几种纳米材料的电化学法及液相法制备、分析与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于其独特的物理化学特性,在光学、催化、传感器敏感界面构建等方面有重要应用,在世界范围内逐步成为热门研究课题。本论文利用电化学沉积方法和有机液相合成法合成了几种纳米薄膜和颗粒状纳米材料,并使用多种表征手段对这些纳米材料的结构及性能进行了分析表征,主要内容包括:
     1)本文采用电化学原子层沉积(EC-ALD)技术,在多晶金基底上生长了单层Sb2Se3化合物,以循环伏安、计时电流技术研究了在单层硒修饰的金基底上单层锑的形成及溶出过程动力学。循环伏安数据表明单原子层锑的形成经历二维成核或生长过程,其溶出也表现为二维过程。计时电流数据也得出同样结果。采用电化学方法在导电玻璃基底上制备了Sb2Se3化合物,并研究了其生长过程动力学,并且对其形貌,晶体结构以及元素组成进行了分析。
     2)采用简单的一步单相法在有机溶剂中制备出单分散的银纳米颗粒。通过调节前驱体的浓度以及前驱体和表面活性剂之间的比率调控了银纳米颗粒的尺寸。用TEM, HR-TEM以及XRD分析了银纳米颗粒的形貌和晶体结构,运用XPS、FTIR等分析手段对银纳米颗粒的表面吸附情况进行分析,结果表明油胺分子通过氮原子与银化学键合包覆在银纳米颗粒表面。以紫外可见光谱和表面增强拉曼散射研究了银纳米颗粒的表面等离子共振(Surface Plasmon Resonance SPR)性质。
     3)在合成银纳米颗粒基础上,通过调节反应中的表面活性剂,以CTAB代替TOP,在苄醚中成功制备合成了高产率的银纳米方块,并对其形貌,晶体结构和表面吸附情况作了研究。对形成银纳米方块的各种因素进行了系统研究,并且提出了形成纳米方块的可能机理,Br-离子在银纳米方块的形成中起到关键作用。本工作中所得到的银纳米方块具有良好的表面等离子共振和表面增强拉曼散射特性,在生物传感、表面增强拉曼散射等方面有潜在的应用价值。
     4)在比较低的温度下,以油胺为溶剂和还原剂成功地制备出单分散、不同组分的AuPd合金纳米颗粒。用XRD分析合金纳米颗粒的结构,纳米颗粒中两种元素形成fcc结构的合金。UV/Vis结果表明,两种合金纳米颗粒均有SPR吸收峰,但相对Au纳米颗粒SPR吸收峰发生了蓝移。用XPS表征了合金纳米颗粒两种元素的键合情况,结果表明合金纳米颗粒为两种元素所形成的合金。以Au3Pd和Au2Pd纳米颗粒作为表面增强拉曼基底,测试了4-MBA分子的SERS特性,结果表明合金纳米颗粒具有很好的SERS特性。
     5)采用种子辅助法合成了不同长径比的金纳米棒。金纳米棒通过表面毛细作用力形成高度有序的自组装阵列。金纳米棒表面对拉曼散射光有显著的增强作用,对2-萘基硫醇和罗丹明6G两个分子的拉曼散射增强因子为5-6个数量级,并且增强因子随长径比的增加而减小。紧密堆积的金纳米棒的表面等离子共振相互耦合,在两纳米棒之间的空隙处形成很大的局域增强的电磁场,从而导致了拉曼散射信号的增强。
Synthesis of nanomaterials with controlled structure and morphology has been pursued with great effort recently, driven by both the excitement of understanding new chemistry and the potential hope for practical applications. In this paper, electrochemical and organic phase synthesis method were used to fabricate several nanofilms and nanoparticles, and many instruments, including SEM, TEM, HR-TEM, UV/Vis, SERS were employed to characterize the as-synthesised nanomaterials:
     1) Electrochemical atomic layer deposition (EC-ALD) technique was employed to fabricate the first layer of Sb2Se3 compound on gold substrate. Cyclic votammgyclic and chronoamperometric method were used to investigate the formation mechanism of first layer of Sb2Se3 formed on gold electrode through EC-ALD method. The deposition and stripping of antimony on Se-modified gold electrode proceed by a two-dimensional nucleation and growth mechanism in the underpotential region. Additionally, Sb2Se3 was also fabricated on ITO substrate through electrochemical method and the growth kinetics was investigated according to current density-time data. The morphology, crystalline structure and element component was also studied.
     2) Monodisperse silver nanoparticles with narrow size distribution are synthesized by direct reaction of the silver acetate and oleylamine in Benzyl ether. The particle sizes are controlled by tuning the precursor concentration and the ratio between precursor and surfactants. Surface plasmon resonance (SPR) phenomena and surface enhanced Raman scattering (SERS) observed from the silver nanoparticles are found to be size-dependent. As the particle size increases, the SPR peak red shifts and the SERS signal intensities increases.
     3) Monodisperse silver nanocubes were synthesized by the reduction of silver acetate in hydrophobic solvent benzyl ether. Cetyltrimethylammonium bromide (CTAB) was used as surfactants in the synthesis process. Transmission electron microscopy (TEM), high resolution TEM and X-ray diffraction (XRD) was used to investigate the morphology, crystalline structure and surface adsotption chemistry of the silver nanocube. The factors for the formation of silver nanocube were investigated systematically and we found that the Br- played critical role in the formation of silver nanocube. The silver nanocubes show good surface Plasmon resonance and surface enhanced Raman scattering properties, which have promising applications in biosensor, SERS, and biomedicine.
     4) AuPd bimetal nanoparticles ware successfully synthesized at low themperature. In the synthesis, oleylamine was used as reductant and also solvent. X-Ray dispesion was used to study the crystalline structure of the bimetal nanoparticles and show that alloy was formed in the AuPd nano particles. UV/Vis and X-ray photoelectronic were used to investgated the SPR properties and surface adsorption chemistry. The SERS properties of the two bimetal nanoparticles was studied using 4-mercaptobenzoic acid molecule as model molecules and the results show that the two bimetal nanoparticles could served as effective SERS substrates.
     5) Gold nanorods with aspect ratios from 1 (particles) to 31.6 were synthesized by the seed-mediated method and packed in a highly ordered structure in a large scale on silicon substrates through capillary force induced self-assemble behavior during solvent evaporation. The gold nanorod surface exhibits strong enhancement effect to Raman scattering spectroscopy. By changing the aspect ratio of Au nanorods, it was found that the enhancement factors decrease with the increase of aspect ratios. The observed Raman scattering enhancement is strong and it should be ascribed to the surface plasmon coupling between closely packed nanorods, which may result in huge local electromagnetic field enhancements in these confined junctions.
引文
[1]Murphy, C.J., Jana, N.R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials.2002,14(1):80-82.
    [2]Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnology.2004, 22:47-52.
    [3]朱静.纳米材料与器件.北京:清华大学出版社.2003.
    [4]Schmid, G. Nanoparticles:from theory to application. Weinheim:Wiley-VCH.2004.
    [5]Klabunde, K.J. Nanoscale materials in chemistry. New York:Wiley-Interscience.2001.
    [6]Rogach, A.L., Talapin, D.V., Shevchenko, E.V., Kornow, A., Haase, M., Weller, H. Organization of matter on different size scales:monodisperse nanocrystals and their superstructures. Advanced Functional Materials.2002,12(10):653-664.
    [7]Fendler, J.H. Nanoparticles and nanostructured films. Weinheim:Wiley-VCH.1998.
    [8]Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chemical Communications.2003, (8):927-934.
    [9]Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A. Nanocrystal superlattices monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science.2000, 287(5460):1989-1192.
    [10]Speliotis, D.E. Magnetic recording beyond the first 100 Years. Journal of Magnetism and Magnetic Materials.1999,193(1-3):29-35.
    [11]O'Handley, R.C. Modern magnetic materials:principles and applications. New York: Wiley-Interscience.1999.
    [12]Sugimoto, T. Monodispersed particles. Amsterdam:Elsevier.2001.
    [13]Sugimoto, T. Preparation of monodispersed colloidal particles. Advances in Colloid and Interface Science.1987,28:65-108.
    [14]LaMer, V.K., Dinegar, R.H. Theory, Production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society.1950,72(11):4847-4854.
    [15]Peng, Z.A., Peng, X. Nearly Monodisperse and shape-controlled CdSe nanocrytals via alternative routes:nucleation and growth. Journal of the American Chemical Society.2002, 124(13):3343-3353.
    [16]Peng, X.G., Wickham, J., Alivisatos, A.P. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴcolloidal semiconductor nanocrystal growth:"focusing" of size distributions. Journal of the American Chemical Society. 1998,120(21):5343-5344.
    [17]Mullin, J.W. Crystallization. Oxford:Oxford University Press.1997.
    [18]Vossmeyer, T., Katsikas, L., Giersig, M., Popovic, I.G., Diesner, K., Chemseddine, A., EychmUller, A., Weller, H. CdS nanoclusters:synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. The Journal of Physical Chemistry.1994,98(31):7665-7673.
    [19]Spanhel, L., Anderson, M.A. Semiconductor clusters in the sol-gel process:quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. Journal of the American Chemical Society.1991,113(8):2826-2833.
    [20]Alivisatos, A.P. Perspectives on the physical chemistry of semiconductor nanocrystals. The Journal of Physical Chemistry.1996,100(31):13226-13239.
    [21]Garvie, R.C. Stabilization of the tetragonal structure in zirconia microcrystals. The Journal of Physical Chemistry.1978,82(2):218-224.
    [22]Zhang, H., Banfield, J.F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:insights from TiO2. The Journal of Physical Chemistry B. 2000,104(15):3481-3487.
