含功能梯度立体电极SOFC热流电化学力学耦合数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)作为一种新型发电方式,因为其能源供应的零污染、全固态结构、高能量转换效率、对燃料的广泛适应性、供电规模多元化和安装地点灵活等一系列优点,已成为新能源开发的研究热点。
     由于SOFCs在能量转换过程中需要经历复杂的传热、传质、电化学反应等过程,因此,SOFCs输出功率密度和力学性能直接影响其能量转换效率和使役寿命。然而,能量转换效率和力学性能受SOFCs部件材料离子导电率、阳极/电解质/阴极界面电阻的影响和化学反应活性面积的相互依赖的影响,难以用实验手段测定各个影响参数对SOFCs性能的影响。为此,利用模拟计算技术来选择和优化SOFCs结构设计、材料设计和电池运行条件是改善和提高其综合性能的行之有效的方法之一。
     基于SOFC工作原理,对其系统内固—气共存多相传热传质建立热流模型,采用“尘气模型”(Dust Gas Model)研究了多组分气体在流道和多孔介质内的传输,率先采用改进的BFD(Brinkman-Forschheimer-Darcy)模型,描述气体在多孔介质内的渗流,考虑了混相多组分气体在传输过程中的质量、动量和能量源项,然后提出采用有限元软件和外部子程序的方法对此模型进行求解。
     首次建立了针对复杂结构和材料的SOFCs的智能化电化学模型,定量描述SOFCs系统内能量转换过程中伴随的化学反应与热流电化学模型的耦合关系,研究了瓦楞和多面体SOFCs复杂结构电极内和电解质内的电子三维不定向迁移、电流、电压和输出功率与系统内化学反应程度和速度的关系,并介绍软件的系统设计、实现了无须重新前处理的智能化、面向对象程序设计和FLUENT二次开发。
     为避免电极和电解质间界面接触状态影响电池输出功率和由于热膨胀系数差异引起高温循环操作后的剥离或“串气”,率先在SOFC电极和电解质之间引入了功能梯度层,保证了在热膨胀系数差异较大的阴极、阳极和电解质之间的梯度层物性参数和孔隙连续渐变,寻求兼高能密度和较好力学性能的SOFCs最佳结构设计。
     为了扩大燃料气适应性,研究了碳氢化合物混合气体作为燃料气的SOFCs的综合性能,考虑了甲烷气体的重整反应、可逆的水交换反应以及电化学反应过程中多种化学反应机制对输出功率密度的影响。率先发现碳氢化合物作为燃料气在小型SOFCs能量转换过程中氢气逐渐增多的趋势,据此提出了采用碳氢化合物和其尾气循环供应燃料气的方法,并从理论上阐明了碳氢化合物作为燃料气的对工业尾气回收利用的可行性。
     首次基于SOFCs实际工作运行过程中的温度分布,对复杂结构包括瓦楞和多面体SOFCs的热应力进行分析,结合不同结构SOFCs的电化学性能特点,提出了采用多面体结构SOFCs可以达到兼顾力学性能和提高电池能量密度的预期效果。
     采用复阻抗技术测试功能梯度SOFCs复合电极的电导率,实验验证了功能梯度层可以改善阴/阳极和电解质界面接触状态从而减小SOFCs界面电阻,并分析了各自离子导电性能与工作温度,结构设计和材料的关系。
SOFC has been a priority research focus in the new power area due to its advantage of zero pollution,solid structure,high energy transfer efficiency,widely suitable to fuels, multiple scales of power supply and flexible installation,etc.
     During the transferring process of the energy in the SOFC system,the heat and mass transfer and electrochemical reactions are complex.Therefore,the output power and mechanical performance of SOFCs influence its energy transfer efficiency and service life. The energy transfer efficiency and mechanical performance are influenced by the ionic conductivity of the components,the resistance of the interface between the anode/cathode and electrolyte and the activate areas of the reactions.It is difficult to validate the influence of each parameter on the SOFC performance due to the relating influence. Hence,the geometry,material design and working conditions of SOFCs are choose and optimized to improve the comprehensive performance of SOFCs based on the numerical simulation.
     On the basis of the SOFC principle,the thermo-fluid model was constructed to describe the multiphase and heat and mass transfer in the system.The dust-gas model was selected to describe the transfer of multi-component gas in the porous media and channel. The BFD(Brinkman-Forschheimer-Darcy) was used to describe the seep of gas in the porous electrodes and research the mass sources,momentum sources and energy sources in the process of the transfer of multi-phase and multi-component gas.Then the finite software and external routine were coupled to solve these models.
