超硬金属氮化物纳米多层膜界面微结构及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代加工业的进步和金属切削工艺的发展,日益苛刻乃至极端恶劣的服役环境对刀具、工具和模具等的性能和寿命提出了越来越高的要求,如超高的硬度、耐磨性、耐热性、足够的韧性、强度和寿命等。表面涂层是实现上述要求的经济有效实用的方法,尤其是超硬纳米氮化物多层膜既可有效地延长切削刀具的使用寿命、同时其可设计性又可大大提高其工程适用性。随着多层膜制备技术的改进,多层膜的种类日趋多样化,从单一的金属氮化物到二元和多元氮化物涂层。而多层膜在从单元向多元发展的同时,单层的厚度也越来越薄,逐步趋向于纳米化,导致同等厚度多层膜所含的界面增多。由于纳米多层膜可以通过人工设计的特殊微结构获得高硬度和优异的综合性能,因此对其界面性质的研究有着至关重要的作用。本文从原子尺度分析超硬纳米氮化物多层膜的界面力学性质,主要工作如下:
     (1)以常见TiN/VN多层膜为研究对象,在原子尺度上,考虑TiN与VN表面不同的终端类型,建立了36类可能存在的TiN/VN界面模型,并利用界面粘结能得到了界面原子的最优堆垛方式。进而采用多种解析方法,如平面-平均电荷密度差分图、局部态密度(PDOS)和电荷密度和差分图等,确定了界面键合特性为离子键和少量共价键,在TiN/VN多层膜中,晶体结构和电子性质在界面平滑过渡,表明界面结合十分良好、清晰。
     (2)在多层膜制备的过程中,可能由于不可避免的原因引入杂质或人为的添加某些合金元素,由此对多层膜的性质产生影响。而界面在多层膜变形机制中起到了十分重要的作用,尤其是纳米多层膜中界面对其超硬现象具有关键的作用。本文从原子角度分析了常见合金元素Al、Cr、Mo、Nb、Sc、Ta、Y以及Zr掺杂对TiN/VN界面结构、界面粘结能等的影响。结果表明Al、Nb、Zr对界面粘结能影响不大,Sc可使界面粘结能略微增加,而Cr、Mo、Ta和Y会降低TiN/VN的界面粘结能。利用多种解析方法分析了上述杂质的作用机理并确定了界面键性。研究表明以上掺杂元素均未改变界面原子的堆垛方式及键性,即在掺杂的多层膜中,界面仍然平滑过渡且界面键仍然为离子键和部分共价键,多层膜界面依然清晰且结合良好。
     (3)在对TiN/VN多层膜界面特性以及合金元素掺杂TiN/VN界面分析的基础上,得到界面结合良好的证据。进而从线弹性力学的基本方程出发,以多层膜制备后相邻层的晶格常数失配为主要因素,预估了TiN/VN以及TiN/CrN多层膜的残余应力,与已知实验数据进行了比较,分析了差异及其原因。分析表明所提模型能够合理预估残余应力。在此基础上,讨论了多层膜相邻层厚度比、弹性模量比等对残余应力的影响。结果表明对于过渡金属氮化物多层膜,相邻层的晶格失配是造成极大局部残余应力的关键因素。
     (4)以TiN涂层及TiN/CrN多层膜为研究对象,考虑残余应力的影响计算了原子尺度下的粘结能,并将此能量用于宏观有限元cohesive单元中,很好地再现了TiN涂层压痕实验中裂纹的形核及扩展行为,表明残余应力是影响粘结能的关键因素,进而采用多种解析方法从原子尺度分析了其影响机理。随后从原子尺度模拟了TiN及TiN/CrN多层膜的单向拉伸行为,得到其理想拉伸强度;分析了TiN/CrN多层膜拉伸过程中应力出现跌落的原因,认为此去、跌落可归因于CrN层中N原子的滑移。
     (5)采用在TiN表面上依次吸附Al及N原子的方式,模拟AlN在TiN表面的生长,通过吸附层AlN原子排列的变化来研究TiN/AlN多层膜中模板效应。从吸附能和AlN晶体结构方面分析了AlN结构的变化,证实当AlN厚度达到约0.6nm时,AlN从以TiN的A-B-C-A-B-C…的排列方式转变为A-B-A-B…的排列方式,即模板效应消失。
With the development of modern manufacturing and metal-cutting technology, themore and more rigorous working-environment bring forward higher and higherrequirements for the performance of cutting-tools, such as, super-hard hardness, wearresistance, thermal resistance, toughness, strength and life, etc. Surface coating is one ofthe most effective and economic methods which could meet above requirements,especially, the super-hard metallic nitride nano-multilayered coatings, which couldincrease not only the life of cutting-tools but also its applicability in practicalengineering, due to its tailorable capability. With the improvement of technology for thefabrication of multilayered coatings, the varieties of multilayered coatings increaserapidly, from a single mono-metallic nitride coating to binary-or multi-componentmultilayered coatings. Meanwhile, the thickness of each layer becomes thinner andthinner, and approaches to nano-scale, which brings about much more interfaces. Sincethe mechanical properties of the interfaces play the key role in achieving super-hardnessand excellent mechanical properties of nano-multilayered coatings, in this dissertation,the mechanical properties of metallic nitride nano-multilayered coatings areinvestigated at atomic scale. The main contribution is listed as follows:
     (1) For TiN/VN multilayered coatings, a total of36candidate interfaces are firstlybuilt with the consideration of various terminals of TiN and VN at atomic scale. Themost preferred stacking sequences of interfacial atoms are determined with interfacialadhesion energy. Making use of somr analytical approaches, such as planar-averagecharge density difference, partial density of states (PDOS), charge density anddifference, etc, it is found that the interfacial bonds are mainly ionic, incorporatingsmall amount of covalent bonds. Smooth transitions of both atomic structure andelectronic property are found when cross the interface between TiN and VN,demonstrating that the interfaces in TiN/VN nano-multilayered coatings are wellbonded.
     (2) During the fabrication of the multilayered coatings, the inevitably existing orpurposively introduced alloy element often introduces additional changes in theproperties of the materials. It is expected that the interfaces may play key roles in themechanical properties of multilayered coatings, especially the super-hardness atnano-multilayered coatings, and some doping elements may strongly affect the adhesion property of the interfaces. The effects of doping atoms of element Cr, Mo, Ta,Y, Al, Nb, Zr, or Sc on the structure and the adhesion energy of TiN/VN interfaces areanalyzed with the first-principles calculation. It is found that the effects of Al, Nb andZr on the adhesion energy are insignificant, Sc can slightly increase the adhesionenergy, while Cr, Mo, Ta, Y can substantially reduce the interfacial adhesion. Theeffects of the doping element on the properties of the interfacial bonds are alsoanalyzed with several different methods, and it is shown that the above mentioneddoping elements do not change distinctly the stacking pattern and bond properties ofthe interfacial atoms, the transition across the interfaces keeps smooth, and the bondsare still mainly ionic incorporating a certain covalent,indicating that the interfaces arewell bonded after introducing the doping elements.
     (3) With the conclusions from the above analysis for the interfacial properties ofthe TiN/VN multilayered coatings with or without introducing doping elements, anapproach is developed for the evaluation of the local residual stress with the concept oflattice mismatch between neighboring layers and the assumption that each layer is linearelastic. It is shown that the calculated result is in good agreement with experimentalresult, demonstrating the validity of the proposed approach. The effects of ratio of thethicknesses and the ratio of Young’s modulus of neighboring layers are analyzed. It isfound that the lattice mismatch can account reasonably for the extremely large residualstress in nano-multilayered coatings.
     (4) The adhesion energies of TiN coatings and TiN/CrN multilayered coatings atatomistic scale are calculated, taking into account the effect of residual stress. Theobtained adhesion energy can be applied in the cohesive zone model implemented in theFEM to reproduce the initiation and the growth of cracks. It may not only validate themethodology for calculating the adhesion energy at atomic scale but also shows that theresidual stress may affect strongly the adhesion energy. The tensile deformation ofTiN/CrN multilayered coatings is simulated at an atomic scale. The abrupt drop of stressduring the axial tension is found, which could be attributed to the slide of the layer of Natoms in the CrN coatings.
     (5) Based on the alternating adsorption of Al and N atoms on the TiN surface, thegrowth of AlN on TiN surface is simulated. The variation of AlN structure on the TiNsurface is studied in the view of adsorption energy and the absorbed AlN atomicstructure. It is shown that when the thickness of the absorbed AlN layer approachesabout0.6nm, the stacking pattern of AlN may change from A-B-C-A-B-C---, as that of TiN, to A-B-A-B---, indicating that the templating effect may disappeared, whichagrees well with that observed in experiments.