    [23]Murray, C.B., Norris, D.J., Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society.1993,115(19):8706-8715.
    [24]Murray, C.B., Kagan, C.R., Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystallites and close-packed nanocrystal assemblies. Annual Review of Materials Science. 2000,30:545-610.
    [25]Schmid, G., Klein, N., Morun, B., Lehnert, A. Two, four, five-shell clusters and colloids. Pure & Applied Chemistry.1990,62(6):1175-1177.
    [26]Alvarez, M.M., Khoury, J.T., Schaaff, T.G., Shafigullin, M., Vezmar, I., Whetten, R.L. Critical sizes in the growth of Au clusters. Chemical Physics Letters.1997,266:91-98.
    [27]Vargaftik, M.N., Zagorodnikov, V.P., Stolarov, I.P., Moiseev, I.I., Kochubey, D.I., Likholobov, V.A., Chuvilin, A.L., Zamaraev, K.I. Giant palladium clusters as catalysts of oxidative reactions of olefins and alcohols. Journal of Molecular Catalysis.1989,53(3):315-348.
    [28]Aiken Ⅲ, J.D., Lin, Y., Finke, R.G. A perspective on nanocluster catalysis:polyoxoanion and (n-C 4H9) 4N+stabilized Ir (O)-300 nanocluster'soluble heterogeneous catalysts'. Journal of Molecular Catalysis A:Chemical. 1996,114 (1-3):29-51.
    [29]Watzky, M.A., Finke, R.G. Transition metal nanocluster formation kinetic and mechanistic studies. a new mechanism when hydrogen is the reductant:slow, continuous nucleation and fast autocatalytic surface growth. Journal of the American Chemical Society.1997, 119(43):10382-10400.
    [30]Garzon, I.L., Michaelian, K., BeltrZn, M.R., Posada-Amarillas, A., Ordejon, P., Artacho, E., Sanchez-Portal, D., Soler, J.M. Lowest energy structures of gold nanoclusters. Physical Review Letters.1998,81(8):1600-1603.
    [31]Jana, N.R., Gearheart, L., Murphy, C. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chemistry of Materials.2001,13(7):2313-2332.
    [32]Yu, H., Gibbons, P.C., Kelton, K.F., Buhro, W.E. Heterogeneous seeded growth:a potentially general synthesis of monodisperse metallic nanoparticles. Journal of the American Chemical Society.2001,123(37):9198-9199.
    [33]Park, J., Lee, E., Hwang, N.M., Kang, M., Kim, S.C., Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hyeon, T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angewandte Chemie International Edition.2005, 44:2872-2877.
    [34]Wilcoxon, J.P., Provencio, P.P. Heterogeneous growth of metal clusters from solutions of seed nanoparticles. Journal of the American Chemical Society.2004,126(20):6402-6408.
    [35]Reiss, H. The growth of uniform colloidal dispersions. The Journal of Chemical Physics.1951, 19(4):482-487.
    [36]Talapin, D.V., Rogach, A.L., Haase, M., Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution:theoretical study. The Journal of Physical Chemistry B.2001, 105(49):12278-12285.
    [37]Talapin, D.V., Rogach, A.L., Shevchenko, E.V., Kornowski, A., Haase, M., Weller, H. Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. Journal of the American Chemical Society.2002,124(20):5782-5790.
    [38]Trentler, T.J., Denler, T.E., Bertone, J.F., Agrawal, A., Colvin, V.L. Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. Journal of the American Chemical Society.1999,121(7):1613-1614.
    [39]Joo, J., Yu, T., Kim, Y.W., Park, H.M., Wu, F., Zhang, J.Z., Hyeon, T. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. Journal of the American Chemical Society.2003,125(21):6553-6557.
    [40]Sun, S., Murray, C.B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited). Journal of Applied Physics.1999,85(8):4325-4330.
    [41]Orendorff, C.J., Hankins, P.L., Murphy, C.J. pH-Triggered assembly of gold nanorods. Langmuir.2005,21(5):2022-2026.
    [42]Wiley, B., Herricks, T., Sun, Y.G., Xia, Y.N. Polyol synthesis of silver nanoparticles:use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Letters.2004,4(9):1733-1739.
    [43]Xiong, Y.J., Cai, H.G., Wiley, B.J., Wang, J.G., Kim, M.J., Xia, Y.N. Synthesis and mechanistic study of palladium nanobars and nanorods. Journal of the American Chemical Society.2007, 129(12):3665-3675.
    [44]Glavee, G.N., Klabunde, K J., Sorensen, C.M., Hadjipanayis, G.C. Borohydride reduction of cobalt ions in water. Chemistry leading to nanoscale metal, boride, or borate particles. Langmuir. 1993,9(1):162-169.
    [45]Glavee, G.N., Klabunde, K J., Sorensen, C.M., Hadjipanayis, G.C. Chemistry of borohydride reduction of iron (Ⅱ) and iron (Ⅲ) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorganic Chemistry.1995,34(1):28-35.
    [46]Dragieva, I.D., Stoynov, Z.B., Klabunde, K.J. Synthesis of nanoparticles by borohydride reduction and their applications. Scripta Materialia.2001,44(8-9):2187-2191.
    [47]Chen, D.H., Hsieh, C.H. Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions. Journal of Materials Chemistry.2002,12(8):2412-2415.
    [48]Sondi, I., Goia, D.V., Matijevic, E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. Journal of Colloid and Interface Science.2003,260(1):75-81.
    [49]Yonezawa, T., Onoue, S., Kimizuka, N. Preparation of highly positively charged silver Nanoballs and Their Stability. Langmuir.2000,16(12):5218-5220.
    [50]Tan, Y., Dai, X., Li, Y., Zhu, D. Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. Journal of Materials Chemistry.2003,13:1069-1075.
    [51]Enustun, B.V., Turkevich, J. Coagulation of colloidal gold. Journal of the American Chemical Society.1963,85:3317-3328.
    [52]Turkevich, J., Stevenson, P.C., Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society.1951,11:55-75.
    [53]Albuquerque, A.S., Ardisson, J.D., Macedon, W.A. Nanosized powders of NiZn ferrite: Synthesis, structure, and magnetism. Journal of Applied Physics.2000,87(9):4352-4357.
    [54]Chen, Q., Rondinone, A.J., Chakoumakos, B.C., Zhang, Z.J. Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. Journal of Magnetism and Magnetic Materials. 1999,194(1-3):1-7.
    [55]Wang, J.F., Ponton, C.B., Harris, I.R. Ultrafine SrM particles with high coercivity by chemical coprecipitation. Journal of Magnetism and Magnetic Materials.2002,242-245(2):1464-1467.
    [56]Gu, Y., Li, G.Z., Meng, G., Peng, D. Sintering and electrical properties of coprecipitation prepared Ce0.8Y0.2O1.9 ceramics. Materials Research Bulletin.2000,35(2):297-304.
    [57]Li, J.G., Ikegami, T., Wang, Y., Mori, T. Reactive Ceria Nanopowders via Carbonate Precipitation. Journal of the American Ceramic Society.2002,85(9):2376-2378.
    [58]Du, Y., Fang, J., Zhang, M., Hong, J., Yin, Z., Zhang, Q. Phase character and structural anomaly of Bi4Ti3O12 nanoparticles prepared by chemical coprecipitation. Materials Letters.2002, 57(4):802-806.
    [59]Borse, P.H., Kankate, L.S., Dassenoy, F., Vogel, W., Urban, J., Kulkarni, S.K. Synthesis and invesitigations of ritile phase nanoparticles of TiO2. Journal of Materials Science:Materials in Electronics.2002,13(9):553-559.
    [60]Kuo, P.C., Tsai, T.S. New approaches to the synthesis of acicular α-FeOOH and cobalt-modified iron oxide particles. Journal of Applied Physics.1989,65(11):4349-4356.
    [61]Chen, Q., Zhang, Z.J. Size-dependent superparamagnetic properties of MgFe2O4 spinel ferrite nanocrystallites. Applied Physics Letters.1998,73(21):3156-3158.
    [62]Chinnasamy, N., Narayanasamy, A., Jeyadevan, B., Shinoda, K., Tohji, K., Kasuya, A., Sumiyama, K., Ipap, I. In proceedings of the international symposium on cluster. Assembled Materials.2001,3:109-112.
    [63]Rojas, T.C., Ocana, M. Uniform nanoparticles of Pr(Ⅲ)/Ceria solid solutions prepared by homogeneous precipitation. Scripta Materialia.2002,46(9):655-660.
    [64]Tang, Z.X., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C. Preparation of manganese ferrite fine particles from aqueous solution. Journal of Colloid Interface Science.1991,146(1):38-52.
    [65]刘志刚,孙旭东,李晓东,连景宝.均匀共沉淀法合成纳米Gd2O3:Eu粉体及其发光特性.材料与冶金学报2009,8:110-113.
    [66]Penner, R.M., Martin, C.R. Preparation and electrochemical characterization of ultramicroelectrode ensembles. Analytical Chemistry.1987,59(21):2625-2630.
    [67]Preston, C.K., Moskovits, M. Optical characterization of anodic aluminum oxide films containing electrochemically deposited metal particles.1. Gold in phosphoric acid anodic aluminum oxide films. The Journal of Physical Chemistry.1993,97(32):8495-8503.
    [68]Zach, M.P., Kwokh, N., Penner, R.M. Molybdenum nanowires by electrodeposition. Science. 2000,290(5499):2120-2123.
    [69]Reetz, M.T., Helbig, W. Size-selective synthesis of nanostructured transition metal clusters. Journal of the American Chemical Society.1994,116(16):7401-7402.
    [70]Huang, C.J., Wang, Y.H., Chiu, P.H., Shi, M.C., Meen, T.H. Electrochemical synthesis of gold nanocubes. Materials Letters.2006,60(15):1896-1900.