     The intelligent electrochemical model was constructed to simulate the couple relation of the reaction and thermo-fluid model during the process of the energy transfer in the SOFC system.The ionic transfer,current,voltage and the output power in the corrugated and multi-plane SOFCs were studied.The software design,intelligent pre-processing and secondary exploitation of FLUENT software were presented.
     To avoid the stripping and gas leakage caused by the thermal expansion coefficients difference or circle operating under the high temperature and improve the contact of the interface between the electrodes and electrolyte influenced the output power of SOFC,the functionally graded layers were designed between the electrodes and electrolyte to make the physical parameters and porosity of the graded layers change continuously.By this means,the best geometry design was expected to improve the high power density and mechanical performance of SOFC.
     SOFC operates in the high temperature conditions,so the contact of interface between the cathode/anode and the electrolyte influence severely on the output power of SOFC.In particular,the stripping and gas leakage was caused by the difference of the components material of SOFC and the cyclical high temperature operating conditions.In order to release the deformation and crack induced by the difference of the components material of SOFC,in the thesis,the idea of the functionally graded material(FGM) is introduced into the design of SOFC.Between the electrodes,including cathode and anode,and electrolyte, the FGM layers with continuously graded physical prosperity and porosity are prepared. With the same volume of SOFC unit,the comprehensive performances of functionally graded SOFC were compared with those of SOFC without graded layers to seek the optimal design of SOFC with high power density and ideal mechanical performance.
     In order to enlarge the adaptability of SOFC to fuels,the multi-specious mixture generated by decomposing universal hydrocarbon was used as the fuel gas.The influences of reforming reaction of methane,water shift reaction and electrochemical reaction on the output power of SOFC were researched.The results show that the hydrogen mass fraction is increase along the fuel flow direction in the small type SOFC using the hydrocarbon fuel,hence,the hydrogen and hydrocarbon fuels can be supplied circularly.The industrial exhaust gas can be used as the fuel of SOFC,which is validated in the theory.
     Based on the temperature distribution calculated from the actual operation process, thermal stress of complex structure SOFCs(corrugated and octagon type) were first analyzed.A novel octagon typed SOFC was presented after the comparisons of the electrochemical performance of different structures,which could obtain the desired effect of both the mechanics performance and the improvement of cell energy density.
     The complex impedance method was employed to test the electrical conductivity of functionally graded SOFCs.It was experimentally validated that functionally graded layers can effectively improve the interface contact condition between cathode or anode and electrolyte,thus the decrease of the interface resistance.Moreover,the relationships were also investigated among ionic conducting properties,operation temperature,structure design and materials.
引文
[1]孟广耀.陶瓷膜燃料电池研究进展与展望.中国科学技术大学学报,2008,38(6):576-593.
    [2]J.P.Longwell,E.S.Rubin,J.Wilson.Coal:Energy for the future.Progress in Energy and Combustion Science,1995,21(4):269-360.
    [3]G.Marban,T.Valdes-Solis.Towards the hydrogen economy.International Journal of Hydrogen Energy,2007,32(12):1625-1637.
    [4]Y.Lu,L.Schaefer.A solid oxide fuel cell system fed with hydrogen sulfide and natural gas.Journal of Power Sources,2004,135(1-2):184-191.
    [5]M.C.Williams,J.Strakey,W.Sudoval.U.S.DOE fossil energy fuel cells program.Journal of Power Sources,2006,159(2):1241-1247.
    [6]朴金花,孙克宁,张乃庆,等.固体氧化物燃料电池密封材料的研究进展.人工晶体学报,2004,33(6):909.
    [7]韩敏芳,尹会燕,唐秀玲,等.固体氧化物燃料电池发展及展望.真空电子技术,2005,2005(4):23-26.
    [8]李永峰,董新法,林维明.固体氧化物燃料电池的现状和未来.电源技术,2002,26(6):462-465.
    [9]Y.Yi,A.D.Rao,J.Brouwer,et al.Fuel flexibility study of an integrated 25 kW SOFC reformer system.Journal of Power Sources,2005,144(1):67-76.
    [10]N.Q.Minh.Ceramic fuel cells.Journal of American Ceramics Society 1993,76(3):553-588.
    [11]N.Q.Minh.Solid oxide fuel cell technology--features and applications.Solid State Ionics,2004,174(1-4):271-277.
    [12]S.C.Singhal.Advance in solid oxide fuel cell technology.Solid State Ionics,2000,135(1-4):305-313.
    [13]S.C.Singhal.Solid oxide fuel cells for stationary,mobile,and military applications.Solid State Ionics,2002,152-153:405-410.
    [14]C.Bernay,M.Marchand,M.Cassir.Prospects of different fuel cell technologies for vehicle applications.Journal of Power Sources,2002,108(1-2):139-152.