引文
[1] J.S. Koehler. Attempt to design a strong solid [J]. Phys. Rev. B,1970,2(2):547-551.
    [2] W.M. Yang, T. Tsakalakos, and J.E. Hilliard. Enhanced elastic modulus in compositionmodulated gold-nickel and copper-palladium foils [J]. J. Appl. Phys.,1977,48(3):876-879.
    [3] U. Helmersson, S. Todorova, and S.A. Barnett, et al. Growth of single-crystal TiN/VNstrained-layer superlattices with extremely high mechanical hardness [J]. J. Appl. Phys.,1987,62(2):481-484.
    [4] X. Chu, M. S. Wong, W. D. Sproul, S.L. Rohde, and S. A. Barnett. Deposition and propertiesof polycrystalline TiN/NbN superlattice coatings [J]. J. Vac. Sci. Technol. A,1992,10(4),1604.
    [5] C. Ziebert, and S. Ulrich. Hard multilayer coatings containing TiN and/or ZrN: A review andrecent progress in their nanoscale characterization [J]. J. Vac. Sci. Technol. A,2006,24(3):554-583.
    [6] W.D. Sproul. New routes in the preparation of mechanically hard films [J]. Science,1996,273(5277):889-892.
    [7] P. Yashar, S.A. Barnett, J. Rechner, and W.D. Sproul. Structure and mechanical properties ofpolycrystalline CrN/TiN superlattices [J]. J. Vac. Sci. Technol. A,1998,16:2913-2918.
    [8] Z. Zhou, W.M. Rainforth, D.B. Lewis, S. Creasy, J.J. Forsyth, F. Clegg, A.P. Ehiasarian, P.Eh.Hovespian, W.-D. M nz. Oxidation behavior of nanoscale TiAlN/VN multilayer coatings [J].Surf. Coat. Technol.,2004,177-178:198-203.
    [9] Q. Luo, Z. Zhou, W.M. Rainforth, and P.Eh. Hovsepian. TEM-EELS study of low frictionsuperlattice TiAlN/VN coating: the wear mechanisms [J]. Tribology Letters,2006,24(2):171-178.
    [10] Z. Zhou, C.C. Calvert, W.M. Rainforth, Q. Luo, L. Chen, and P.Eh. Hovsepian. Investigatingworn surfaces of nanoscale TiAlN/VN multilayer coating using FIB and TEM [J]. J. Phys.:Confer. Series,2006,26:95-98.
    [11] P.Eh. Hovsepian, Q. Luo, G. Robinson, M. Pittman, M. Howarth, D. Doerwald, R. Tietema,W.M. Sim, A. Deeming, and T. Zeus. TiAlN/VN superlattice structured PVD coatings: A newalternative in machining of aluminum alloys for aerospace and automotive components [J].Surf. Coat. Technol.,2006,201(1-2):265-272.
    [12]赵时璐,李友,张钧,王闯,刘常升.刀具氮化物涂层的研究进展[J].金属热处理,2008,33(9):99-104.
    [13] C.Mendibide, P. Steyer, and J.-P. Millet. Formation of a semiconductive surface film onnanomultilayered TiN/CrN coatings and its correlation with corrosion protection of steel [J].Surf. Coat. Technol.,2005,200:109-112.
    [14] Y.M. Zhou, R. Asaki, W.H. Soe, R. Yamamoto, R. Chen, and A. Iwabuchi. Hardness anomaly,plastic deformation work and fretting wear properties of polycrystalline TiN/CrN multilayers[J]. Wear,1999,236:159-164.
    [15] C.Y. Su, C.T. Pan, T.P. Liou, P.T. Chen, and C.K. Lin. Investigation of the microstructure andcharacterizations of TiN/Crn nanomultilayer deposited by unbalanced magnetron sputterprocess [J]. Surf. Coat. Technol.,2008,203:657-660.
    [16] S.Y. Lee. Mechanical properties of TiNX/Cr1-XN thin films on plasma nitriding-assisted AISIH13steel [J]. Surf. Coat. Technol.,2005,193:55-59.
    [17] H.C. Barshilia, A. Jain, and K.S. Rajam. Structure, hardness and thermal ability ofnanolayered TiN/CrN multilayer coatings [J]. Vacuum,2004,72:241-248.
    [18] S. Paldey, and S.C. Deevi. Single layer and multilayer wear resistant coatings of (Ti, Al)N: areview [J]. Mater. Sci. Engin. A,2003,342:58-79.
    [19] H.C. Barshilia, M. S. Prakash, A. Poojari, K.S. Rajam. Corrosion behavior of nanolayeredTiN/NbN multilayer coatings prepared by reactive direct current magnetron sputteringprocess [J]. Thin Solid Films,2004,460:133-142.
    [20] A. Madan, I.W. Kim, and S.C. Cheng. Stabilization of cubic AlN in epitaxial AlN/TiNsuperlattices [J]. Phys. Rev. Lett.,1997,78(9):1743-1746.
    [21] I.W. Kim, Q. Li, L.D. Marks. Critical thickness for transformation of epitaxially stabilizedcubic AlN in superlattice [J]. Appl. Phys. Lett.,2001,78(7):892-894.
    [22] J. Lao, N. Shao, and F. Mei. Mutual promotion effect of crystal growth in TiN/SiCnanomultilayers [J]. Appl. Phys. Lett.,2005,86(1):011901-1-3.
    [23] X. Hu, H. Zhang, and J. Dai. Study on the superhardness mechanism of Ti-Si-Nnanocomposite films: influence of the thickness of the Si3N4interface phase [J]. J. Vac. Sci.Technol. A,2005,23(1):114-117.
    [24] Y. Dong, W. Zhao, and J. Yue. Crystallization of Si3N4layers and its influences on themicrostructure and mechanical properties of ZrN/Si3N4nanomultilayers [J]. Appl. Phys. Lett.,2006,89(12):121916-1-3.
    [25] L. Hultman, J. BareIo, and A. Flink. Interface structure in superhard TiN/SiN nanolaminatesand nanocomposites: film growth experiments and ab initio calculations [J]. Phys. Rev. B,2007,75(15):155437-1-6.
    [26] H. Soderberg, M. Odén, J.M. Molina-Aldareguia. Nanostructure formation during depositionof TiN/SiNXnanomultilayer films by reactive dualmagnetron sputtering [J]. J. Appl. Phys.,2005,97(11):114327-1-8.
    [27] H. Soderberg, M. Odén, and T. Larrson. Epitaxial stabilization of cubic-SiNXin TiN/SiNXmultilayers [J]. Appl. Phys. Let.,2006,88(19):191902-1-3.
    [28] S. Veprek, M. Veprek-Heijman, P. Karvankova, and J. Prochazka. Different approaches tosuperhard coatings and nanocomposites [J]. Thin Solid Films,2005,476:1-29.
    [29]孔明,岳建岭,李戈扬.陶瓷硬质纳米多层膜研究进展[J].无机材料学报,2010,25(2):114-119.
    [30] J. Lee, and G. Yang, Preparation of TiAlN/ZrN and TiCrN/ZrN multilayer by RF magnetronsputtering [J]. Trans. Nonferrous Met. Soc. China,2009,19:795-799.
    [31] M.T. Vieira, and A.S. Ramos. The influence of ductile interlayer on the mechanicalperformance of tungsten nitride coatings [J] J. Mater. Proces. Technol.,1999,92-93:156-161.
    [32] L. Cunha, M. Andritschky, K. Pischow, Z. Wang, A. Zarychta, A.S. Miranda, and A.M.Cunha. Performance of chromium nitride based coatings under plastic processing conditions[J]. Surf. Coat. Technol.,2000,133-134:61-67.
    [33] C. Engstr m, J. Birch, L. Hultman1, C. Lavoie, C. Cabral, J. L. Jordan-Sweet, and J. R. A.Carlsson. Interdiffusion studies of single crystal TiN/NbN superlattice thin films [J] J. Vac.Sci. Technol. A,1999,17:2920-2927.
    [34] H.Z. Zhang, L.M. Liu, and S. Q. Wang. First-principles study of the tensile and fracture of theAl/TiN interface [J]. Comp. Mater. Sci.,2007,38:800-806.
    [35] H.Z. Zhang, and S.Q. Wang. The effects of Zn and Mg on the mechanical properties of theAl/TiN interface: a first-principles study [J]. J. Phys.: Condens. Matter,2007,19:226003-1-9.
    [36] R.F. Zhang, S.H. Sheng, and S. Verprek. First principles studies of ideal strength and bondingnature of AlN polymorphs in comparison to TiN [J]. Appl. Phys. Lett.,2007,91:031906-1-3.