    [71]Delplancke, J.L., Dille, J., Reisse, J., Long, G.J., Mohan, A., Grandjean, F. Magnetic nanopowders:ultrasound-assisted electrochemical preparation and properties. Chemistry of Matterials.2000,12(4):946-955.
    [72]Zhu, J.J., Aruna, S.T., Koltypin, Y., Gedanken, A. A novel method for the preparation of lead selenide:pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chemistry of Matterials.2000,12(1):143-147.
    [73]韩爱珍,林逸青,赵永春,高元恺,CaAs薄膜电沉积机理的初探.半导体学报,1997,18(5):380-384.
    [74]Gregory, B. W., Stickney, J. L. Electrochemical Atomic Layer Epitaxy (ECALE). Journal of Electroanalytical Chemistry,1991,300(1-2):543-561.
    [75]樊玉微,李永祥,吴冲若,Ⅱ-Ⅵ族化合物半导体电化学原子层外延.真空学与技术1998,18(4):302-307
    [76]Henglein, A. Radiolytic preparation of ultrafme colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir.1999, 15(20):6738-6744.
    [77]Ershov, B.G., Sukhov, N. L., Janata, E. Formation, absorption spectrum, and chemical reactions of nanosized colloidal cobalt in aqueous solution. The Journal of Physical Chemisrty B.2000, 104(26):6138-6142.
    [78]Henglein, A. Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu(CN)2-.The Journal of Physical Chemisrty B.2000,104(6):1206-1211.
    [79]Wang, S., Zin, H. Fractal and dendritic growth of metallic Ag aggregated from different kinds of γ-irradiated solutions. The Journal of Physical Chemisrty B.2000,104(24):5681-5685.
    [80]Henglein, A., Meisel, D. Radiolytic control of the size of colloidal gold nanoparticles. Langmuir. 1998,14(26):7392-7396
    [81]Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. Chemical Communications.1994, 7:801-802.
    [82]Sun, S., Murray, C.B., Doyle, H. Controlled assembly of monodisperse cobalt based nanocrystals. Material Research Society Symposium Proceedings.1999,577:385-398
    [83]Murray, C.B., Sun, S., Doyle, H., Betley, T. Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bulletin.2001, 26(12):985-991.
    [84]Murray, C.B., Sun, S., Gaschler, W., Doyle, H., Betley, T.A., Kagan, C.R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM Journal of Research and Development. 2001, 45(1):47-56.
    [85]Cheng, H., Ma, J., Zhao, Z., Qi, L. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chemistry of Materials.1995,7(4):663-671.
    [86]Yin, H., Wada, Y., Kitamura, T., Sumida, T., Hasegawa, Y, Yanagida, S. Novel synthesis of phase-pure nano-particulate anatase and rutile TiO2 using TiCl4 aqueous solutions. Journal of Materials Chemistry.2002,12:378-383.
    [87]Wang, X., Zhuang, J., Peng, Q., Li, Y.D. Interface-mediated growth of monodispersed nanostructures. Nature.2005,437:121-124.
    [88]Li, P., Nan, C.Y., Wei, Z., Lu,J., Peng, Q., Li., Y.D. Mn3O4 Nanocrystals:facile synthesis, controlled assembly, and application. Chemistry of Materials.2010,22(14):4232-4236
    [89]Yang, J., Cheng, G.H., Yu, S.H., Liu, X.M., Qian, Y.T. Shape control and characterization of transition metal diselenides MSe2 (M=Ni, Co, Fe) prepared by a solvothermal-reduction process. Chemistry of Materials.2001,13(3):848-853.
    [90]Xie, Y., Qian, Y., Wang, W., Zhang, S., Zhang, Y. A benzene-thermal synthetic route to nanocrystalline GaN. Science.1996,272(5270):1926-1927.
    [91]Brinker, C.J., Scherer, G.W. Sol-Gel Science:The physicsand chemistry of sol-gel processing. Boston:Academic Press.1990.
    [92]Ebelmann, M. Ann. Chem. Phys.1846,16,129.
    [93]Geffcken, W., Berger, E. German Patent,1939, p 736,411.
    [94]Vioux, A. Nonhydrolytic sol-gel routes to oxides. Chemistry of Materials.1997, 9(11):2292-2299.
    [95]Hoar, T.P., Schulman, J.H. Transparent water-in-oil dispersions:the oleopathic hydro-micelle. Nature.1943,152:102-103.
    [96]Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B. LixCoO2 (0    [97]Burda, C., Chen, X.B., Narayanan, R., El-Sayed, M.A. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews.2005,105(4):1025-1102.
    [98]Schwuger, M.J., Stickdorn, K., Schomacker, R. Microemulsions in technical processes. Chemical reviews.1995,95(4):849-864.
    [99]Salzemann, C., Lisiecki, I., Brioude, A., Urban, J., Pileni, M.P. Collections of copper nanocrystals characterized by different sizes and shapes:optical response of these nanoobjects. The Journal of Physical Chemistry B.2004,108(35):13242-13248.
    [100]Pileni, M.P., Gulik-Krzywicki, T., Tanori, J., Filankembo, A., Dedieu, J.C. Template design of microreactors with colloidal assemblies:control the growth of copper metal rods. Langmuir. 1998,14(26):7359-7363.
    [101]Carpenter, E.E., Sims, J.A., Wienmann, J.A., Zhou, W.L., O'Connor, C.J. Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. Journal of Applied Physics.2000,87(9):5615-5617.
    [102]Murray, C.B., Norris, D. J., Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society.1993,115(19):8706-8715.
    [103]Viau, G., Ravel, F., Archer, O., Vincent, F.F., Fievet, F. Preparation and microwave characterization of spherical and monodisperse Co-Ni particles. Journal of Magnetism and Magnetic Materials.1995,140-141(1):377-378.
    [104]Chow, G.M., Kurihara, L.K., Kemner, K.M., Ambrose, T. Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process. Journal of Materials Research.1995,10(6):1546-1554.
    [105]Puntes, V.F., Zanchet, D., Erdonmez, C.K., Alivisatos, A.P. Synthesis of hcp-Co nanodisks. Journal of the American Chemical Society.2002,124(43):12874-12880.
    [106]Dinega, D.P., Bawendi, M.G. A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt. Angewandte Chemie International Edition.1999,38(12):1788-1791
    [107]Puntes, V.F., Krishnan, K.M., Alivisatos, A.P. Colloidal nanocrystal shape and size control: the case of cobalt. Science.2001,291(5511):2115-2117.
    [108]Giersig, M., Hilgendorff, M. The preparation of ordered colloidal magnetic particles by magnetophoretic deposition. Journal of Physics D:Applied Physics.1999,32(22):L111-L113.
    [109]Sun, S., Murray, C.B., Weller, D., Folks, L. Andreas moser monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science.2000, 287(5460):1989-1992.
    [110]Zeng, H., Li, J., Liu, J.P., Wang, A.L., Sun, S.H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature.2002,420:395-398
    [111]Shevchenko, E., Talapin, D., Kornoeski, A., Wiekhorst, F. et al., Colloidal crystals of monodisperse FePt nanoparticles grown by a three-layer technique of controlled oversaturation. Advanced Materials.2002,14(4):287-290.
    [112]Sun, S.H., Fullerton, E.E., Weller, D., Murray, C.B. compositionally controlled FePt nanoparticle materials. IEEE Transactions on Magnetics.2001,37(4):1239-1243.
    [113]Black, C.T., Murray, C.B., Sandstrom, R.L., Sun, S. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science.2000,290(5494):1131-1134.
    [114]Sun, S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Advanced Materials.2006,18(4):393-403.
    [115]Zeng, H., Li, J., Liu, J.P., Wang, Z., Sun, S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature.2002,420:395-398
    [116]Chen, M., Liu, J.P., Sun, S. One-step synthesis of FePt nanoparticles with tunable size. Journal of the American Chemical Society.2004,126(27):8394-8395.
    [117]Sun, S., Anders, S., Thomson, T., Baglin, J.E.E., Toney, M.F., Hamann, H.F., Murray, C.B., Terris B.D. Controlled synthesis and assembly of FePt nanoparticles. The Journal of Physical Chemistry B.2003,107(23):5419-5425.
    [118]Wang, C., Hou, Y., Kim, J., Sun, S. A general strategy for synthesizing FePt nanowires and nanorods. Angewandte Chemie International Edition.2007,46(33):6333-6335.
    [119]Chen, M., Kim, J., Liu, J.P., Fan, H., Sun, S. Synthesis of FePt nanocubes and their oriented self-assembly. Journal of the American Chemical Society.2006,128(22):7132-7133.
    [120]Peng, S., Wang, C., Xie, J., Sun, S. Synthesis and stabilization of monodisperse Fe nanoparticles. Journal of the American Chemical Society.2006,128(33):10676-10677.
    [121]Xie, J., Xu, C., Xu, Z., Hou, Y., Young, K.L., Wang, S.X., Pourmand, N., Sun, S. Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. Chemistry of Materials.2006,18(23):5401-5403.
    [122]Zeng, H., Rice, P.M., Wang, S.X., Sun, S. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. Journal of the American Chemical Society.2004, 126(37):11458-11459.
    [123]Sun, S., Zeng, H. Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society.2002,124(28):8204-8205.
    [124]Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Li, G. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society.2004, 126(1):273-279.
    [125]Zeng, H., Li, J., Wang, Z.L., Liu, J.P., Sun, S. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Letters.2004,4(1):187-190.
    [126]Yu, H., Chen, M., Rice, P.M., Wang, S.X., White, R.L., Sun, S. Dumbbell-like bifunctional Au/Fe3O4 nanoparticles. Nano Letters.2005,5(2):379-382.