    [15]K.Choy,W.Bai,S.Charojrochkul,et al.The development of intermediate- temperature solid oxide fuel cells for the next millennium.Journal of Power Sources,1998,71(1-2): 361-369.
    [16]B.Liu,Y.Zhang.Status and prospects of intermediate temperature soid oxide fuel cells.Journal of University of Science and Technology Beijing,Mineral,Metallurgy,Material,2008,15(1):84-90.
    [17]B.Zhu,Advanced intermediate temperature solid oxide fuel cells for electrical vechnicles,in:Proceeds of the 13th world hydrogen energy conference.Beijing China,2000,750-755.
    [18]F.Panik.Fuel cells for vehicle applications in cars - bringing the future closer.Journal of Power Sources,1998,71(1-2):36-38.
    [19]F.Zink,Y.Lu,L.Schaefer.A solid oxide fuel cell system for buildings.Energy Conversion and Management,2007,48(3):809-818.
    [20]G.J.K.Acres.Recent advances in fuel cell technology and its applications.Journal of Power Sources,2001,100(1-2):60-66.
    [21]O.Yamamoto.Solid oxide fuel cells:fundamental aspects and prospects.Electrochimica Acta,2000,45(15-16):2423-2435.
    [22]J.Van herle,R.Ihringer,N.M.Sammes,et al.Concept and technology of SOFC for electric vehicles.Solid State Ionics,2000,132(3-4):333-342.
    [23]A.J.Appleby.Issues in fuel cell commercialization.Journal of Power Sources,1996,58(2):153-176.
    [24]A.B.Stambouli,E.Traversa.Solid oxide fuel cells(SOFCs):a review of an environmentally clean and efficient source of energy.Renewable and Sustainable Energy Reviews,2002,6(5):433-455.
    [25]吉田行男,久留長生,武信弘一.SOFC实用化へ向けての取組み.三菱重工技報,2003,40(4):206-207.
    [26]衣宝廉.燃料电池-高效、环境友好的发电方式.北京:化学工业出版社,2000.
    [27]P.F.van den Oosterkamp.Critical issues in heat transfer for fuel cell systems.Energy Conversion and Management,2006,47(20):3552-3561.
    [28]张中太,黄传勇.固体氧化物燃料电池的研究进展.材料导报,1999,13(4):19-23.
    [29]W.J.Dollard.Solid oxide fuel cell developments at Westinghouse.Journal of Power Sources,1992,37(1-2):133-139.
    [30]A.J.Appleby.Fuel cell technology:Status and future prospects.Energy,1996,21(7-8):521-653.
    [31]A.J.Appleby.Fuel cell technology and innovation.Journal of Power Sources,1992, 37(1-2):223-239.
    [32]M.C.Williams,J.P.Strakey,W.A.Surdoval,et al.Solid oxide fuel cell technology development in the U.S.Solid State Ionics,2006,177(19-25):2039-2044.
    [33]M.C.Williams,J.P.Strakey,W.A.Surdoval.The U.S.Department of Energy,Office of Fossil Energy Stationary Fuel Cell Program.Journal of Power Sources,2005,143(1-2):191-196.
    [34]M.C.Williams,H.C.Maru.Distributed generation-Molten carbonate fuel cells.Journal of Power Sources,2006,160(2):863-867.
    [35]江义,李文钊,王世忠.高温固体氧化物燃料电池进展.化学进展,1997,9(4):387-396.
    [36]N.Hashimoto.The practice of fuel cells Global SOFC activities and evaluation programmes.Journal of Power Sources,1994,49(1-3):103-114.
    [37]A.Casanova.A consortium approach to commercialized Westinghouse solid oxide fuel cell technology.Journal of Power Sources,1998,71(1-2):65-70.
    [38]Tal Z.Sholklapper,Velimir Radmilovic,Craig P.Jacobson,et al.Nanocomposite Ag-LSM solid oxide fuel cell electrodes.Journal of Power Sources,2008,175(1-3):206-210.
    [39]M.C.Williams,S.Singhal.Mass produced ceramic fuel cells for low-cost power.Fuel Cells Bulletin,2000,3(24):8-11.
    [40]陈坤尧,沈培康.燃料电池进展(下).电池,1994,24(3):131-133.
    [41]K.Hassmann,R.Rippel.A new approach to fuel cell investment strategy.Journal of Power Sources,1998,71(1-2):75-79.
    [42]K.Foger,J.G.Love.Design and manufacture of CFCL's modular and thermally cyclable stack technology Paris,France,2003.
