微分方程解析近似解的符号计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于数学机械化思想,借助于符号计算软件,以非线性方程为对象,系统地研究了适用于强非线性问题的解析近似方法:Adomian分解方法(ADM)和同伦分析方法(HAM)的应用和机械化实现。
     第一章是与本文相关的研究背景。简要综述了计算机代数和孤立子理论的发展进程,针对性地介绍了近年来解析近似方法的研究成果和现状。
     第二章改进了Adomian分解方法,能够获得修正Korteweg-de Vries (mKdV)方程和Kadomtsev-Petviashvili (KP)方程的双孤子解。通过引入自变量变换和行波变换,将Degasperis-Procesi (DP)方程短波模型化为常微分方程,应用Adomian分解方法求解之,获得其闭合形式的解析解,再经过反变换,能够获得其环状孤子解。以上结果表明了Adomian分解方法在求解方程特殊孤子解方面的有效性。对Adomian分解方法进行了推广,解决了方程中离散变量不同于连续方程中的变量问题,并与Pade近似结合,能够获得几个经典的非线性微分差分方程组的孤子解,显著提高了方程解析近似解的精度。同时,我们还讨论了Pade有理近似中出现的伪极点问题,给出了合适选择Pade近似阶数的指导原则。获得的解析近似解与精确解符合得很好,表明了Adomian分解方法对复杂强非线性问题的有效性。
     第三章通过引入自变量变换和行波变换,将偏微分方程化为常微分方程,通过同伦分析方法求解之,再经过反变换,能够获得DP方程短波模型的环状孤子解和Camassa-Holm (CH)方程短波模型的尖状孤子解,结果表明了同伦分析方法在求解方程特殊孤子解方面的有效性。对同伦分析方法进行了推广,解决了方程中离散变量不同于连续方程中的变量问题,改进了同伦分析方法选择初始猜测解的方法,能够获得离散修正KdV方程的亮孤子解,获得的解析近似解与精确解符合得很好,表明了同伦分析方法对复杂强非线性问题的有效性。
     第四章在计算机代数系统Maple上实现了Biazar提出的求解Adomian多项式的算法,编制了构造微分方程(组)和积分方程(组)解析近似解的自动推导软件包,这个算法避免了Adomian多项式的计算膨胀问题,降低了计算难度并显著提高了计算速度,通过大量实例说明了该软件包的有效性和实用性。
In the dissertation, under the guidance of mathematical mechanization, two kinds of analytical approximation methods, which are Adomian decomposition method (ADM) and homotopy analysis method (HAM) for strong nonlinear problems around the non-linear equations, are investigated by means of symbolic computation. The application and mechanization of them are discussed, respectively.
     Chapter 1 is the research background related to the dissertation. The development of computer algebra and the theory of solitons are briefly outlined. Subsequently, the recent development and achievement of analytical approximation methods are summarized at home and abroad.
     In Chapter 2, the two-soliton solutions of modified Korteweg-de Vries (mKdV) equation and Kadomtsev-Petviashvili (KP) equation can be obtained by the modified ADM, respectively. By means of the transformation of the independent variables and trav-eling wave transformation, the short-wave model for Degasperis-Procesi (DP) equation is reduced to an ordinary differential equation the solution of which in closed form can be obtained by ADM. Then by means of the transformations back to the original variables, the loop-soliton solution of the short-wave model for DP equation can be derived. The results indicate the validity of ADM for constructing the special type of soliton solution of nonlinear differential equations. The discrete variable in nonlinear differential-difference equation is successfully overcome and ADM is extended to solving some classical sys-tems of differential-difference equations. The soliton solutions of them can be obtained with high accuracy by combining ADM and Pade approximants. Meanwhile, the pos-sibility of spurious poles of rational approximation is discussed and a criterion for the choice of the order of Pade approximants is given. The obtained results degree well with the exact solutions. This demonstrates the validity of ADM in strong nonlinear problems.
     In Chapter 3, By means of the transformation of the independent variables and trav-eling wave transformation, the partial differential equation is reduced to an ordinary dif-ferential equation, which can be solved by HAM. Then by means of the transformations back to the original variables, the solution of the original equation is obtained. The one-loop soliton solution of the short-wave model for DP equation and one-cusp soliton for Camassa-Holm (CH) equation can be obtained. This indicates the validity of HAM for constructing the special type of soliton solution of nonlinear differential equations. The discrete variable in nonlinear differential-difference equation is successfully overcome and HAM is extended to solving the discrete mKdV equation. The bright soliton solution can be obtained. A technique for choosing the initial guess is also shown. The obtained results degree well with the exact solution. This demonstrates the validity of HAM in strong nonlinear problems.