    [127]Li,Y.Q., Zhang, Q., Nurmikko, A.V., Sun, S.H. Enhanced magnetooptical response in dumbbell-like Ag/CoFe2O4 nanoparticle pairs. Nano Letters.2005,5(9):1689-1692.
    [128]Xu, C., Xie, J., Ho, D., Wang, C., Kohler, N., Walsh, E.G., Morgan, J.R., Chin, Y.E., Sun S. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angewandte Chemie International Edition.2008,47(1):173-176
    [129]Xu, Z., Hou, Y., Sun S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. Journal of the American Chemical Society.2007, 129(28):8698-8699.
    [130]Robinson, D.B., Persson, H.H.J., Zeng, H., Li, G., Pourmand, N., Sun, S., Wang S.X. DNA-functionalized MFe2O4 (M=Fe, Co, or Mn) nanoparticles and their hybridization to DNA-functionalized surfaces. Langmuir.2005,21(7):3096-3103.
    [131]Peng, S., Sun, S. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angewandte Chemie International Edition.2007,46(22):4155-4158.
    [132]Grancharov, S.G., Zeng, H., Sun, S., Wang, S.X., O'Brien, S., Murray, C.B., Kirtley, J.R., Held, G.A. Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. The Journal of Physical Chemistry B.2005,109(26):13030-13035.
    [133]Xu, C., Sun, S. Monodisperse magnetic nanoparticles for biomedical applications. Polymer International 2007,56(7):821-826.
    [134]Elkins, K.E., Vedantam, T.S., Liu, J.P., Zeng, H., Sun, S., Ding, Y., Wang, Z.L. Ultrafine FePt nanoparticles prepared by the chemical reduction method. Nano Letters.2003, 3(12):1647-1649.
    [135]Wang, C., Daimon, H., Onodera, T., Koda, T., Sun S. A general approach to the size-and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angewandte Chemie International Edition.2008,47(19):3588-3591.
    [136]Wang, C., Daimon, H., Lee, Y., Kim, J., Sun S. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. Journal of the American Chemical Society. 2007,129(12):6974-6975.
    [137]Jana, N.R., Peng, X.G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. Journal of the American Chemical Society.2003, 125(47):14280-14281.
    [138]Zheng, N.F., Fan, J., Stucky, G.D. One-step one-phase synthesis of monodisperse noble metallic nanoparticles and their colloidal crystals. Journal of the American Chemical Society. 2006,128(20):6550-6551.
    [139]Wang, C., Peng, S., Chan, R., Sun, S. Synthesis of AuAg alloy nanoparticles from core/shell structured Ag/Au. Small 2009,5(5):567-570.
    [140]Zhang, Q.B., Xie, J.P., Yang, J.H., Lee, J.Y. Monodisperse icosahedral Ag, Au, and Pd nanoparticles:size control strategy and superlattice formation. ACS Nano.2009,3(1):139-148.
    [141]Schulz-Dobrick, M., Sarathy, K.V., Jansen, M. Surfactant-free synthesis and functionalization of gold nanoparticles. Journal of the American Chemical Society.2005, 127(37):12816-12817.
    [142]Rowe, M.P., Plass, K.E., Kim, K., Kurdak, C., Zellers, E.T., Matzger, A.J. Single-phase synthesis of functionalized gold nanoparticles. Chemistry of Materials.2004,16(18):3513-3517.
    [143]Shen, C.M., Hui, C., Yang, T.Z., Xiao, C.W., Tian, J.F., Bao, L.H., Chen, S.T., Ding, H., Gao H.J. Monodisperse noble-metal nanoparticles and their surface enhanced raman scattering properties. Chemistry of Materials.2008,20(22):6939-6944.
    [144]Shi, C.S., Tian, L.F., Wu, L.L., Zhu, J. Layered aggregates of gold nanoparticles:solution and surface-assembled structures. The Journal of Physical Chemistry C.2007, 111(3):1243-1247.
    [145]Hiramatsu, H., Osterloh, F.E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chemistry of Materials.2004,16(13):2509-2511.
    [146]Xu, D., Liu,Z.P., Yang, H.Z., Liu, Q.S., Zhang, J., Fang, J.Y., Zou, S.Z., Sun, K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angewandte Chemie International Edition.2009, 48(23):4217-4221.
    [147]Peng, S., Sun, Y.G. Synthesis of silver nanocubes in a hydrophobic binary organic solvent. Chemistry of Materials.2010,22(23):6272-6279
    [148]Ma, Y., Li, W., Zeng, J., McKiernan, M., Xie, Z., Xia, Y. Synthesis of small silver nanocubes in a hydrophobic solvent by introducing oxidative etching with Fe(Ⅲ). Journal of Materials Chemistry.2010,20:3586-3589.
    [149]Mie, G. Ann. Phys.,1908,25,329.
    [150]Bohren, C.F., Huffman, D.R. Absorption and Scattering of Light by Small Particles. New York:Wiley.1983.
    [151]Kreibig, U., Vollmer, M. Optical Properties of Metal Clusters. Berlin:Springer.1995.
    [152]Okamoto, T., Yamaguchi, I. Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique. The Journal of Physical Chemisry B.2003,107(38):10321-10324.
    [153]Sherry, L.J., Chang, S.H., Schatz, G.C., Van Duyne, R.P., Wiley, B.J., Xia, Y.N. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Letters.2005, 5(10):2034-2038.
    [154]Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles Langmuir.1996, 12 (3):788-800.
    [155]Jackson, J.D. Electromagnetic Theory 3rd. John Wiley:New York,1998.
    [156]Moskovits, M., DiLella, D.P., Maynard, K. Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver:selection rules and molecular reorientation. Langmuir.1988,4 (1):67-76
    [157]Sass, J. K., Neff, H., Moskovits, M., Holloway, S. Electric field gradient effects on the spectroscopy of adsorbed molecules. The Journal of Physical Chemistry.1981,85(6):621-623.
    [158]Moskovits, M. Surface selection rules. The Journal of Physical Chemistry.1982, 77(9):4408-4419.
    [159]Moskovits, M., DiLella, D.P. Intense quadrupole transitions in the spectra of molecules near metal surfaces. The Journal of Physical Chemistry.1982,77(4):1655-1660.
    [160]Ayars, E.J., Hallen, H.D., Jahncke, C.L. Electric field gradient effects in raman spectroscopy. Physical Review Letters.2000,85(19):4180-4183.
    [161]Hallen, H.D., Jahncke, C.L. The electric field at the apex of a near-field probe:implications for nano-Raman spectroscopy. Journal of Raman Spectroscopy.2003,34(9):655-662.
    [162]Kreibig U., VonFrags C. The limitation of electron mean free path in small silver particles. Zeitschrift fur Physik a Hadrons and Nuclei. 1969,224(4):307-323.
    [163]Kreibig U., Zacharia, P. Surface plasma resonances in small spherical silver and gold particles. Zeitschrift fur Physik a Hadrons and Nuclei 1970,231(2):128-143.
    [164]Dignam, M. J., Moskovits, M. Influence of surface roughness on the transmission and reflectance spectra of adsorbed species. Journal of the Chemical Society, Faraday Transactions 2.1973,69:65-78.
    [165]Voshchinnikov, N. V., Farafonov, V. G. Optical properties of spheroidal particles. Astrophysics and Space Science.1993,204(1):19-86.
    [166]Jana, N. R., Gearheart, L., Murphy, C. J. Wet Chemical synthesis of high aspect ratio cylindrical gold nanorods. The Journal of Physical Chemistry B.2001,105 (19):4065-4067.
    [167]Nikoobakht, B., El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials.2003,15 (10):1957-1962.
    [1]Fan, K.X., Zeng, G., LaBounty, C., Bowers, J.E., Croke E., Ahn, C.C., Huxtable, S., Shakouri, A., SiGeC/Si superlattice microcoolers. Applied Physics Letters.2001,78(11):1580-1582.
    [2]Rajapure, Y., Lokhande, C.D., Bhosele, C.H. Effect of the substrate temperature on the properties of spray deposited Sb-Se thin films from non-aqueous medium. Thin Solid Films.1997, 311(1-2):114-118.
    [3]Yang, J.Y., Zhu, W., Gao, X.H., Bao, S.Q., Fan, X.A., Duan, X.K., Hou, J. Formation and characterization of Sb2Te3 nanofilms on Pt by electrochemical atomic layer epitaxy. The Journal of Physical Chemistry B.2006,110(10):4599-604.
    [4]Mane, R.S., Sankapal, B.R., Lokhande, C.D. Photoelectrochemical cells based on chemically deposited nanocrystalline Bi2S3 thin films. Materials Chemistry and Physics.1999, 60(2): 196-203.
    [5]Fernaandez, A.M., Merino, M.G. Preparation and characterization of Sb2Se3 thin films prepared by electrodeposition for photovoltaic applications. Thin Solid Films.2000,366(12):202-206.
    [6]Rajpure, K.Y., Bhosale, C.H. Effect of Se source on properties of spray deposited Sb2Se3 thin films. Materials Chemistry and Physics.2000,62(2):169-174.
    [7]Torane, A.P., Bhosale, C.H. Preparation and characterization of electrodeposited Sb2Se3 thin films from non-aqueous media. Journal of Physics and Chemistry of Solids.2002,63(10):1849-1855.
    [8]Gregory, B.W., Stickney, J.L., Electrochemical atomic layer epitaxy (ECALE). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1991,300(1-2):543-561.
    [9]Colletti, L.P., Teklay, D., Stickney, J.L., Thin-layer electrochemical studies of the oxidative underpotential deposition of sulfur and its application to the electrochemical atomic layer epitaxy deposition of CdS. Journal of Electroanalytical Chemistry.1994,369(1-2):145-152.