    [37]尚福林,北村隆行、平方宽之.微纳米材料及其结构的界面强度的实验研究[J].力学进展,2008,38:437-452.
    [38] J.L. Cao, K.L. Choy, H.L. Sun, H.Q. Li, D. Teer, M.D. Bao. Syntheses of nano-multilayeredTiN/TiSiN and CrN/CrSiN hard coatings [J]. J. Coat. Technol. Res.,2011,8(2):283-288.
    [39] C. Ziebert and S. Ulrich. Hard multilayer coatings containing TiN and/or ZrN: A review andrecent progress in their nanoscale characterization [J]. J. Vac. Sci. Technol. A,2006,24(3):554-583.
    [40] W. D. Sproul. New routes in the p reparation of mechanically hard films [J]. Science,1996,273(5277):889-892.
    [41] J.S. Koehler. Attempt to design a strong solid [J]. Phys. Rev. B,1970,2(2):547-551.
    [42] X. Chu, and S.A. Barnett. Model of superlattice yield stress and hardness enhancement [J]. J.Appl. Phys,1995,77(9):4403-4441.
    [43] M. Setoyama, A. Nakayama, M. Tanaka. Formation of cubic AlN in TiN/AlN superlattice [J].Surf. Coat. Technol,1996,86-87(1-3):225-230.
    [44] R.C. Cammarato, T.E. Schiesinger, and C. Kim. Nanoindentation study of the mechanicalproperties of copper-nickel multilayer thin films [J]. Appl. Phys. Let.,1990,56(19):1862-1864.
    [45] A.F. Jankowski. Measurement of lattice strain in Au-Ni multilayer and correlation withbiaxial modulus effect [J]. J. Appl. Phys.,1992,71(4):1782-1789.
    [46] J.H. Xu, M. Kamiko, and Y.M. Zhou. Superhardness effects of heterstructure NbN/TaNnanostructured multilayers [J]. J.Appl.Phys.,2001,89(7):3674-3679).
    [47] G.E. Henein, and J.E. Hilliard. Elastic modulus in composition-modulated copper-nickel andcopper-gold foils [J]. J. Appl. Phys.,1983,54(2):728-733.
    [48] M.Volker. Orowan process controlled dislocation glide in materials containing incoherentparticle [J]. Mater. Sci. Eng. A,2001,309-310:265-269.
    [49] D. Chandrasekaran. Solid solution hardening-a comparison of two models [J]. Mater. Sci.Eng. A,2001,309-310:184-189.
    [50] M. Nordin, M. Herranen, and S. Hogmark. Influence of lamellae thickness on the corrosionbehaviour of multilayered PVD TiN/CrN coatings [J]. Thin Solid Films,1999,348:202-209.
    [51] M. Nordin, M. Larsson, and S. Hogmark. Mechanical and tribological properties ofmultilayer PVD TiN/CrN [J]. Wear,1999,232:221-225.
    [52] C. Mendibide, P. Steyer, J. Fontaine, P. Goudeau. Improvement of the tribological behaviourof PVD nanostratified TiN/CrN coatings—An explanation [J]. Surf. Coat. Technol.,2006,201:4119-4124.
    [53] Ph. Steyer, A. Mege, D. Pech, C. Mendibide, J. Fontaine, J.-F. Pierson, C. Esnouf, and P.Goudeau. Influence of the nanostructuration of PVD hard TiN-based films on the durabilityof coated steel [J]. Surf. Coat. Technol.,2008,202:2268-2277.
    [54] C. Mendibide, P.Steyer, C. Esnouf, P.Goudeau, D. Thiaudière, M.Gailhanou, and J.Fontaine.X-ray diffraction analysis of the residual stress state in PVD TiN/CrN multilayer coatingsdeposited on tool steel [J]. Surf. Coat. Technol.,2005,200:165-169.
    [55] X. Li, Y. Wei, W. Yang, and H. Gao. Competing grain-boundary-and dislocation-mediatedmechanisms in plastic strain recovery in nanocrystalline aluminum [J]. Proc. Natl. Acad. Sci.,2009,196(38):16108-16113.
    [56] P. J. Withers. Residual stress and its role in failure [J]. Rep. Prog. Phys.,2009,70:2211-2264.
    [57] M. Nordin, M. Larsson, and S. Hogmark. Mechanical and tribological properties ofmultilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide[J]. Surf. Coat. Technol.,1998,106:234-241.
    [58]关洪.量子力学基础[M].北京:高等教育出版社,1999:23-35.
    [59] M. Born, and R. Oppenheimer. ZUT quanten theorie der Molekeln [J]. Annalen der Physik,1927,84:457-484.
    [60]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M].北京:清华大学出版社,1984:6-11.
    [61] J.R. Chelikowsky, S.G. Louie. Quantum theory of real materials [M]. Kluwer Academy Press,1989:1-11.
    [62] L.H. Thomas. The calculations of atomic fields [J] Mathematical Proces. CambridgePhilosophical Society,1927,23:542-548.
    [63] W. Kohn, L.J. Sham. Self-consistent equations including exchange and correlation effects [J].Phys. Rev. A,1965,140:1133-1138.
    [64] P. Hohenberg, W. Kohn. Inhomogeneous electron gas [J]. Phys. Rev. B,1964,136:864-871.
    [65] S. Lundqvist, N. March. Theory of the inhomogeneous electron gas [M]. New York:Plenum,1983:1-10.
    [66] J.P. Perdew, and Y. Wang. Accurate and simple analytic representation of the electron-gascorrelation energy [J]. Physical Review B,1992,45:13244-13249.
    [67] J.P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77:3865-3868.
    [68] J.P. Perdew, J.A. Chevary, and S.H. Vosko. Atoms molecules solids and surfaces: applicationsof the generalized gradient approximation for exchange and correlation [J]. Physical ReviewB,1992,46:6671-6687.
    [69] B. Hammer, L.B. Hansen, and J.K. Norskov. Improved adsorption energetic withindensity-functional theory using revised Perdew-Burke-Ernzerhof functional [J]. PhysicalReview B,1999,59:7413-7421.
    [70] A.D. Beeke. Density-functional exchange-energy approximation with correct asymptoticbehavior [J]. Physical Review A,1988,38:3098-3100.
    [71] C. Lee, W. Yang, and R.C. Parr. Development of the Colle-Salvetti correlation-energyformula into a functional of the electron density [J]. Physical Review B,1988,37:785-789.
    [72] J.C. Slater. Wave functions in a periodic potential [J]. Physical Review,1937,51(10):846-851.
    [73] D. Vanderbilt. Soft-consistent pseudopotentials in a generalized eigenvalue formalism [J].Physical Review B,1990,41:7892-7895.
    [74] P.E. Bl chl. Projector augmented-wave method [J]. Physical Review B,1994,50:17953-17979.
    [75] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos. Iterativeminimization techniques for ab initio total-energy calculations: molecular dynamics andconjugate gradients [J]. Rev. Mod. Phys.,1992,64:1045-1097.
    [76] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J].Phys. Rev. B,1990,41(11):7892-7895.
    [77] H.J. Monkhorst, and J.D. Pack. Special points for Brillouin-zone integrations [J]. Phys. Rev.B,1976,13(12):5188-5192.
    [78] P. Pulay. Ab initio calculation of force constants and equilibrium geometries in polyatomicmolecules.I.Theory [J]. Molecular Physics,1969,17(2):197-204.
    [79] C.G. Broyden. The convergence of a class of double-rank minimization algorithms1. Generalconsiderations [J]. J. Inst. Math. Appl.,1970,6(1):76-90.
    [80] Z. Wang, S. Tsukimoto, M. Saito, and Y. Ikuhara. SiC/Ti3SiC2interface: Atomic structure,energetic, and bonding [J]. Phys. Rev. B,2009,79(4):045318:1-10.
    [81] L.M. Liu, S.Q. Wang, and H.Q. Ye. First-principles study of metal/nitride polar interfaces:Ti/TiN [J]. Surf. Inter. Anal.,2003,35:835-841.
    [82] M.W. Finnis. The theory of metal-ceramic interfaces [J]. J. Phys.: Condens. Matter,1996,8(32):5811-5836.
    [83] L.M. Liu, S.Q. Wang, and H.Q. Ye. First-principles study of the effect of hydrogen on themetal-ceramic interface [J]. J. Phys.: Condens. Matter,2005,17:5335-5348.
    [84] N.C. Hernández, J. Graciani, and J.F. Sanz. Relaxation of the (001) surface in binary Sc, Tiand V nitrides: a first principles density functional study [J]. Surface Science,2008,541:217-224.
    [85] P.E. Hovsepian, D.B. Lewis, and W.D. Münz. Recent progress in large scale manufacturing ofmultilayer/superlattice hard coatings [J]. Surf. Coat. Technol.,2000,133-134:166-175.