     In Chapter 4, Based on the existed algorithm for the calculation of ADM polynomials proposed by Biazar, an software package is developed to construct approximate analytic solutions of differential equations and integral equations automatically in computer alge-braic system Maple. Avoiding the huge size of the calculation of ADM polynomials, the algorithm needs less time without any need to formulas other than elementary operations than that based on ADM. Many examples are presented to illustrate the implementation of the package.
引文
1 Ablowitz M J, Clarkson P A. Soliton, Nonlinear Evolution Equation and Inverse Scat-tering, Cambridge University Press, New York,1991.
    2 Darboux G. Sur une proposition relative aux equation lineaires, Compts Rendus Heb-domadaires des Seances de l'Academie des Sciences, Paris,1882,94:1456.
    3谷超豪,胡和生,周子翔.孤立子理论中的达布变换及其几何应用,上海科学技术出版社,1999.
    4 Miura M R. Backlund Transformation, Springer-Verlag, Berlin,1987.
    5 Hirota R, The Direct Method in Soliton Theory, Cambridge University Press, Cam-bridge,2004.
    6 Chen D Y, Zhang D J and Deng S F. The novel multisoliton solutions of the mKdV-sineGordon equation, J. Phys. Soc. Jpn.,2002,71:658.
    7 Deng S F and Chen D Y. The novel multisoliton solutions of the KP equation, J. Phys. Soc. Jpn.,2001,70:3174.
    8陈登远,孤子引论,科学出版社,北京,2005.
    9 Olver P J. Applications of Lie Groups to Differential Equations, Springer-Verlag, New York,1986.
    10 Bluman G W and Kumei S. Symmetries and Differential Equations, Springer-Verlag, Berlin,1989.
    11 Ablowitz M J, Ramani A and Segur H. Nonlinear evolution equations and ordinary differential equations of Painleve type, Lett. Nuovo. Cimento.,1978,23:333.
    12 Weiss J, Tabor M and Carnevale G. The Painleve property of partial differential equa-tions, J. Math. Phys.,1983,24:522.
    13 Lou S Y. (2+1)-dimensional (M+N)-component AKNS system:Painleve integrability, infinitely many symmetries, similarity reductions and exact solutions, Z. Naturforsch. A,1998,53:251.
    14楼森岳,共形不变的Painleve分析法和高维可积模型,中国科学(A辑),1999,29:177.
    15程艺,汪启存,田畴,李翊神,Burgers方程族的对称、Backlund变换和Painleve性质之间的联系,应用数学学报,1991,14:180.
    16 Li Z B and Wang M L. Travelling wave solutions to the two-dimensional KdV-Burgers equation, J. Phys. A:Math. Gen.,1993,26:6027.
    17 Wang M L, Zhou Y B and Li Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A,1996, 216:67.
    18范恩贵,张鸿庆,非线性孤子方程的齐次平衡法,物理学报,1998,47:353.
    19 Fan E G and Zhang H Q. A note on the homogeneous balance method, Phys. Lett. A, 1998,246:403.
    20 Wu W T. On the decision problem and the mechanization of theorem-proving in ele-mentary geometry, Scientia Sinica,1978,21:159.
    21 Wu W T. On zeros of algebraic equations:an application of Ritt principle, Kexue Tongbao,1986,31:1, Chinese version,1985,30:881.
    22 Li Z B. Wu method and solitons, Proc. of ASCM'95 eds Shi H. and Kobayashi H.,(Tokyo:Scientists Incorporated) 1995:157.
    23李志斌,张善卿.非线性波方程准确孤立波解的符号计算,数学物理学报,1997,17:81.
    24 Li Z B and Liu Y P. RATH:A Maple package for finding travelling solitary wave solution of nonlinear evolution equations, Compu. Phys. Commun.,2002,148:256.
    25 Yao R X and Li Z B. CONSLAW:a Maple package to construct the conservation laws for nonlinear evolution equations, Appl. Math. Comput.,2006,173:616
    26 Zhang S Q, Zhang G X and Li Z B. ICS:A package for computing involutive char-acteristic set of algebraic partial differential equation systems, Appl. Math. Comput., 2005,160:551.