    [10]Stickney, J.L., Alkire, R.C., Kolb D.M. Advances in Electrochemistry and Electrochemical Engineering. Wiley, New York,7.2001, p1.
    [11]Guidelli, R., Innocenti, M., Aloisi, G., Cavallini, M., Pezzatini, G., Foresti, L.M. Electrochemical atomic layer epitaxy deposition of CdS on Ag (111):an electrochemical and STM investigation. The Journal of Physical Chemistry B.1998,102(38):7413-7420.
    [12]Demir, U., Shannon, C. Electrochemistry of Cd at (√3×√3) R30°-S/Au(111):kinetics of structural changes in CdS monolayers. Langmuir.1996,12(25):6091-6097.
    [13]Yang, J.Y., Zhu, W., Gao, X H., Bao, S Q., Fan, X.A. Electrochemical aspects of the formation of Bi2Te3 thin film via the route of ECALE. Journal of Electroanalytical Chemistry.2005, 577(1):117-123.
    [14]Zhu, W., Yang, J.Y., Gao, X.H., Bao, S.Q., Fan, X.A., Zhang, T.J., Cui, K. Effect of potential on bismuth telluride thin film growth by electrochemical atomic layer epitaxy. Electrochimica Acta. 2005,50(20):4041-4047.
    [15]Qiao, Z.Q., Shang, W., Wang, C.M. Fabrication of Sn-Se compounds on a gold electrode by electrochemical atomic layer epitaxy. Journal of Electro analytical Chemistry.2005, 576(1):171-175.
    [16]Huang, B.M., Coletti, L.P., Gregory, B.W., Anderson, J.L., Stickney, J.L. Preliminary studies of the use of an automated flow-cell electrodeposition system for the formation of CdTe thin films by electrochemical atomic layer epitaxy. Journal of the Electrochemical Socciety.1995, 142(9):3007-3016.
    [17]Coletti, L.P., Flowers, B.H., Stickney, J.L. Formation of thin films of CdTe, CdSe, and CdS by electrochemical atomic layer epitaxy. Journal of the Electrochemical Socciety.1998, 145(5):1442-1449.
    [18]Maestre, M.S., Rodrigez-Amaro, R., Munoz, E., Ruiz, J.J., Camacho, L. Use of cyclic voltammetry for studying two-dimensional phase transitions:behaviour at low scan rates. Journal of Electroanalytical Chemistry.1994,373(1-2):31-37.
    [19]Bewick, A., Fleischmann, M., Thirsk H.R. Kinetics of the electrocrystallization of thin films of calomel. Transactions of the Faraday Society.1962,58:2200-2216.
    [20]Fleischmann M., Thirsk, H.R., Delahay, P. Advances in electrochemistry and electrochemical engineering. Wiley, New York,3,1963, p1.
    [21]Huang, B.M., Lister, T.E., Stickney, J.L. Se adlattices formed on Au(100), studies by LEED, AES, STM and electrochemistry. Surface Science.1997,392(1-3):27-43.
    [22]Alanyalioglu, M., Demir, U., Shannon, C. Electrochemical formation of Se atomic layers on Au (111) surfaces:the role of adsorbed selenate and selenite. Journal of Electroanalytical Chemistry.2004,561:21-27.
    [23]Greenwood, N. N., Earnshaw, A. Chemistry of the elements. Pergamon, Oxford,1984, p756.
    [24]Wei, C., Myung, N., Rajeshwar, K.A combined voltammetry and electrochemical quartz crystal microgravimetry study of the reduction of aqueous Se (Ⅳ) at gold. Journal of Electroanalytical Chemistry.1994,375(1-2):109-115.
    [25]Solaliendres, M.O., Manzoli. A., Salazar-Banda, GR., Eguiluz, K.I.B., Tanimoto, S.T., Machado, S.A.S. The processes involved in the Se electrodeposition and dissolution on Au electrode:the H2Se formation. Journal of Solid State Electrochemistry.2008,12(6):679-686.
    [26]Bosco, E., Rangarajan, S.K. Electrochemical phase formation (ECPF):Nucleation growth vis-a-vis adsorption models. Journal of Electroanalytical Chemistry.1981,129(1-2):25-51.
    [27]Bhattacharjee, B., Rangarajan, S.K. Adsorption-nucleation/growth based model for electrochemical phase formation and Avrami ansatz for a multicomponent competitive growth process. Journal of Electroanalytical Chemistry.1991,302(1-2):207-218.
    [28]Manuel, P.P., Margarita, M.H., Ignacio, G, Nikola, B., Detailed characterization of potentiostatic current transients with 2D-2D and 2D-3D nucleation transitions. Surface Science.1998, 399(1):80-95.
    [29]Manuel, P.P., Ignacio, G, Nikola, B. New Insights into evaluation of kinetic parameters for potentiostatic metal deposition with underpotential and overpotential deposition processes. The Journal of Physical Chemistry B.2000,104(15):3545-3555.
    [30]Budevski, E.B., Conway, B.E., Bockris, J.M., Yeager, E., Kahn, S.U.M., White, R.E. Comprehensive treatise of electrochemistry. Plenum, New York,1983,7, p 399.
    [31]Rashkova, B., Guel, B., Potzschke, R.T., Staikov, G. Electrodeposition of Pb on n-Si (111). Electrochimica Acta.1998,43(19-20):3021-3028.
    [32]Wang, C.M., Du, Y.L., Zhou, Z.L. The study of antimony underpotential deposition on gold electrode and its analytical application. Electroanalysis.2002,14(12):849-852.
    [33]Yan, J.W., Wu, Q., Shang, W.H., Mao, B.W. Electrodeposition of Sb on Au (100) at underpotentials:structural transition involving expansion of the substrate surface. Electrochemistry Communications.2004,6(8):843-848.
    [34]Krumm, R., Guel, B., Schmitz, C., Staikov, G. Nucleation and growth in electrodeposition of metals on n-Si (111). Electrochimica Acta.2000,45(20):3255-3262.
    [35]Gunagardena, G., Hills, G., Montenegro, I. Electrochemical nucleation:Part Ⅱ. The electrodeposition of silver on vitreous carbon. Journal of Electro analytical Chemistry.1982, 138(2):241-254.
    [36]Scharifker, B., Hills, G. Theoretical and experimental studies of multiple nucleations. Electrochimica Acta.1983,28(7):879-889.
    [37]Sadale, S.B., Patil, P.S. Nucleation and growth of bismuth thin films onto fluorine-doped tin oxide-coated conducting glass substrates from nitrate solutions. Solid State Ionics.2004, 167(3-4):273-283.
    [38]Bard, A.J., Faulkner, L.R., David, H. Electrochemical methods:Fundamentals and Applications, 2nd, John Wiley & Sons, Inc,2001, pp239-243.
    [39]Solaliendres, M.O., Manzoli, A., Salazar-Banda, G.R., Eguiluz, K.I.B., Tanimoto, S.T., Machado, S.A.S. The processes involved in the Se electrodeposition and dissolution on Au electrode:the H2Se formation. Journal of Solid State Electrochemistry.2008,12(6):679-686.
    [40]Alanyalioglu, M., Demir, U., Shannon, C. Electrochemical formation of Se atomic layers on Au (111) surfaces:the role of adsorbed selenate and selenite. Journal of Electroanalytical Chemistry. 2004,561:21-27.
    [41]Ivanova, Y.A., Ivanou, D.K., Streltsov, E.A. Electrochemical deposition of PbTe onto n-Si (100). Electrochemistry Communications.2007,9(4):599-604.
    [42]Shi, X. Z., Zhang, X., Ma, C. L., Wang, C. M. Kinetic studies of underpotential deposition of antimony on Se-modified Au electrode. Journal of Solid State Electrochemistry.2010, 14(1):93-99.
    [43]Yang, J.Y., Zhu, W., Gao, X.H., Bao, S.Q., Fan, X., Duan, X.K. Formation and Characterization of Sb2Te3 Nanofilms on Pt by Electrochemical Atomic Layer Epitaxy. The Journal of Physical Chemistry B.2006,110(10):4599-4604.
    [44]Sun, Y.G., Xia, Y.N. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science. 2002,298(5601):2176-2179.
    [1]Templeton, A.C., Wuelfing, M.P., Murray, R.W. Monolayer protected cluster molecules. Accounts of Chemical Research.2000,33(1):27-36.
    [2]Murray, C.B., Kagan, C.R., Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science. 2000,30:545-610.
    [3]Murray, C.B., Kagan, C.R., Bawendi, M.G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995,270(5240):1335-1338.
    [4]Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271(5251):933-937.
    [5]Rogach, A.L., Talapin, D.V., Shevchenko, E.V., Kornowski, A., Haase, M., Weller, H. Organization of matter on different size scales:monodisperse nanocrystals and their superstructures. Advanced Functional Materials.2002,12(10):653-664.
    [6]Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chemical Communications.2003, (8):927-934.
    [7]Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000,287(5460):1989-1992.
    [8]OIHandley, R.C. Modern Magnetic Materials:Principles and Applications, Wiley Interscience, New York,1999.
    [9]LaMer, V.K., Dinegar, R.H., Theory, production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society.1950,72(11):4847-4854.
    [10]Peng, Z.A., Peng, X. Nearly Monodisperse and shape-controlled CdSe nanocrystals via alternative routes:nucleation and growth. Journal of the American Chemical Society.2002, 124(13):3343-3353.
    [11]Peng, X., Wickham,J., Alivisatos, A.P. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth:"focusing" of size distributions. Journal of the American Chemical Society. 1998,120(21):5343-5344.
    [12]Jana, N.R., Peng, X.G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. Journal of the American Chemical Society.2003, 125(47):14280-14281.
