斯顿RE,塞德曼JG。精编分子生物学实验指南。北京,科学出版社,1998:362-388
    116.张晓晖,黄高昇,王文亮。细胞周期的网络调控系统cyclins-CDKs-CKIs及其与肿瘤发生的关系。国外医学肿瘤学分册,1997;24(2):77-79
    117.刘北忠,蒋纪恺。诱导K562细胞增殖分化的信号转导机制。中华血液病学杂志,1999;20(5):278-280
    
    
    118. Ritke MK, Rusnak JM, Lazo JS, et al. Differential induction of etoposide-mediated apoptosis in human leukemia HL-60 and K562cells. Mol pharmacol, 1994;46(4):605-611
    119.彭黎明,王会礼。细胞凋亡的基础与临床。北京。人民卫生出版社,2000(第一版):16-26
    120.王太宇,吴宁华,沈羽非。热休克诱导基因表达谱的变化。中国医学科学院学报。2001;21(4):361-364
    121.陶上乘,王静珍.苦豆子生物碱的药理作用.中国药学杂志,1992,27:201-204
    122. Pich A, Ponti R, Valerte G, et al. MIB-1, Ki67, and PCNA scores and DNA flow cytometry in intermediate grade madignant lymphomas. J Clin Pathol, 1994,47:18-22
    123.张永清,黄高昇,王哲等。苦参碱对K562细胞增殖及凋亡相关分子表达的影响。中国医学科学院学报,2001;23(4):333-336
    124.张永清,黄高昇,王哲等BCL-6在反应增生淋巴组织及不同类型淋巴瘤中的表达。第四军医大学学报,2002;23(8):685-688