    27范恩贵,可积系统与计算机代数,科学出版社,北京,2004.
    28朝鲁,吴微分特征列法及其在PDEs对称和力学中的应用,博士学位论文,大连理工大学,1997.
    29陈勇,孤立子理论中的若干问题的研究及机械化实现,博士学位论文,大连理工大学,2003.
    30谢福鼎,Wu-Ritt消元法在偏微分代数方程中的应用,博士学位论文,大连理工大学,2002.
    31李彪,孤立子理论中若干精确求解方法的研究及应用,博士学位论文,大连理工大学,2005.
    32 Russell J S. Report on waves, Fourteen meeting of the British association for the advancement of science, London,1844:311.
    33 Korteweg D J and De Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag.,1895,39: 422.
    34 Fermi A, Pasta J and Ulam S. Studies of Nonlinear Problems, Los Alamos Scient. Lab., Rep. LA-1940,1955.
    35谷超豪等,孤立子理论与应用,浙江科技出版社,杭州,1987.
    36 Perring J K and Skyrme T H R. A model unified field equation, Nuclear Phys.,1962, 31:550.
    37 Zabusky N J and Kruskal M D. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett.,1965,15:240.
    38 Nayfeh A H. Perturbation Methods, John Wiley & Sons, New York,1973. Van Dyke M D. Perturbation Methods in Fluid Mechanics, Academic, New York, 1964. Von Dyke M D. Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stan-ford:California,1975.钱伟长,奇异摄动理论及其在力学中的应用,科学出版社,北京,1981.
    3920世纪理论和应用力学十大进展,力学进展,2001,31:322.
    40 Adomian G. Nonlinear Stochastic Systema and Application to Physics, Kluwer Aca-demic Publisher, Boston,1989. Adomian G. Solving Frontier Problem of Physics:the Decomposition Method, Kluwer Academic Publisher, Boston,1994.
    41方锦清,逆算符理论方法及其在非线性物理中的应用,物理学进展,1993,13:441.
    42 Gu H F and Li Z B. A modified Adomian method for system of nonlinear differential equation, Appl. Math. Comput.,2007,187:748.
    43 Yan Z Y. Approximate Jacobi elliptic function solutions of the modified KdV equation via the decomposition method, Appl. Math. Comput.,2005,166:571.
    44 Wazwaz A M. The modified decomposition method and Pade approximants for solv-ing the Thomas-Fermi equation, Appl. Math. Comput.,1999,105:11.
    45 Wazwaz A M. A computational approach to soliton solutions of the Kadomtsev-Petviashvili equation, Appl. Math. Comput.,2001,123:205.
    46 Chen Y and AN H L. Numerical solutions of a new type of fractional coupled nonlin-ear equations, Commun. Theor. Phys.,2008,49:839. AN H L and Chen Y. The numerical solutions of a class of nonlinear evolution equa-tions with nonlinear term of any oeder, Commun. Theor. Phys.,2008,49:579.
    47 Bratsos A, Ehrhardt M and Famelis I T. A discrete Adomian decomposition method for discrete nonlinear schrodinger equations, Appl. Math. Comput.,2008,197:190.
    48 Wang Z and Zhang H Q. Construct solitary solutions of discrete hybrid equation by Adomian decomposition method, Chaos Soliton. Frac.,2009,40:676.
    49 Abassy T A, El-Tawil M A and Saleh H K. The solution of Burgers'and good Boussi-nesq equations using ADM-Pade technique, Chaos Soliton. Frac.,2007,32:1008.
    50 Yang P, Chen Y and Li Z B. An approach for solving short-wave models for Camassa-Holm equation and Degasperis-Procesi equation, Commun. Theor. Phys.,2008,50: 583.
    51 Yang P, Chen Y and Li Z B. ADM-Pae technique for the nonlinear lattice equations, Appl. Math. Comput.,2009,210:362.
    52 Yang P, Chen Y and Li Z B. Adomian decomposition method and Pade approximants for solving the Blaszak-Marciniak lattice, Chin. Phys. B,2008,17:3953.
    53 Biazar J, Babolian E, Kember G, Nouri A and Islam R. An alternate algorithm for computing Adomian polynomials in special cases, Appl. Math. Comput.,2003,138: 523.