    [86] Z. Zhou, W.M.Rainforth, Q. Luo, P.E. Hovsepian, J.J. Ojeda, and M.E. Romero-Gonzalez.Wear and friction of TiAlN/VN coatings against Al2O3in air at room and elevatedtemperatures [J]. Acta Materialia,2010,58:2912-2925.
    [87] C.-H. Ma, J.-H.Huang, and H. Chen. Texture evolution of transition-metal nitride thin filmsby ion beam assisted deposition [J]. Thin Solid Films,2004,446:184-193.
    [88] V. López-Flores, M.A. Roldán., C. Real, A.M. Páez, and G.R. Castro. Polymorphictransformation from body-centered to face-centered cubic vanadium metal duringmechanosynthesis of nanostructured vanadium nitride determined by extended x-rayabsorption fine structure spectroscopy [J]. J. Appl. Phys.,2008,104:023519-1-8.
    [89] P.C. Yashar, and W.D. Sproul. Nanometer scale multilayered hard coatings [J]. Vacuum,1999,55:179-190.
    [90] C.H. Ma, J.H. Huang, and H. Chen. A study of perferred orientation of vanadium nitride andzirconium nitride coatings on silicon prepared by ion beam assisted deposition [J]. Surf. Coat.Technol.,2000,133-134:289-294.
    [91] Q. Sun, Z.W. Fu. Vanadium nitride as a novel thin film anode material for rechargeablelithium batteries [J]. Electrochim. Acta,2008,54:403-409.
    [92] U. Helmersson, S.Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Markert, and J.E. Greene.Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanicalhardness [J]. J. Appl. Phys.,1987,62:481-484.
    [93] X. Chu, M.S. Wong, W.D. Sproul, S.L. Rohde, and S. A. Barnett. Deposition and propertiesof polycrystalline TiN/NbN superlattice coatings [J]. J. Vac. Sci. Technol. A,1992,10(4):1604.
    [94] X. Chu, S.A.Barnett, M.S. Wong, and W.D. Sproul. Reactive unbalanced magentron sputterdeposition of polycrystalline TiN/NbN superlattice coatings [J]. Surf. Coat. Technol.,1993,57(1):13-18.
    [95] W.D. Sproul. High-rate reactive DC magnetron sputtering of oxide and nitride superlatticecoatings [J]. Vacuum,1998,51(4):641-646.
    [96] Z. Zhou, W.M. Rainforth, C. Rodenburg, N.C. Hyatt, D.B. Lewis, and P.E. Hovsepian.Oxidation behavior and mechanisms of TiAlN/VN coatings [J]. Metallurgical and MaterialsTransactions A,2007,38:2464-2478.
    [97] B.A. Latella, B.K.Gan, K.E. Davies, D.R. McKenzie, D.G. McCulloch. Titaniumnitride/vanadium nitride alloy coatings: mechanical properties and adhesion characteristics [J].Surf. Coat. Technol.,2006,200:3605-3611.
    [98] H. Meidia, A.G. Cullis, C. Sch njahn, W.D. Münz, J.M. Rodenburg. Investigation ofintermixing in TiAlN/VN nanoscale multilayer coatings by energy-filtered TEM [J]. Surf.Coat. Technol.,2002,151-152:209-213.
    [99] Z. Zhou, W.M. Rother, B. Rother, A.P. Ehiasarian, P.E. Hovsepian, W.-D Münz. Elementaldistributions and substrate rotation in industrial TiAlN/VN superlattice hard PVD coatings [J].Surf. Coat. Technol.,2004,183(2-3):275-282.
    [100] Q. Luo, D.B.Lewis, P.E. Hovsepian, and W-D. Münz. Transmission electron microscopy andX-ray diffraction investigation of the microstructure of nanoscale multilayer TiAlN/VNgrown by unbalanced magnetron deposition [J]. J. Mater. Research,2004,19:1093-1104.
    [101] N. Hirashita, J.E. Greene., U. Helmersson, J. Birch, and J.E. Sundgren. Electronic propertiesof epitaxial TiN/VN(001) superlattices [J]. J. Appl. Phys.,1991.70(9):4963-4968.
    [102] K. Kutschej, B. Rashkova, J. Shen, D. Edwards, C. Mitterer, and G. Dehm. Experimentalstudies on epitaxially grown TiN and VN films [J]. Thin Solid Films,2007,516:369-373.
    [103] P. Lazar, B. Rashkova, J. Redinger, R. Podloucky, C. Mitterer, C. Scheu, and G. Dehm.Interface structure of epitaxial (111) VN films on (111) MgO substrates [J]. Thin Solid Films,2008,517:1177-1181.
    [104] P. Lazar, J. Redinger, and R. Podloucky. Density functional theory applied to VN/TiNmultilayers [J]. Phys. Rev. B,2007,76(17):4112-4120.
    [105] K. Chen, and M.Bielawski. Interfacial fracture toughness of transition metal nitrides [J]. Surf.Coat. Technol.,2008,203:598-601.
    [106] J.C. Knight, and T.F. Page. The fine-scale microstructure of thin hard TiN and TiC coatingson steels [J]. Thin Solid Films,1990,193-194:431-441.
    [107] S.H. Kim, Y.J. Baik, and D. Kwon. Analysis of interfacial strengthening from compositehardness of TiN/VN and TiN/NbN multilayer hard coatings [J]. Surf. Coat. Technol.,2004,187:47-53.
    [108] C. Stampfl, W. Mannstadt, R. Asahi, and A.J. Freeman. Electronic structure and physicalproperties of early transition metal mononitrides: Density-functional theory LDA, GGA, andscreened-exchange LDA FLAPW calculations [J]. Phys. Rev. B,2001,63(15):155106-155116.
    [109] B. R. Zhao, L. Chen, H.L. Luo, M.D. Jack, and D.P. Mullin. Superconducting andnormal-state properties of vanadium nitride [J]. Phys. Rev. B,1984,29(11):6198-6202.
    [110] J. H glund, G. Grimvall, T. Jarborg, and A.F. Guillermet. Band structure and cohesiveproperties of3d-transition-metal carbides and nitrides with the NaCl-type structure [J]. Phys.Rev. B,1991,43(18):14400-14408.
    [111] G. Hyett, M.A. Grenn, I.P. Parkin. An investigation of titanium-vanadium nitride phase space,conducted using combinatorial atomspheric pressure CVD [J]. Chemical Vapor Deposition,2008,14(9-10):309-312.
    [112] D.J. Siegel, L.G. Hector, Jr., and J.B. Adams. Ab initio study of Al-ceramic interfacialadhesion [J]. Phy. Rev. B,2003,67(9):092105:1-4.
    [113] S.V. Dudiy, and B.I. Lundqvist. First-principles density-functional study of metal-carbonitrideinterface adhesion: Co/TiC(001) and Co/TiN(001)[J]. Phys. Rev.B,2001,64(4):045403.
    [114] B. Eck, R. Dronskowski, M. Takahashi, and S. Kikkawa. Theoretical calculations on thestructures, electronic and magnetic properties of binary3d transition metal nitrides [J]. J.Mater. Chem.,1999,9(7):1527-1537.
    [115] E.I. Isaev, S.I. Simak, I.A. Abrikosov, R. Ahuja, Yu. Kh. Vekilov, M. I. Katsnelson, A.I.Lichtenstein, and B. Johansson. Phonon related propeties of transition metal, their carbidesand nitrides: A first-principles study [J]. J. Appl.Phys.,2007,101:123519:1-18.
    [116] T. Hong, J.R. Smith, and D.J. Srolovitz. Theory of metal-Ceramic adhesion [J]. Acta Metall.Mater.,1995,43(7):2721-2730.
    [117] P. Lazar, J. Redinger, J. Strobl, R. Podloucky, B. Rashkova, G. Dehm, G. Kothleitner, S.turm, K. Kutschej, C. Mitterer, and C. Scheu. N-K electron energy-loss nera-edge structuresfor TiN/VN layers: an ab initio and experimental study [J] Anal. Bioanal. Chem.,2008.390(6):1447-1453.
    [118] L.M. Liu, S.Q. Wang, and H.Q. Ye, First-principles study of polar Al/TiN(111) interfaces [J].Acta Materialia,2004,52(12):3681-3688.
    [119] J. Hartfold. Interface energy and electron structure for Fe/VN [J]. Phys.Rev. B,2000,61(3):2221-2229.
    [120] H.A. Jehn, J.H. Kim, and S. Hofmann. Composition and properties of transition metal nitridethin films (ZrNX, NbNX, MoNX)[J]. Surf. Coat. Technol.,1988,36(3-4):715-727.