    [13]Zheng, N.F., Fan, J., Stucky, G.D. One-step one-phase synthesis of monodisperse noble metallic nanoparticles and their colloidal crystals. Journal of the American Chemical Society.2006, 128(20):6550-6551.
    [14]Wang, C.; Peng, S.; Chan, R.; Sun, S. Synthesis of AuAg alloy nanoparticles from core/shell structured Ag/Au. Small 2009,5(5):567-570.
    [15]Zhang, Q.B., Xie, J.P., Yang, J.H., Lee, J.Y. Monodisperse icosahedral Ag, Au, and Pd nanoparticles:size control strategy and superlattice formation. ACSNano 2009,3(1):139-148.
    [16]Schulz-Dobrick, M., Sarathy, K.V., Jansen, M. Surfactant-free synthesis and functionalization of gold nanoparticles. Journal of the American Chemical Society.2005,127(37):12816-12817.
    [17]Rowe, M.P., Plass, K.E., Kim, K., Kurdak, C., Zellers, E.T., Matzger, A.J. Single-phase synthesis of functionalized gold nanoparticles. Chemistry of Materials.2004,16(18):3513-3517.
    [18]Shen, C.M.,Hui, C, Yang, T.Z., Xiao, C.W., Tian, J.F., Bao, L.H., Chen, S.T., Ding, H., Gao, H.J. Monodisperse noble-metal nanoparticles and their surface enhanced raman scattering properties. Chemistry of Materials.2008,20(22):6939-6944.
    [19]Shi, C.S., Tian, L.F., Wu, L.L., Zhu, J. Layered aggregates of gold nanoparticles:solution and surface-assembled structures. The Journal of Physical Chemistry C.2007,111(3):1243-1247.
    [20]Hiramatsu, H., Osterloh, F.E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chemistry of Materials.2004,16(13):2509-2511.
    [21]Zhong, C.J., Zhang, W.X., Leibowitz, F.L., Eichelberger, H.H. Size and shape evolution of core-shell nanocrystals. Chemical Communications.1999, (13):1211-1212.
    [22]Stoeva, S., Klabunde, K.J., Sorensen, C.M., Dragieva, I. Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two-and three-Dimensional structures. Journal of the American Chemical Society.2002,124(10):2305-2311.
    [23]Lin, X.Z., Teng, X.W., Yang, H. Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor. Langmuir.2003,19(24):10081-10085.
    [24]Baletto, F., Mottet, C., Ferrando, R. Reentrant morphology transition in the growth of free silver nanoclusters. Physical Review Letters.2000,84(24):5544-5547.
    [25]Baletto, F.; Mottet, C.; Ferrando, R. Microscopic mechanisms of the growth of metastable silver icosahedra. Physical Review B.2001,63(15):155408.
    [26]Xu, Z.C., Shen, C.M., Xiao, C.W., Yang, T.Z., Chen, S.T., Li, H.L., Gao, H.J. Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior. Chemical Physics Letters.2006,432(1-3):222-225.
    [27]Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B.2003,107(3):668-677.
    [28]Shen, C.M., Su, Y.K., Yang, H.T., Yang, T.Z., Gao, H.J. Synthesis and characterization of n-octadecayl mercaptan-protected palladium nanoparticles. Chemical Physics Letters.2003, 373(1-2):39-45.
    [29]He, S.T., Yao, J.N., Jiang, P., Shi, D.X., Zhang, H.X., Xie, S.S., Pang, S.J., Gao, H.J. Formation of silver nanoparticles and self-assembled two-Dimensional ordered superlattice. Langmuir. 2001,17(5):1571-1575.
    [30]Orendorff, C.J., Gole, A., Sau, T.K., Murphy, C.J. Surface-enhanced Raman spectroscopy of self-assembled monolayers:sandwich architecture and nanoparticle shape dependence. Analytical Chemistry.2005,77(10):3261-3266.
    [31]Xu, Z.C., Shen, C.M., Sun, S.H., Gao, H.J. Growth of Au nanowires at the interface of air/water. The Journal of Physical Chemistry C.2009,113(34):15196-15200.
    [32]Alvarez-Puebla, R., Dos Santos Jra, A.D.S., Aroca, R.F. Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst.2004,129(12):1251-1256.
    [33]Roca, M., Haes, A.J. Silica-Void-Gold Nanoparticles:Temporally Stable Surface-Enhanced Raman Scattering Substrates. Journal of the American Chemical Society.2008, 130(43):14273-14279.
    [34]Wei, H., Li, J., Wang, Y.L., Wang, E.K. Silver nanoparticles coated with adenine:preparation, self-assembly and application in surface-enhanced Raman scattering. Nanotechnology.2007, 18(17):175610.
    [35]Wang, Y.L., Chen, H.J., Dong, S.J., Wang, E.K. Surface enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors. Journal of Chemical Physics.2006, 125(4):044710.
    [36]Yu, Q.M., Guan, P., Qin, D., Auen, G., Wallace, P.M. Inverted size-dependence of surface enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Letters.2008, 8(7):1923-1928.
    [37]Kreibig U., VonFrags C. The limitation of electron mean free path in small silver particles. Zeitschrift fur Physik a Hadrons and Nuclei. 1969,224(4):307-323.
    [38]Kreibig U., Zacharia, P. Surface plasma resonances in small spherical silver and gold particles. Zeitschrift fur Physik a Hadrons and Nuclei. 1970,231(2):128-143.
    [39]Dignam, M. J., Moskovits, M. Influence of surface roughness on the transmission and reflectance spectra of adsorbed species. Journal of the Chemical Society, Faraday Transactions 2.1973, 69:65-78.
    [40]Moskovits, M. Surface-enhanced Raman spectroscopy:a brief retrospective. Journal of Raman Spectroscopy.2005,36(6-7):485-496.
    [41]Sant'Ana, A.C., Rocha, T.C.R., Santos, P.S., Zanchet, D., Temperini, M.L. Size-dependent SERS enhancement of colloidal silver nanoplates:the case of 2-amino-5-nitropyridine Journal of Raman Spectroscopy.2009,40(2):183-190.
    [42]Wokaun, A., Gordon, J.P., Liao, P.F. Radiation damping in surface enhanced Raman scattering. Physical Review Letters.1982,48(22):957-960.
    [1]Salzemann, C., Lisiecki, I., Brioude, A., Urban, J., Pileni, M.P. Collections of copper nanocrystals characterized by different sizes and shapes:optical response of these nanoobjects. The journal of physical chemistry B.2004,108(35):13242-13248.
    [2]Puntes, V.F., Krishnan,K.M., Alivisatos, A.P. Colloidal nanocrystal shape and size control:the case of cobalt. Science.2001,291(5511):2115-2117.
    [3]Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews.2005,105(4):1025-1102.
    [4]Xia, Y, Xiong, Y., Lim, B., Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angewandte Chemie International Edition.2009, 48(1):60-103.
    [5]Jin, R., Cao, Y.C., Hao, E., Metraux, G.S., Schatz, G.C., Mirkin, C.A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature.2003,425:487-490.
    [6]Murphy, C.J., Gole, A.M., Hunyadi, S.E., Orendorff, C.J. One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry.2006,45(19):7544-7554.
    [7]Tao, A.R., Habas, S., Yang, P. Shape control of colloidal metal nanocrystals. Small.2008, 4(3):310-325.
    [8]Zhang, Q., Ge, J., Pham, T., Goebl, J., Hu, Y, Lu, Z., Yin, Y. Reconstruction of silver nanoplates by UV irradiation:tailored optical properties and enhanced stability. Angewandte Chemie International Edition.2009,48(19):3516-3519.
    [9]Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science.1998,281(5385)2013-2016.
    [10]Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science.2000,287(5460):1989-1992.
    [11]Wiley, B.J., Im, S.H., Li, Z., McLellan, J., Siekkinen, A., Xia, Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. The Journal of Physical Chemistry B.2006,110(32)15666-15675.
    [12]Kottmann, J.P., Martin, O.J., Smith, D.R., Schultz, S. Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B.2001,64:235402.
    [13]Kneipp, K., Wang, Y, Kneipp, H.L., Perelman, T., Itzkan, I., Dasari, R.R., Feld, M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters. 1997,78(9):1667-1670.
    [14]Haes, A.J., Duyne, R.P.V. A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society.2002,124(35):10596-10604.
    [15]Moore, B.D., Stevenson, L., Watt, A., Flitsch, S., Turner, N.H., Cassidy, C., Graham, D. Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nature Biotechnology.2004,22(9):1133-1138.
    [16]Stiles, P.L., Dieringer, J.A., Shah, N.L., Duyne, R.P. Surface-enhanced Raman spectroscopy. Annual Review of Analytical Chemistry.2008,1:601-626.
    [17]Banholzer, M.J., Millstone, J.E., Qin, L.; Mirkin, C.A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chemical Society Reviews.2008,37(5):885-897.
    [18]Li, W., Camargo, P. H.C., Lu, X., Xia, Y. Dimers of silver nanospheres:facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Letters 2009,9(1):485-490.
    [19]Krenn, J.R. Nanoparticle waveguides:Watching energy transfer. Nature Materials.2003, 2:210-211.
    [20]Pyayt, A.L., Wiley, B., Xia, Y., Chen, A., Dalton, L. Integration of photonic and silver nanowire plasmonic waveguides. Nature Nanotechnology.2008,3:660-665.
    [21]Cao, Y.C., Jin, R., Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science,2002,297(5586):1536-1540.
    [22]Roy, D., Fendler, J. Reflection and absorption techniques for optical characterization of chemically assembled nanomaterials. Advanced Materials.2004,16(6):479-508.
    [23]Alivisatos, A.P. The use of nanocrystals in biological detection. Nature Biotechnology.2004, 22:47-52.