    54 Biazar J, Ilie M and Khoshkenar A. An improvement to an alternate algorithm for computing Adomian polynomials in special cases, Appl. Math. Comput.,2006,173: 582.
    55 Chen W H and Lu Z Y. An algorithm for Adomian decomposition method, Appl. Math. Comput.,2004,159:221.
    56 Choi H W and Shin J G, Symbolic implementation of the algorithm for calculating Adomian polynomials, Appl. Math. Comput.,2003,146:257.
    57 EL-Wakil S A and Abdou M A. New applications of Adomian decomposition method, Chaos Solitons Fract.,2007,33:513.
    58 Wazwaz A M. The existence of noise terms for systems of inhomogeneous differential and integral equations, Appl. Math. Comput.,2003,146:81.
    59 Wazwaz A M. A new modification of the Adomian decomposition method for linear and nonlinear operators, Appl. Math. Comput.,2001,122:393.
    60 Cherruault Y and Adomian G. Decomposition method:a new proof of convergence, Math. Comput. Model.,1993,18:103. Abbaoui K and Cherruault Y. New ideas for proving convergence of decomposition methods, Computers Math. Applic.,1995,29:109. Cherruault Y. Convergence of Adomian's method, Kybernetes,1989,18:31.
    61 Adomian G and Rach R. A further consideration of partial solutions in the decompo-sition method, Comput. Math. Appl.,1992,23:51.
    62 Abbaoui K and Cherruault Y. Convergence of Adomian's method applied to differen-tial equations, Math. Comput. Model.,1994,28:103.
    63 Badredine T, Abbaoui K and Cherruault Y. Convergence of the Adomian method ap-plied to integral equations, Kybernetes,1999,28:557.
    64 Rach R. A convenient computational form for the Adomian ploynomials,J. Math. Anal. Appl.,1984,102:415.
    65 Wazwaz A M. A new algorithm for calculationg Adomian ploynomials for nonlinear operators, Appl. Math. Comput.,2000,111:53.
    66 Babolian E and Javadi SH. New method for calculating Adomian polynomials, Appl. Math. Comput.,2004,153:253.
    67 Liao S J. Beyond Perturbation:Introduction to Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton,2003.
    68 Liao S J. An analytic approach to solve multiple solutions of a strongly nonlinear problem, Appl. Math. Comput.,2005,169:854.
    69 Liao S J. A general approach to get series solution of non-similarity boundary-layer flows, Commun. Nonlinear Sci. Numer. Simulat.,2009,14:2144.
    70 Liao S J. Notes on the homotopy analysis method:Some definitions and theorems, Commun. Nonlinear Sci. Numer. Simulat.,2009,14:983.
    71 Liao S J and Tan Y. A general approach to obtain series solutions of nonlinear differ-ential equations, Stud. Appl. Math.,2007,119:297.
    72 Wu Y Y, Wang C and Liao S J, Solving the one-loop soliton solution of the Vakhnenko equation by means of the Homotopy analysis method, Chaos, Soliton. Fract.,2005, 23:1733.
    73 Wu W and Liao S J, Solving solitary waves with discontinuity by means of the homo-topy analysis method, Chaos, Soliton. Fract.,2005,26:177.
    74 Wang Z, Zou L and Zhang H Q. Applying homotopy analysis method for solving differential-difference equation, Phys. Lett. A,2007,369:77.
    75 Zou L, Zong Z, Wang Z and He L. Solving the discrete KdV equation with homotopy analysis method, Phys. Lett. A,2007,370:287.
    76 Song L N and Zhang H Q. Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation, Phys. Lett. A,2007,367:88.
    77 Liu Y P, Yao R X and Li Z B. An application of homotopy analysis method to nonlin-ear composites, J. Phys. A:Math. Theor.,2009,42:125205.
    78 Zhu S P. An exact and explicit solution for the valuation of American put options, Quantitative Finance,2006,6:229. Zhu S P and He Z W. Caculating the early exercise boundary of American put options with an approximation formula, Int. J. Theor. Appl. Finan.,2007,10:1203.
    79 Matsuno Y. Cusp and loop soliton solutions of short-wave models for the Camassa-Holm and Degasperis-Procesi equations, Phys. Lett. A,2006,359:451.
    80 Abbasbandy S and Parkes E J. Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method, Chaos Soliton. Fract.,2008,36: 581.