    [121] X. Chu, M.S. Wong, W.D. Sproul, and S. A. Barnett. Deposition, structure, and hardness ofpolycrystalline transition-metal nitride superlattice films [J]. J. Mater. Res.,1999,14(06):2500-2507.
    [122] C. Subramanian, K.N. Strafford, T. P. Wilks, and L. P. Ward. On the design of coating systems:Metallurgical and other considerations [J]. J. Mater. Proce. Technol.,1996,56(1-4):385-397.
    [123] U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, and J.E. Greene.Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanicalhardness [J]. J. Appl. Phys.,1987,62:481-484.
    [124] Z. Zhou, W.M. Rainforth, D.B. Lewis, S. Creasy, J.J. Forsyth, F. Clegg, A.P. Ehiasarian, P.E.Hovsepian, and W.-D. Münz. Oxidation behaviour of nanoscale TiAlN/VN multilayercoatings [J]. Surf. Coat. Technol.,2004,177-178:198-203.
    [125] Q. Luo, Z. Zhou, W.M. Rainforth, and P.E. Hovsepian. TEM-EELS study of low-frictionsuperlattice TiAlN/VN coating: the wear mechanisms [J]. Tribology Lett.,2006,24(2):171-178.
    [126] Z. Zhou, C.C. Calvert, W.M. Raithforth, Q. Luo, L. Chen, and P. E. Hovsepian. Investigatingworn surfaces of nanoscale TiAlN/VN multilayer coating using FIB and TEM [J]. J. Phys.:Conf. Ser.,2006,26:95-98.
    [127] P. E. Hovsepian, Q. Luo, G. Robinson, M. Pittman, M. Howarth, D. Doerwald, R. Tietema,W.M. Sim, A. Deeming, and T. Zeus. TiAlN/VN superlattice structured PVD coatings: A newalternative in maching of aluminium alloys for aerospace and automotive components [J].Surf. Coat. Technol.,2006,201(1-2):265-272.
    [128] J.K. Lee, and G.S. Yang. Preparation of TiAlN/ZrN and TiCrN/ZrN multilayers by RFmagnetron sputtering [J]. Trans. Nonferrous Met. Soc. China,2009,19(4):795-799.
    [129] J. J. Wierer, Jr., A.A. Allerman, and Q. Li. Silicon impurity-induced layer disordering ofAlGaN/AlN superlattices [J]. Appl. Phys. Lett.,2010,97:051907.
    [130] F. Rovere, D. Music, S. Ershov, M. Baben, H.G. Fuss, P. Mayrhofer, and J. Schneider.Experimental and computational study on the phase stability of Al-containing cubic transitionmetal nitrides [J]. J. Phys. D: Appl. Phys.,2010,43(3):035302.
    [131] C.P. Constable, J. Yarwood, P. Hovsepian, L.A. Donohue, D.B. Lewis, and W.-D. Münz.Structural determination of wear debris generated from sliding wear tests on ceramic coatingsusing Raman microscopy [J]. J. Vac. Sci. Technol. A,2000,18(4):1681-1689.
    [132] H. Meidia, A.G. Cullis, C. Sch njahn, W.D. Münz, and J.M. Rodenburg. Investigation ofintermixing in TiAlN/VN nanoscale multilayer coatings by energy-filtered TEM [J]. Surf.Coat. Technol.,2002,151-152:209-213.
    [133] P.H. Mayrhofer, P.E. Hovsepian, C. Mitterer, and W.-D. Münz. Calorimetric evidence forfrictional self-adaptation of TiAlN/VN superlattice coatings [J]. Surf. Coat. Technol.,2004,177-178:341-347.
    [134] Z. Zhou, W.M. Rainforth, B. Rother, A.P. Ehiasarian, P.E. Hovsepian, and W.-D. Münz.Elemental distributions and substrate rotation in industrial TiAlN/VN superlattice hard PVDcoatings [J]. Surf. Coat. Technol.,2004,183(2-3):275-282.
    [135] E.B. Macak, and J.M. Rodenburg. Internal structure of TiAlN/VN coating deposited on sharpedges by ion-assisted physical vapor deposition [J]. J. Vac. Sci. Technol. A,2004,22(4):1195-1199.
    [136] K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, and C. Mitterer. Influence of oxidephase formation on the tribological behaviour of Ti-Al-V-N coatings [J]. Surf. Coat. Technol.,2005,200(5-6):1731-1737.
    [137] Z. Zhou, W.M. Rainforth, U. Falke, M. Falke, A. Bleloch, and P. E. Hovsepian. On thestructure and composition of nanoscale TiAlN/VN multilayers [J]. Philos. Mag.,2007,87(6):967-978.
    [138] Z. Zhou, W.M. Rainforth, C.C. Tan, P. Zeng, J.J. Ojeda, M.E. Romero-Gonzalez, and P.E.Hovsepian. The role of the tribofilm and roll-like debris in the wear of nanoscale nitride PVDcoatings [J]. Wear,2007,263(7-12):1328-1334.
    [139] K. Chen, L. Zhao, J. Rodgers, and J. Tse. Alloying effects on elastic properties of TiN-basednitrides [J]. J. Phys. D: Appl. Phys.,2003,36(21):2725-2729.
    [140] I.Y. Wang, J.L. He, K.C. Chen, and A. Davison. Nano-multilayer Ti–Zr–N coating by acentral configured multi-arc coating process [J] Surf. Coat. Technol.,2006,201(7):4174-4179.
    [141] Z.G. Zhang, O. Rapand, N. Bonasso, D. Mercs, C. Dong, and C. Coddet. Microstructures andcorrosion behaviors of Zr modified CrN coatings deposited by DC magnetron sputtering [J].Vacuum,2008,82(11):1332-1336.
    [142] Y.Y. Chang, S.-J. Yang, and D.Y. Wang. Characterization of TiCr(C,N)/amorphous carboncoatings synthesized by a cathodic arc deposition process [J]. Thin Solid Films,2007,515(11):4722-4726.
    [143] D.B. Lee, M.H. Kim, Y.C. Lee, and S.C. Kwon. High temperature oxidation of TiCrNcoatings deposited on a steel substrate by ion plating [J]. Surf. Coat. Technol.,2001,141(2-3):232-239.
    [144] D. B. Lee, M.H. Kim, and S.C. Kwon. Cyclic oxidation behavior of TiCrN coating depositedon a steel substrate by the Arc-ion plating method [J]. Metal. Mater. Int.,2001,7(4):375-380.
    [145] Y. Otani, and S. Hofmann. High temperature oxidation behaviour of (Ti1-xCrx)N coatings[J]. Thin Solid Films,1996,287:188-192.
    [146] S.M. Aouadi, K.C. Wong, K.A.R. Mitchell, F. Namavar, E. Tobin, D.M. Mihut, and S.L.Rohde, Characterization of titanium chromium nitride nanocomposite protective coatings [J].Applied Surfance Science,2004.229(1-4): p.387-394.
    [147] V.M. Vishnyakov, V.I.B., K.F. Minnebaev, R. Valizadeh, D.G. Teer, J.S. Colligon, V.V.Vishnyakov, and V.E. Yurasova. Ion assisted deposition of titanium chromium nitride [J].Thin Solid Films,2006,497(1-2):189-195.
    [148] D.B. Lee. TEM study on oxidized TiCrN coatings ion-plated on a steel substrate [J]. Surf.Coat. Technol.,2003,173(1):81-86.
    [149] P. Panjan, B. Navin eka, A. Cvelbara, A. Zalarb, I. Milo ev. Oxidation of TiN, ZrN, TiZrN,CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature [J].Thin Solid Films,1996,281-282:298-301.
    [150] I. Petrov, P. Losbichler, D. Bergstrom, J.E. Greene, W.-D. Münz, T. Hurkmans, and T. Trinh.Ion-assisted growth of Ti1xAlxN/Ti1yNbyN multilayers by combined cathodic-arc/magnetron-sputter deposition [J]. Thin Solid Films,1997,302(1-2):179-192.
    [151] B. Wollein, V. Buscaglia, W. Lengauer, M. Bohn, M. Bohn, R. Musenich, and P. Ettmayer.EPMA of spinodal‐like decomposition patterns in (TixNb1x) N [J]. Surf. Inter. Anal.,2000,30:368-371.
    [152] K. L. Rutherford, and.I.M. Hutchings. Micro-scale abrasive wear testing of PVD coatings oncurved substrates [J]. Tribology Lett.,1996,2(1):1-11.
    [153] H.-G. Neumann, U. Beck, M. Drawe, and J. Steinbach. Multilayer systems for corrosionprotection of stainless steel implants [J]. Surf. Coat. Technol.,1998,98(1-3):1157-1161.