    [24]Cobley, C.M., Rycenga, M., Zhou, F., Li, Z., Xia, Y. Controlled etching as a route to high quality silver nanospheres for optical studies. The Journal of Physical Chemistry C.2009, 113(39):16975-16982.
    [25]Xiong, Y.J., Washio, I., Chen, J.Y., Cai, H.G, Li, Z.Y., Xia, Y.N. Poly(vinyl pyrrolidone):A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir.2006,22(20):8563-8570.
    [26]Sun, Y.G., Xia, Y.N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Advanced Materials.2002,14(11):833-837.
    [27]Sun, Y.G, Yin, Y.D., Mayers, B.T., Herricks, T., Xia, Y.N. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly (Vinyl Pyrrolidone). Chemistry of Materials.2002,14(11)4736-4745.
    [28]Sun, Y.G., Mayers, B., Herricks, T., Xia, Y.N. Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence. Nano Letters 2003,3(7):955-960.
    [29]Wiley, B.J., Chen, Y.C., McLellan, J.M., Xiong, Y.J., Li, Z.Y, Ginger, D., Xia, Y.N. Synthesis and optical properties of silver nanobars and nanorice. Nano Letters 2007,7(4):1032-1036.
    [30]Wiley, B., Herricks, T., Sun, Y, Xia, Y. Polyol synthesis of silver nanoparticles:Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Letters 2004,4(9):1733-1739.
    [31]Wiley, B., Sun, Y.G., Xia, Y. Synthesis of silver wanostructures with controlled shapes and properties. Accounts of Chemical Research.2007,40(10):1067-1076.
    [32]Wiley, B., Sun, Y.G., Xia, Y.N. Polyol synthesis of silver nanostructures:Control of product morphology with Fe(II) or Fe(III) species. Langmuir,2003.21(18):8077-8080.
    [33]Xu, R., Wang, D., Zhang, J., Li, Y. Shape-dependent catalytic activity of silver sanoparticles for the oxidation of styrene. Chemistry-An Asian Journal 2006,1(6):888-893.
    [34]Ringe, E., McMahon, J.M., Sohn, K., Cobley, C., Xia, Y., Huang, J., Schatz, G.C., Marks, L.D., Duyne, R.P.V. Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes:a systematic single particle approach. The Journal of Physical Chemistry C.2010,114(25):12511-12516.
    [35]Im, S. H., Lee, Y.T., Wiley, B., Xia, Y. Large-scale synthesis of silver nanocubes:the role of HCl in promoting cube perfection and monodispersity. Angewandte Chemie International Edition. 2005,44(14):2154-2157.
    [36]Tao, A., Sinsermsuksakul, P., Yang, P. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition.2006,45(28):4597-4601.
    [37]Yu, D., Yam, V.W.W. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the American Chemical Society.2004,126(41):13200-13201.
    [38]Siekkinen, A.R., McLellan, J.M., Chen, J., Xia, Y. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chemical Physics Letters.2006,432(4-6):491-496.
    [39]Zhang, Q., Cobley, C.M., Au, L., McKiernan, M., Schwartz, A., Chen, J., Wen, L., Xia, Y. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with Argon. ACS Applied Materials Interfaces.2009, 1(9):2044-2048.
    [40]Ma, Y., Li, W., Zeng, J., McKiernan, M., Xie, Z., Xia, Y. Synthesis of small silver nanocubes in a hydrophobic solvent by introducing oxidative etching with Fe(Ⅲ). Journal of Materials Chemistry.2010,20(8):3586-3589.
    [41]Peng, S.; Sun, Y. G. Synthesis of silver nanocubes in a hydrophobic binary organic solvent. Chemistry of Materials.2010,22(23):6272-6279.
    [42]Zhang, J., Fang, J.Y. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. Journal of the American Chemical Society.2009,131(51):18543-18547.
    [43]Shen, C.M., Su, Y.K., Yang, H.T., Yang, T.Z., Gao, H.J. Synthesis and characterization of n-octadecayl mercaptan-protected palladium nanoparticles. Chemical Physics Letters.2003, 373(1-2):39-45.
    [44]He, S.T., Yao, J.N., Jiang, P., Shi, D.X., Zhang, H.X., Xie, S.S., Pang, S.J., Gao, H.J. Formation of silver nanoparticles and self-assembled two-Dimensional ordered superlattice. Langmuir. 2001,17(5):1571-1575.
    [45]Wanger, C.D., Riggs, W.W., Moulder, J.F., Muilenberg, GE. Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division in Eden Prairie, Minn. 1979.
    [46]Xiong, Y.J., Cai, H.G., Wiley, B.J., Wang, J.G., Kim, M.J., Xia, Y.N. Synthesis and mechanistic study of palladium nanobars and nanorods. Journal of the American Chemical Society.2007, 129(12):3665-3675.
    [47]Wei, H., Li, J., Wang, Y.L., Wang, E.K. Silver nanoparticles coated with adenine:preparation, self-assembly and application in surface-enhanced Raman scattering. Nanotechnology.2007, 18(17):175610.
    [48]Wang, Y.L., Chen, H.J., Dong, S.J., Wang, E.K. Surface enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors. The Journal of Chemical Physics. 2006,125(4):044710.
    [I]Gaponenko, S.V. Optical Properties of Semiconductor Nanocrystals. Cambridge University Press, Cambridge.1998.
    [2]Perenboom, J.A.A., Wyder, P., Meier, F. Electronic properties of small metallic particles. Physics Reports.1981,78(2):173-292.
    [3]Jun, Y.W., Choi, J.S., Cheon, J. Heterostructured magnetic nanoparticles:their versatility and high performance capabilities. Chemical Communications.2007, (12):1203-1214.
    [4]Mayrhofer, K.J.J., Blizanac, B.B., Arenz, M., Stamenkovic, V.R., Ross, P.N., Markovic, N.M. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. The Journal of Physical Chemistry B.2005,109(30):14433-14440.
    [5]Valden, M., Lai, X., Goodman, D.W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science,1998,281(5383):1647-1650.
    [6]Wiley, B.J., Im, S.H., Li, Z., McLellan, J., Siekkinen, A., Xia, Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. The Journal of Physical Chemistry B.2006,110(32):15666-15675.
    [7]Kottmann, J.P., Martin, O.J., Smith, D.R., Schultz, S. Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B.2001,64(23):235402;
    [8]Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I.R., Dasari, R., Feld, M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters. 1997,78(9):1667-1670;
    [9]Haes, A.J., Duyne, R.P.V. A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society.2002,124(35)10596-10604;
    [10]Moore, B.D., Stevenson, L., Watt, A., Flitsch, S.N., Turner, H., Cassidy, C., Graham, D. Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nature Biotechnology.2004,22:1133-1138;
    [11]Stiles, P.L., Dieringer, J.A., Shah, N.L., Duyne, R.P.V. Surface-enhanced Raman spectroscopy. Annual Reviews of Analytical Chemistry.2008,1:601-626.
    [12]Banholzer, M.J., Millstone, J.E., Qin, L., Mirkin, C.A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chemical Society Reviews.2008,37(5):885-897.
    [13]Li, W., Camargo, P.H.C., Lu, X., Xia, Y. Dimers of silver nanospheres:facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Letters.2009,9(1):485-490
    [14]Cao, Y.C., Jin. R., Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science,2002,297(5586):1536-1540.
    [15]Roy, D., Fendler, J., Reflection and absorption techniques for optical characterization of chemically assembled nanomaterials. Advanced Materials.2004,16(6):479-508.
    [16]Alivisatos, A.P. The use of nanocrystals in biological detection. Nature Biotechnology.2004, 22:47-52.
    [17]Cobley, C.M., Rycenga, M., Zhou, F., Li, Z., Xia, Y. Controlled etching as a route to high quality silver nanospheres for optical studies. The Journal of Physical Chemistry C.2009, 113(39):16975-16982.
    [18]Burda, C., Chen, X.B., Narayanan, R., M. El-Sayed, A. Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews.2005,105(4):1025-1102.
    [19]Narayanan, R., El-Sayed, M.A. Effect of Colloidal Nanocatalysis on the Metallic Nanoparticle Shape:The Suzuki Reaction. Langmuir.2005,21(5):2027-2033.
    [20]Kim, S.W., Kim, M., Lee, W.Y., Hyeon, T. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. Journal of the American Chemical Society.2002,124(26):7642-7643.
    [21]Toshima, N., Yonezawa T. Bimetallic nanoparticles-novel materials for chemical and physical applications. New Journal of Chemistry.1998,22(11):1179-1201.
    [22]Wang, D.H., Li, Y.D. Bimetallic nanocrystals:liquid-phase synthesis and catalytic applications. Advanced Materials.2011,23(9):1044-1060
    [23]Toshima, N., Harada, M., Yamazaki, Y., Asakura, K. Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride. The Journal of Physical Chemistry.1992, 96(24):9927-9933.
    [24]Harada, M., Asakura, K., Ueki, Y., Toshima, N. Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(Ⅲ) and palladium dichloride. The Journal of Physical Chemistry. 1993,97(19):5103-5114.
    [25]Liu, H., Mao, G., Meng, S. Preparation and characterization of the polymer protected palladium gold colloidal bimetallic catalysts. Journal of Molecular Catalysis.1992,74(1-3):275-284.
    [26]Mizukoshi, Y., Okitsu, K., Maeda, Y., Yamamoto, T.A., Oshima, R., Nagata, Y. Sonochemical Preparation of Bimetallic Nanoparticles of Gold/Palladium in Aqueous Solution. The Journal of Physical Chemistry B.1997,101(36):7033-7037.