    81 Yang P, Chen Y and Li Z B. Analytic approximations for the soliton solutions of short-wave models for the Camassa-Holm and Degasperis-Procesi equations, Com-mun. Theor. Phys., (in press).
    82杨沛,陈勇,李志斌,离散修正KdV方程的解析近似解,物理学报,(待刊).
    83 Camassa R and Holm D D. An integrable shallow water equation with peakon solitons, Phys. Rev. Lett.,1993,71:1661.
    84 Camassa R, Holm D D and Hyman J M. A new integrable shallow water equation, Adv. Appl. Mech.,1994,31:1.
    85 Fokas A and Fuchssteiner B. Symplectic structures, their Backlund tranformation and hereditary symmetries, Physica D,1981,4:47.
    86 Degasperis A and Procesi M, in:Degasperis A, Gaeta G(Eds.), Symmetry and Pertur-bation Theory, World Scientific, Singapore,1999, p.22.
    87 Degasperis A, Hone A N W and Holm D D. A new integrable equation with peakon solutions, Theor. Math. Phys.,2002,133:1463.
    88 Johnson R S. Camass-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech.,2002,455:63.
    89 Johnson R S. The classical problem of water waves:a reservoir of integrable and nearly-integrable equations, J. Nonlinear Math. Phys.,2003,10(Suppl.1):72.
    90 Dullin H R, Gottwald G A and Holm D D. On asymptotically equivalent shallow water wave equations, Physica D,2004,190:1.
    91 Baker G A and Graves-Morris P, Encyclopedia of Mathematics and its Application 13, Parts Ⅰ and Ⅱ:Pade Approximants, Addison-Wesley Publishing Company, New York,1981.
    92 Baker G A, Essential of Pade Approximants, Academic Press, London,1975.
    93 Stahl H. Spurious poles in Pade approximation,J. Comp. Appl. Math.,1998,99:511.
    94 Suris Y B. New integrable systems related to the relativistic Toda lattice, J. Phys. A: Math. Gen.,1997,30:1745.
    95 Suris Y B. Integrable discretizations for lattice systems:local equations and their Hamitonian properties, Rev. Math. Phys.,1999,11:727.
    96 Suris Y B. The problem of integrable discretization:Hamitonian approach, Progress in mathemetics, vol.219, Birkhauser Verlag, Basel,2003.
    97 Belov A A and Chaltikian K D. Lattice analogues of W-algebras and classical inte-grable equations, Phys. lett. B,1993,309:268.
    98 Sahadevan R and Khousalya S. Similarity reduction, generalized symmetries and inte-grability of Belov-Chaltikian and Blaszak-Marciniak lattice equation, J. Math. Phys., 2001,42:3854.
    99 Sahadevan R and Khousalya S. Belov-Chaltikian and Blaszak-Marciniak lattice equa-tions:recursion operators and factorization, J. Math. Phys.,2003,44:882.
    100 Hu X B and Zhu Z N. Backlund transformation and nonlinear superposition fomula for the Belov-Chaltikian lattice, J. Phys. A:Math. Gen.,1998,31:4755.
    101 Zhang W, Huang Y Z and Xiao Y. Exact solitary waves of a nonlinear network equa-tion, Phys. Rev. E,1998,57:7358.
    102 Xiao Y and Hai W H. Lattice solitary wave solutions of discrete nonlinear wave equation using a direct method, J. Phys. A:Math. Gen.,1994,27:6873.
    103 Blaszak M and Marciniak K. R-matrix approach to lattice integrable systems, J. Math. Phys.,1994,35:4661.
    104 HU X B and Zhu Z N. Some new results on the Blaszak-Marciniak lattice:Backlund transformation and nonlinear superposition formula, J. Math. Phys.,1998,39:4766.
    105 Ma W X, Hu X B, Zhu S M and Wu Y T. Backlund transformation and its super-position principle of a Blaszak-Marciniak four-field lattice, J. Math. Phys.,1999,40: 6071.
    106 Zhang D J. Singular solutions in Casoratian form for two differential-difference equations of the Volterra type, Chaos, Soliton. Fract.,2005,23:1333.
    107 Narita K. Soliton solution for a highly nonlinear difference-differential equation, Chaos, Soliton. Fract.,1993,3:279.
    108 Wang Z and Zhang H Q. New exact solutions to some difference differential equa-tions, Chin. Phys.,2006,15:2210.