    [154] M.P. Gisperta, A.P. Serro, b, R. Cola oc, E. Piresd, and B. Saramagoa. Wear of ceramiccoated metal-on-metal bearings used for hip replacement [J]. Wear,2007,263(1060-1065):1337-1345.
    [155] A.P. Serro, C. Completo, R. Cola o, F. dos Santos, C. Lobato da Silva, J.M.S. Cabral, H.Araújo, E. Pires, and B. Saramago. A comparative study of titanium nitrides, TiN, TiNbN andTiCN, as coatings for biomedical applications [J]. Surf. Coat. Technol.,2009,203(24):3701-3707.
    [156] Q. Yang, L.R. Zhao, P.C. Patnaik, and X.T. Zeng. Wear resistant TiMoN coatings depositedby magnetron sputtering [J]. Wear,2006,261(2):119-125.
    [157] W. S. Choi, S.K. Hwang, and C. M. Lee. Microstructure and chemical state of Ti1-xYxN filmdeposited by reactive magnetron sputtering [J]. J. Vac. Sci. Technol. A,2000,18(6):2914-2921.
    [158] C. Liu, W. Wu, Z. Yu, and Z. Jin. Correlation of interfacial structure and microstress ofyttrium-modified ion-plated titanium nitride film with its adhesion property [J]. Thin SolidFilms,1992,207(1-2):98-101.
    [159] Z. Yu, Z. Jin, C. Liu, L. Yu, and S. Dai. Preparation and properties of Ti(Y)N coatings [J]. J.Vac. Sci. Technol. A,1995,13(5):2303-2309.
    [160] Z. Zheng, and Z. Yu. Characteristics and machining applications of Ti(Y)N coatings [J]. Surf.Coat. Technol.,2010,204:4107-4113.
    [161] C. Angelkorta, A. Berendes, H. Lewaltera, W Bockb, and B.O. Kolbesen. Formation oftantalum nitride films by rapid thermal processing [J]. Thin Solid Films,2003,437(1-2):108-115.
    [162] M. Sahnoun, C. Daul, M. Driz, J.C. Parlebas, and C. Demangeat. FP-LAPW investigation ofelectronic structure of TaN and TaC compounds [J]. Comp. Mater. Sci.,2005,33(1-3):175-183.
    [163] D. Gall, M. Stoehr, and J. E. Greene. Vibrational modes in epitaxial Ti1-xScxN(001) layers: Anab initio calculation and Raman spectroscopy study [J]. Phys. Rev. B,2001,64(17):174302:1-7.
    [164] D. Yin, X. Peng, Y. Qin, and Z. Wang. Electronic property and bonding configuration at theTiN(111)/VN(111) interface [J]. J. Appl. Phys.,2010,108:033714-1-11.
    [165] Q. Sun, and Z. Fu. Vanadium nitride as a novel thin film a node material for rechargeablelithium batteries [J]. Electrochimica Acta,2008,54:403-409.
    [166] P. C. Yashar, and W. D. Sproul. Nanometer scale multilayred hard coatings [J]. Vacuum,199,55:179-190.
    [167] C. Mendibide, P. Steyer, J. Fontaine, and P. Goudeau. Improvement of the tribologicalbehaviour of PVD nanostratified TiN/CrN coatings—An explanation [J]. Surf. Coat. Technol.,2006,201:4119-4124.
    [168] M. Nordin, M. Larsson, and S. Hogmark. Mechanical and tribological properties ofmultilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide[J]. Surf. Coat. Technol.,1998,106:234-241.
    [169] D.B. Lewis, Q. Luo, P.Eh. Hovsepian, and W.D. Münz. Interrelationship between atomicspecies, bias voltage, texture and microstructure of nano-scale multilayers [J]. Surf. Coat.Technol.,2004,184:225-232.
    [170] X. Zhang, A. Misra, H. Wang, A. L. Lima, M. F. Hundley, and R. G. Hoagland. Effects ofdeposition parameters on residual stresses, hardness and electrical resistivity of nanoscaletwinned330stainless steel thin films [J]. J. Appl. Phys.,2005,97:094302-1-5.
    [171] K. F. Badawi, N. Durand, P. Gougeau, and V. Pelosin. Residual stresses and microstructure ofAg-Ni multilayer [J]. Appl. Phys. Lett.,1994,65(24):3075-3077.
    [172] P. Goudeau, P. Villain, N. Tamura, P.–O. Renault, K. F. Badawi, and H. A. Padmore. Elasticproperties of supported polycrystalline thin films and multilayers: an X-ray diffraction study[J]. Mat. Sci. Forum,2003,426:3409-3414.
    [173] Y. Nakano, T. Nomura, and T. Takenaka. Residual stress of multilayer ceramic capacitors(MLCCs)[J]. Key Engineering Mater.,2003,248:179-182.
    [174] N. Carvalho. E. Zoestbergen, B. Kooi, and J. D. Hosson. Stress analysis and microstructure ofPVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings [J]. Thin Solid Films,2003,429:179-189.
    [175] Y. Wang, Y. Dong, J. Teng, W. Lai, and Z. Mai. Texture and residual stress in FeMn/Ni80Fe20multilayers [J]. Mater. Lett.,2005,59:2588-2592.
    [176] F. Lamastra, F. Leonardi, R. Montanari, F. Casadei, T. Valente, and G. Gusmano. X-rayresidual stress analysis on CrN/Cr/CrN multilayer PVD coatings deposited on different steelsubstrates [J]. Surf. Coat. Technol.,2006,200:6172-6175.
    [177] J. M. Freitag, and B. M. Clemens. Stress evolution in Mo/Si multilayers for high-reflectivityextreme ultraviolet mirrors [J]. Appl. Phys. Lett.,1998,73(1):43-45.
    [178] C. Lee, H. Chen, and C. Jaing. Effect of thermal annealing on the optical properties andresidual stress of TiO2films produced by ion-assisted deposition [J]. Appl. Optics,2005,44(15):2996-3000.
    [179] J. M. J. den Toonder, C. Rademaker, and C.L. Hu. Residual stress in multilayer ceramiccapacitors: Measurement and computation [J]. J. Elect. Pack.,2003,125:506-511.
    [180] Y. Huang, T. Chang, and H. Chou. Study of symmetric microstructures for CMOS multilayerresidual stress [J]. Sens. Actuators A: Phys.,2009,150(2):237-242.
    [181] H. Matysiak,. Ciupiński, A. Olszyna, K. J. Kurzydlowski. Multilayer Al2O3/Mo composites[J]. Mater. Sci.,2005,23:803-812.
    [182] G. Maciejewski and P. D u ewski. Nolinear finite element calculations of residual stresses indislocated crystals [J]. Comput. Mater. Sci.,2004,30:44-49.
    [183] P. Klein, B. Gottwald, T. Frauenheim, C. K hler, and A. Gemmler. Residual stresses modeledby MD simulation applied to PVD DC sputter deposition [J]. Surf. Coat. Technol.,2005,200:1600-1603.
    [184] A. McGinnis, T. Watkins, and K. Jagannadham, JCPDS-International Centre for DiffractionData,1999,443-454(1999).
    [185] N. Pessall, R. E. Gold, and H. A. Johansen. A study of superconductivity in interstitialcompounds [J]. J. Phys. Chem. Solids,1968,29:19-27.
    [186] C. Stampfl, W. Mannstadt, R. Asahi, and A. J. Freeman. Electronic structure and physicalproperties of early transition metal mononitrides: Density-functional theory LDA, GGA, andscreened-exchanged LDA FLAPW calculations [J]. Phys. Rev. B,2001,63:155106-1-11.
    [184] J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, and S. A. Barnett. Elastic constants ofsingle–crystal transition–metal nitrides films measured by line–focus acoustic microscopy[J]. J. Appl. Phys.,1992,72:1805-1811.
    [185] W. Wolf, R. Podloucky, T. Antretter, and F. D. Fischer. First-principles study of elastic andthermal properties of refractory carbides and nitrides [J]. Phil. Mag. B,1999,79:839-858.
    [186] R. Ahuja, Q, Ericksson, J. M. Wills, and B. Johansson. Structural, elastic, and high-pressureproperties of cubic TiC, TiN, and TiO [J].Phys. Rev. B,1996,53(6):3072-3079.
    [187] D. Chen, J. Chen, Y. Zhao, B. Yu, C. Wang, and D. Shi. Theoretical study of the elasticproperties of titanium nitride [J] Acta Metallurgica Sinica,2009,22(2):146-152.
    [188] P. Ojha, B. Rakshit, G. Pagare, and S. Sanyal. Electronic and structural properties of transitionmetal mono nitrides [J]. Indian J. Pure Appl. Phys.,2008,46:375-377.