    [27]Lee, Y.W., Kim, N.H., Lee, K.Y., Kwon, K., Kim, M., Han, S.W. Synthesis and characterization of flower-shaped porous Au-Pd alloy nanoparticles. The Journal of Physical Chemistry C.2008, 112(17):6717-6722
    [28]Lee, Y.W., Kim, M., Kim, Y., Kang, S.W., Lee, J.H., Han, S.W. Synthesis and electrocatalytic activity of Au-Pd alloy nanodendrites for ethanol oxidation. The Journal of Physical Chemistry C.2010,114(17):7689-7693.
    [29]Ding, Y, Fan, F., Tian. Z., Wang, Z.L. Atomic structure of Au/Pd bimetallic alloyed nanoparticles. Journal of the American Chemical Society.2010,132(35):12480-12486.
    [30]Guczi, L., Beck, A., Horvath, A., Koppany, Z., Stefler, G., Frey, K., Sajo, I., Geszti,O., Bazin, D., Lynch, J. AuPd bimetallic nanoparticles on TiO2:XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation. Journal of Molecular Catalysis A:Chemical 2003, 204-205:545-552.
    [31]Wu, M. L., Chen, D.H., Huang, T.C. Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir.2001,17(13):3877-3883.
    [32]Deki, S., Akamatsu, K., Hatakenaka, Y., Mizuhata, M., Kajinami, A. Synthesis and characterization of nano-sized gold-palladium bimetallic particles dispersed in polymer thin film matrix. Nanostructured Materials.1999,11(1):59-65.
    [33]Orendorff, C.J., Gole, A., Sau, T.K., Murphy, C.J. Surface-enhanced Raman spectroscopy of self-assembled monolayers:sandwich architecture and nanoparticle shape dependence. Analytical Chemistry.2005,77(10):3261-3266.
    [1]Alekseeva, A.V., Bogatyrev, V.A., Dykman, L.A., Khlebtsov, B.N., Trachuk, L.A., Melnikov, A.G., Khlebtsov, N.G. Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay. Applied Optics.2005,44(29):6285-6295.
    [2]Yu, C., Irudayaraj, J. Multiplex biosensor using gold nanorods. Analytical Chemistry.2007, 79(2):572-579.
    [3]Malic, L., Cui, B., Veres, T., Tabrizian, M. Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts. Optics Letters 2007, 32(21):3092-3094.
    [4]Nikoobakht, B., El-Sayed, M.A. Surface-enhanced Raman scattering studies on aggregated gold nanorods. The Journal of Physical Chemistry A.2003,107(18):3372-3378.
    [5]Gole, A., Orendorff, C.J., Murphy, C.J. Immobilization of gold nanorods onto acid terminated self-assembled monolayers via electrostatic interactions. Langmuir.2004, 20(17):7117-7122.
    [6]Laurent, G., Felidj, N., Aubard, J., Levia, G., Krenn, J.R., Hohenau, A., Schider, G., Leitner, A., Aussenegg, F.R. Surface enhanced Raman scattering arising from multipolar plasmon excitation. The Journal of Chemical Physics.2005,122(1):011102-011105.
    [7]Huff, T.B., Tong, L., Zhao, Y., Hansen, M.N., Cheng, J.X., Wei. A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine.2007,2(1):125-132.
    [8]Aslan, K., Lakowicz, J.R., Geddes, C.D. Rapid deposition of triangular silver nanoplates on planar surfaces:application to metal-enhanced fluorescence. The Journal of Physical Chemistry B.2005,109(13):6247-6251.
    [9]Alvarez-Puebla, R.A., Dos Santos Jra, D.S., Aroca, R.F. Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst. 2004, 129(12):1251-1256.
    [10]Nie, S.M., Emory, S.R. Probing single molecules and single nanoparticles by SERS. Science 1997,275(5303):1102-1106.
    [11]Michaels, A.M., Nirmal, M., Brus, L.E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. Journal of the American Chemical Society.1999,121(43):9932-9939.
    [12]Krug, J.T., Wang, G.D., Emory, S.R., Nie, S.M. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. Journal of the American Chemical Society.1999,121(39):9208-9214.
    [13]Emory, S.R., Nie, S.M. Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles. Analytical Chemistry.1997,69(14):2631-2635.
    [14]Doering, W.E., Nie, S.M. Single-molecule and single-nanoparticle SERS:examining the roles of surface active sites and chemical enhancement. The Journal of Physical Chemistry B.2002,106(2):311-317.
    [15]Emory, S.R., Haskins, W.E., Nie, S.M. Direct observation of size-dependent optical enhancement in single metal nanoparticles. Journal of the American Chemical Society. 1998,120(31):8009-8010.
    [16]Zhang, S.Z., Ni, W.H., Kou, X.S., Yeung, M.H., Sun, L.D., Wang, J.F., Yan, C.H. Formation of gold and silver nanoparticle arrays and thin shells on mesostructured silica nanofibers. Advanced Functional Materials.2007,17(16):3258-3266.
    [17]Sabur, A., Havel, M., Gogotsi, Y. SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles. Journal of Raman Spectroscopy.2008,39(1):61-67.
    [18]Clha, M.C., Kahraman, M., Tokman, N., Turkoglu, G. Surface-enhanced Raman scattering on aggregates of silver nanoparticles with definite size. The Journalof Physical Chemistry C. 2008,112(28):10338-10343.
    [19]Michaels, A.M., Jiang, J., Brus, L. Ag Nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. The Journal of Physical Chemistry B. 2000,104(50):11965-11971.
    [20]Schwartzberg, A.M., Grant, C.D., Wolcott, A., Talley, C.E., Huser, T.R., Bogomolni, R., Zhang, J.Z. Unique Gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. The Journal of Physical Chemistry B.2004,108(50):19191-19197.
    [21]Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. The Journal of Physical Chemistry B.2003, 107(37):9964-9972.
    [22]Kim, T., Lee, K., Gong, M.S., Joo, S.W. Control of gold nanoparticle aggregates by manipulation of interparticle interaction. Langmuir.2005,21(21):9524-9528.
    [23]Ueno, K., Mizeikis, V., Juodkazis, S., Sasaki, K., Misawa, H. Optical properties of nanoengineered gold blocks. Optics Letters.2005,30(16):2158-2160.
    [24]Khanal, B.P., Zubarev, E.R. Purification of high aspect ratio gold nanorods:Complete removal of platelets. Journal of the American Chemical Society.2008, 130(38):12634-12635.
    [25]Gou, L.F., Murphy, C.J. Fine-tuning the shape of gold nanorods. Chemistry of Materials. 2005,17(14):3668-3672.
    [26]Lee, K.S., El-Sayed, M.A. Gold and silver nanoparticles in sensing and imaging:sensitivity of plasmon response to size, shape, and metal composition. The Journal of Physical Chemistry B.2006,110(39):19220-19225.
    [27]Lee, K.S., El-Sayed, M.A. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. The Journal of Physical Chemistry B.2005, 109(43):20331-20338.
    [28]Tridib, K.S., Arun C. Starch-mediated shape-selective synthesis of Au nanoparticles with tunable longitudinal plasmon resonance. Langmuir.2004,20(9):3520-3524.
    [29]Yang, Y., Matsubara, S., Nogami, M., Shi J.L., Huang, W.M. One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties. Nanotechnology. 2006,17(11):2821-2827.
    [30]Link, S., El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B.1999,103(40):8410-8426
    [31]Chaneya, S.B., Shanmukh, S., Dluhy, R.A., Zhao, Y.P. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Applied physics letters.2005,87(3):031908.
    [32]Orendorff, C.J., Gearheart, L., Janaz, N.R., Murphy, C.J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Physical Chemistry Chemical Physics.2006,8(1):165-170.
    [33]Orendorff, C.J., Gole, A., Sau, T.K., Murphy, C.J. Surface-enhanced Raman spectroscopy of self-assembled monolayers:sandwich architecture and nanoparticle shape dependence. Analytical Chemistry.2005,77(10):3261-3266.
    [34]Jana, N.R., Gearheart, L., Murphy, C.J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. The Journal of Physical Chemistry B.2001,105(19):4065-4067.
    [35]Xu, Z.C., Shen, C.M., Xiao, C.W., Yang, T.Z., Zhang, H.R., Li, J.Q., Li, H.L., Gao, H.J. Wet chemical synthesis of gold nanoparticles using silver seeds:a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology.2007,18(11):115608.
    [36]Xu, Z.C., Shen, C.M., Xiao, C.W., Yang, T.Z., Chen, S.T., Li, H.L., Gao, H.J. Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior. Chemical Physics Letters.2006,432(1-3):222-225.
    [37]Sun, Y.G., Xia, Y.N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002,298(5601):2176-2179.
    [38]Maryuri, R., Haes, A.J. Silica-void-gold nanoparticles:temporally stable surface-enhanced Raman scattering substrates. Journal of the American Chemical Society.2008, 130(43):14273-14279.
    [39]Shen, C.M., Hui, C., Yang, T.Z., Xiao, C.W., Tian, J.F., Bao, L.H., Chen, S.T., Ding, H., Gao, H.J. Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties. Chemistry of Materials.2008,20(22):6939-6944.
    [40]Hildebrandt, P., Stockburger, M. Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. The Journal of Physical Chemistry.1984, 88(24):5935-5944.
    [41]Lu, Y., Liu, G.L., Kim, J., Mejia, Y.X., Lee, L.P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Letters.2005,5(1)119-124.
    [42]Taylor, C.E., Pemberton, J.E., Goodman, G.G., Schoenfisch, M.H. Surface enhancement factors for Ag and Au surfaces relative to Pt surfaces for monolayers of thiophenol. Applied Spectroscopy.1999,53(10):1212-1221.
    [43]Voshchinnikov, N.V., Farafonov, V.G. Optical properties of spheroidal particles. Astrophysics Space Science.1993,204(1):19-86.
    [44]Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B.2003,107(3):668-677.