    [189] R. A. Andrievski, and I. I. Spivak, Strength of Heat-Resistant Compounds and Materials [M].1989, Chelyabinsk, Metallurgiya.
    [190] M. Born, and K. Huang. Dynamical Theory of Crystal Lattices [M].1956, Clarendon,Oxford.
    [191] J. F. Nye. Physical Properties of Crystals [M].1985, Oxford University Press, Oxford.
    [192] Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng. Crystal structure and elasticproperties of superhard IrN2and IrN3from first principles [J]. Phys. Rev. B,2007,76:054115-1-15.
    [193] J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, and S. A. Barnett. Acoustic-microscopymeasurement of the elastic properties of TiN/(VXNb1-X)N superlattices [J]. Phys. Rev. B,1993,48(3):1726-1737.
    [194] A. Yoshihara, W. Soe, and R. Yamamoto. Brillouin scattering study of elastic properties oftransition-metal nitride superlattices [J]. Jpn. J. Appl. Phys.,1999,38:3072-3075.
    [195] W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys [M].1967, Pergamon, Oxford.
    [196] I. N. Frantsevioh, E. A. Zhurakovskii, and A. B. Lyashchenko. Elastic constants and electronstructure of some refractory compounds obtained by powder metallurgical methods [J]. Inorg.Mater.,1967,3(1):8-16..
    [197] H. Chen, C. Tsai, and F. Lu. The Young’s modulus of chromium nitrides films [J]. Surf. Coat.Technol.,2004,184:69-73.
    [198] T. Aizawa, H. Kuwahra, and M. Tamura. Fabrication of CrN/Cr2N bulk composites and theirmechanical properties [J]. J. Am. Ceram. Soc.,2002,85(1):81-85.
    [199] L. E. Toth. Transition Metal Carbides and Nitrides [M].1971, New York, Academic Press.
    [200] X. Peng, J. Fan, and J. Zeng. Microstructure-based description for the mechanical behavior ofsingle pearlitic colony [J]. Int. J. Solids Structures,2002,39(2):435-448.
    [201] H. E. Hintermann. Adhesion, fraction and wear of thin hard coatings [J]. Wear,1984,100(1-3):381397.
    [202] Y. Y. Guu, J. F. Lin, and C. F. Ai. The tribological characteristics of titanium nitride, titanium,titanium carbonitride and titanium carbide coatings [J]. Thin Solid Films,1997,302:193200.
    [203] H.E. Hinermann. Characterization of surface coatings by the scratch adhesion test and byindentation measurements [J]. Fresenius J. Anal. Chem.,1993,346(1-3):4552.
    [204] J.J. Kim, J. H. Jeong, K.R. Lee, and D. Kwon. A new indentation cracking method forevaluating interfacial adhesion energy for hard films [J]. Thin Solid Films,2003,441:172179.
    [205] R.H. Dauskardt, M. Lane, Q. Ma, and N. Krishna. Adhesion and dobonding of multi-layerthin film structures [J]. Eng. Fract. Mech.,1998,61:141162.
    [206] M.W. Lane, E. G. Liniger, and J. R. Lloyd. Relationship between interfacial adhesion andelectromigration in Cu metallization [J]. J. Appl. Phys.,2003,93:14171421.
    [207] Z. Gan, S.G. Mhaisalkar, Z. Chen, S. Zhang, Z. Chen, and K. Prasad. Study of interfacialadhesion energy of multilayered ULSI thin film structures using four-point bending test [J].Surf. Coat. Technol.,2005,198:8589.
    [208] Y. Kwon, J. Seok, J.Q. Lu, T.S. Cale, and R.J. Gutmann. Thermal cycling effects on criticaladhesion energy and residual stress in benzocyclobutene-bonded wafer [J]. J. Elect. Society,2005,152:G286G294.
    [209] P.A. Steinmann, and H.E. Hintermann. A review of the mechanical tests for assessment ofthin-film adhesion [J]. J. Vac. Sci. Technol. A,1989,7(3):22672272.
    [210] T. Nsongo, and M. Gillet. Adhesion characterization of titanium and titanium nitride thincoatings on metals using the scratch test [J]. Int. J. Adhesion Adhesives,1995,15:191196.
    [211] J. Mougin, M. Dupeux, A. Galerie, and L. Antoni. Inverted blister test to measure adhesionenergy of thermal oxide scales on metals or alloys [J]. Mater. Sci. Technol.,2002,18:12171220.
    [212] C.Y. Lee, M. Dupeux, and W.H. Tuan. Adhesion strength of Ag/BaTiO3interface [J]. ScriptaMater.,2006,54(3):453457.
    [213] K. L. Mittal. Adhesion measurement of thin films [J]. Elec. Sci. Tech.,1976,3(1):2142.
    [214] H. Weiss. Adhesion of advanced overlay coatings: Mechanisms and quantitative assessment[J]. Surf. Coat. Tech.,1995,71:201207.
    [215] M.R. Begley, D.R. Mumm, A.G. Evans, and J.W. Hutchinson. Analysis of a wedgeimpression test for measuring the interface toughness between films/coatings and ductilesubstrates [J]. Acta Mater.,2000,48:32113220.
    [216] X. Chen, J.W. Hutchinson, and A.G. Evans. The mechanics of indentation induced lateralcracking [J]. J. Am. Ceram. Soc.,2005,88:12331238.
    [217] K. Sriram, R. Narasimhan, and S.K. Biswas. A numerical fracture analysis of indentation intothin hard films on soft substrates [J]. Eng. Fract. Mech.,2003,70:13231338.
    [218] X.-P. Xu, and A. Needleman. Void nucleation by inclusion debonding in a crystal matrix [J].Model. Simul. Mater. Sci. Eng.,1993,1(2):111132.
    [219] X.-P. Xu, and A. Needleman. Numerical simulation of fast crack growth in brittle solids [J].J. Mech. Phys. Solids,1994,42:13971434.
    [220] P.H. Geubelle, and J.S. Baylor. Impact-induced delamination of composites: A2D simulation[J]. Composites Part B,1998,29(5):589602.
    [221] N. Chandra, H. Li, C. Shet, and H. Ghonem. Some issues in the application of cohesive zonemodels for metal-ceramic interfaces [J]. Int. J. Solids Structs.,2002,39(10):28272855.
    [222] S. Nekkanty, M.E Walter, and R. Shivpuri. A cohesive zone finite element approach to modeltensile cracks in thin film coatings [J]. J. Mech. Mater. Structs.,2007,2:12311247.
    [223] Z. Liu, J. Sun, J.-D. Wu, P.-N. Wang, and W. Shen. Determination of adhesion energy of CNXthin film on silicon from micro-scratch testing [J]. Tribology Transactions,2004,47:130137.
    [224] Y.C. Huang, S.Y. Chang, and C. H. Chang. Effect of residual stress on mechanical propertiesand interface adhesion strength of SiN thin films [J]. Thin Solid Films,2009,517(17):48574861.
    [225] J. Chen, and S.J. Bull. Assessment of the toughness of thin coatings using nanoindentationunder displacement control [J]. Thin Solid Films,2006,494(1-26):17.
    [226] J.S. Wang, Y. Sugimura, A.G. Evans, and W.K. Tredway. The mechanical performance ofDLC films on steel substrates [J]. Thin Solid Films,1998,325(1-2):163174.
    [227] S. Ogata, J. Li, N. Hirosaki, Y. Shibutani, and S. Yip. Ideal shear strain of metals andceramics [J]. Phys. Rev. B,2004,70:104104-1-7.
    [228] D. Roudy, C.R. Krenn, M.L. Cohen, and J.W. Morris. Ideal shear strengths of fcc aluminiumand copper [J]. Phys. Rev. Lett.,1999,82:2713-2716.
    [229] D.L. Price, B.R. Cooper,and J.M. Wills. Full-potential linear-muffin-tin-orbital study ofbrittle fracture in titanium carbide [J]. Phys. Rev. B,1992,46:11368-11375.
    [230] M. Kohyama. Ab initio study of the tensile strength and fracture of coincidence tiltboundaries in cubic SiC: Polar interfaces of the {122}∑=9boundary [J]. Phys. Rev. B,2001,65:184107-1-11.
    [231] G.H. Lu, S. Deng, T. Wang, M. Kohyana, and R. Yamanoto. Theoretical tensile strength of anAl grain boundary [J]. Phys. Rev. B,2004,69:134106-1-9.
    [232] P. Lazar, B. Rashkova, J. Redinger, R. Podloucky, C. Mitterer, C. Scheu, and G. Dehm.Interface structure of epitaxial (111) VN films on (111) MgO substrates [J]. Thin Solid Films,2008,517:11771181.
    [233] C. Wang, Y. Dai, H. Gao, X. Ruan, J. Wang, B. Sun. Surface properties of titanium nitride: Afirst-principles study [J]. Solid State Communications,2010,150(29-30):13701374.
    [234] L.M. Liu, S.Q. Wang, H.Q. Ye. Adhesion of metal-carbide/nitride interfaces: Al/TiC andAl/TiN [J]. J. Phys.: Condens. Matter,2003,15:8103-8114.
    [235] Q. Yang, C. He, L.R. Zhao, and J.P. Immarigeon. Preferred orientation and hardnessenhancement of TiN/CrN superlattice coatings deposited by reactive magnetron sputtering [J].Scripta Mater.,2002,46:293-297.
    [236] X.T. Zeng, S. Zhang, C.Q. Sun, and Y.C. Liu. Nanometric-layered CrN/TiN thin films:mechanical strength and thermal stability [J]. Thin Solid Films,2003,424:99-102.
    [237] Y. Kwon, J. Seok, J. Q. Lu, T.S. Cale, and R.J. Gutmann. Critical adhesion energy ofbenzocyclobutene-bonded wafers [J]. J. Electrochem. Society,2006,153:347352
    [238] M. T. Laugier. Adhesion of TiC and TiN coatings prepared by chemical vapor deposition onWC-Co-based cemented carbides [J]. J. Mater. Sci.,1986,21:22692272.
    [239] C.H. Lin, H.L. Wang, and M.H. Hon. The effect of residual stress on the adhesion ofPECVD-coated aluminum oxide film on glass [J]. Thin Solid Films,1996,283:171-174.
    [240] M. Bielawski, and K. Chen. Computational evaluation of adhesion and mechanical propertiesof nanolayered erosion-resistant coatings for gas turbines [J]. J. Eng. Gas Turb. Power,2011,133:042102-1-7.
    [241] A. Vasinonta, and J.L. Beuth. Measurement of interfacial toughness in thermal barrier coatingsystems by indentation [J]. Eng. Fracture Mech.,2001,68:843-860.
    [242] K. Inumaru, T. Ohara, K. Tanaka, and S. Yamanaka. Layer-by-layer deposition of epitaxialTiN/CrN multilayers on MgO(001) by pulsed laser ablation [J]. Appl. Surf. Sci.,2004,235:460-464.
    [243] J. Feng, Y. Qin, and Q. Zeng. Parameterised FE modeling of the surface-systems withcoatings which considers the cracking of the coatings and influences of the case-hardening ofthe substrate [J]. J. Multi. Model.,2010,3(1-2):1-22.
    [244] A.A. Solov’ev, N.S. Sochugov, and K.V. Oskomov. Effect of residual internal stresses in tincoatings on specific losses in anisotropic electronic steel [J]. Phys. Metals Metall.,2010109(2):111119.
    [245] J.M. Lackner. Industrially-scaled room-temperature pulsed laser deposition of Ti-TiNmultilayer coatings [J]. J. Phys. Conf. Series,2007,59:1621.
    [246] L.R. Zhao, K. Chen, Q. Yang, J.R. Rodgers, and S.H. Chiou. Materials informatics for thedesign of novel coatings [J]. Surf. Coat. Technol.,2005,200:1595-1599.
    [247] Y.L. Su, S.H. Yao, C.S. Wei, W.H. Kao, and C.T. Wu. Influence of single-and multilayer TiNfilms on the axial tension and fatigue performance of AISI1045steel [J]. Thin Solid Films,1999,338:177-184.
    [248] M.S. Wong, G.Y. Hsiao, and S.Y. Yang. Preparation and characterization of AlN/ZrN andAlN/TiN nanolaminate coatings [J]. Surf. Coat. Technol.,2000,133-134:160-165.
    [249] Y.Y. Wang, M.S. Wong, W.J. Chia, J. Rechner, and W.D. Sproul. Synthesis ancharacterization of highly textured polycrystalline AlN/TiN superlattice coatings [J]. J. Vac.Sci. Technol. A,1998,16(6):3341-3346.
    [250] A. Madam, I.W. Kim, S.C. Cheng, P. Yashar, V.P. Dravid, and S.A. Barnett. Stabilization ofcubic AlN in epitaxial AlN/TiN superlattices [J]. Phys. Rev. Lett.,1997,78(9):1743-1746.
    [251] M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, and T. Nomura. Formation ofcubic-AlN in TiN/AlN superlattice [J]. Surf. Coat. Technol.,1996,86-86:225-230.
    [252] M. Setoyama, M. Irie, H. Ohara, M. Tsujioka, Y. Takeda, T. Nomura, and N. Kitagawa.Thermal stability of TiN/AlN superlattices [J]. Thin Solid Films,1999,341:126-131.
    [253] P. Yashar, X. Chu, S.A. Barnett, J. Rechner, Y.Y. Wang, M.S. Wong, and W.D. Sproul.Stabilization of cubic CrN0.6in CrN0.6/TiN superlattices [J]. Appl. Phys. Lett.,1998,72(8):987-989.
    [254] J. Serrano, A. Rubio, E. Hernández, A. Mu oz, and A. Mujica. Theoretical study of therelative stability of structural phases in group-III nitrides at high pressure [J]. Phys. Rev. B,2000,62(24):16612-16623.
    [255] H. Morko, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns. Largebandgap SiC,II-IV nitride, and II-VI ZnSe-based semiconductors device technologies [J]. J. Appl. Phys.,1994,76(3):1363-1389
    [256] D.W. Jenkins, and J.D. Dow. Electronic structures and doping of InN, InxGa1-xN, andInxAl1-xN [J]. Phys. Rev. B,1989,39(5):3317-3329.
    [257] L.H. Shen, X.F. Li, Y.M. Ma, K.F. Yang, W.W. Lei, Q.L. Cui, and G.T. Zou. Pressure-inducedstructural transition in AlN nanowires [J]. Appl. Phys. Lett.,2006,89:141903-1-3.
    [258] A. Siegel, K. Parlinski, and U.D. Wdowik. Ab initio calculation of structural phase transitionsin AlN crystal [J]. Phys. Rev. B,2006,74:104116-1-6.
    [259] H.Y. Xiao, X.D. Jiang, G. Duan, F. Gao. X.T. Zu, and W.J. Weber. First-principlescalculations of pressure-induced phase transformation in AlN and GaN [J]. ComputationalMaterials Science,2010,48:768-772.
    [260] H. Vollst dt, E. Ito, M. Akaishi, S. Akimoto, and O. Fukunaga. High pressure synthesis ofrocksalt type of AlN [J]. Proc. Jpn. Acad. B,1990,66B(1):7-9.
    [261] X.L. Li, H.A. Ma, G.H. Zuo, W.Q. Liu, Y.J. Zheng, J.G. Li, S.S. Li, and X. Jia.Low-temperature sintering of high-density aluminium nitride ceramics without additives athigh pressure [J]. Scripta Materialia,2007,56:1015-1018.
    [262] Y.C. Cheng, X.L. Wu, J. Zhu, L.L. Xu, S.H. Li, and P.K. Chu. Optical properties of rocksaltand zinc blende AlN phases: First-principles calculations [J]. J. Appl. Phys.,2008,103:073707-1-5.
    [263] J.H. Edgar. Properties of Goup-III nitrides [M]. EMIS Datareview Series, London, IEE,1994.
    [264] I. Petrov, E. Mojab, R.C. Powell, and J.E. Greene. Synthesis of metastable epitaxialzinc-blende-structure AlN by solid-state reaction [J]. Appl. Phys. Lett.,1992,60(20):2491-2493.
    [265] Y.N. Xu, and W.Y. Ching. Electronic, optical, and structural properties of some wurtzitecrystals [J]. Phys. Rev. B,1993,48(7):4335-4351.
    [266] W.M. Yim, E.J. Stofko, P.J. Zanzucchi, J.I. Pankove, M. Ettenberg, and S.L. Gilbert.Epitaxially grown AlN and its optical band gap [J]. J. Appl. Phys.,1973,44:292-296.
    [267] F. Litimein, B. Bouhafs, Z. Dridi, and P. Ruterana. The electronic structure of wurtzite andzincblende AlN: an ab initio comparative study [J]. New J. Phys.,2002,4:64-1-12.
    [268] P.B. Perry, and R.F. Rutz. The optical absorption edge of singlecrystal AlN prepared by aclose spaced vapor process [J]. Appl. Phys. Lett.,1978,33(4):319-321.
    [269] P.B. Perry, and R.F. Rutz. The optical absorption edge of single-crystal AlN prepared by aclose-spaced vapor process [J]. Appl. Phys. Lett.,1978,33(4):319-321.