    [43]N.Christiansen,J.B.Hansen,H.Holm-Larsen,et al.Solid oxide fuel cell development at Topsoe Fuel Cell and Riso.Fuel Cells Bulletin,2006,2006(8):12-15.
    [44]F.J.Gardner,M.J.Day,N.P.Brandon,et al.SOFC technology development at Rolls-Royce.Journal of Power Sources,2000,86(1-2):122-129.
    [45]K.Foger,J.G.Love.Fifteen years of SOFC development in Australia.Solid State Ionics,2004,174(1-4):119-126.
    [46]A.L.Dicks,J.C.Diniz da Costa,A.Simpson,et al.Fuel cells,hydrogen and energy supply in Australia.Journal of Power Sources,2004,131(1-2):1-12.
    [47]Anonymity.Fuel cells in Switzerland.Fuel Cells Bulletin,2002,2002(3):9-11.
    [48]B.Godfrey,K.Foger,R.Gillespie,et al.Planar solid oxide fuel cells:the Australian experience and outlook.Journal of Power Sources,2000,86(1-2):68-73.
    [49]C.E.Gibbs,M.C.F.Steel.European opportunities for fuel cell commercialisation.Journal of Power Sources,1992,37(1-2):35-43.
    [50]Anonymity.Residential SOFCs making a big splash in Europe.Fuel Cells Bulletin,2007,2007(8):1-197.
    [51]章天金,唐超群,周东祥,等.YSZ薄膜Sol-Gel法制备及其结构分析.无机材料学报,1997,12(2):200-205.
    [52]朱永平,戴学刚,胡万起,等.固体氧化物燃料电池的结构及其联接方法.中国,CN1192059.1998.1-8.
    [53]李吉刚,孙克宁,孔江榕,等.流延法制备Ni-YSZ/YSZ复合基膜及性能测试.化工进展,2008,27(1):135-138.
    [54]徐伟勋,刘谨豪,肃敏郎,等.以粉末冶金制备固态氧化物燃料电池之连接板.粉术冶金材料科学与工程,2008,13(3):155-158.
    [55]郑锐,聂怀文,陈文霞,等.等离子喷涂在制备中温平板式固体氧化物燃料电池中的应用.硅酸盐学报,2003,31(6):598-603.
    [56]迟克彬,李方伟,李影辉,等.固体氧化物燃料电池研究进展.天然气化工,2002,27(4):37-44.
    [57]N.Minh,A.Anumakonda,B.Chung,et al.High-performance,reduced-temperature SOFC technology.Fuel Cells Bulletin,1999,2(6):9-11.
    [58]H.Yoshida,H.Yakabe,K.Ogasawara,et al.Development of envelope-type solid oxide fuel cell stacks.Journal of Power Sources,2006,157(2):775-781.
    [59]F.Nishiwaki,T.Inagaki,J.Kano,et al.Development of disc-type intermediatetemperature solid oxide fuel cell.Journal of Power Sources,2006,157(2):809-815.
    [60]T.L.Wen,D.Wang,H.Y.Tu,et al.Research on planar SOFC stack.Solid State Ionics,2002,152-153:399-404.
    [61]W.Winkler,H.Lorenz.The design of stationary and mobile solid oxide fuel cell-gas turbine systems.Journal of Power Sources,2002,105(2):222-227.
    [62]T.L.Wen,D.Wang,M.Chen,et al.Material research for planar SOFC stack.Solid State lonics,2002,148(3-4):513-519.
    [63]L.Petruzzi,S.Cocchi,F.Fineschi.A global thermo-electrochemical model for SOFC systems design and engineering.Journal of Power Sources,2003,118(1-2):96-107.
    [64]#12
    [65]K.Kendall,N.Q.Minh,S.C.Singhal,et al.Cell and Stack Designs.In High Temperature and Solid Oxide Fuel Cells Amsterdam,Elsevier Science,2003,197-228.
    [66]J.J.Hwang,C.K.Chen,D.Y.Lai.Detailed characteristic comparison between planar and MOLB-type SOFCs.Journal of Power Sources,2005,143(1-2):75-83.
    [67]J.J.Hwang,C.K.Chen,D.Y.Lai.Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC.Journal of Power Sources,2005,140(2):235-242.
    [68]彭晓领.组元磁化法制备ZrO_2/Ni梯度功能材料研究.浙江大学,2008.
    [69]郑冀,郑志强,岳建民.铜基功能梯度复合材料的摩擦性能研究.稀有金属材料与工程,2007,36(3):604-607.
    [70]K.A.Khor,Z.L.Dong,Y.W.Gu.Influence of oxide mixtures on mechanical properties of plasma sprayed functionally graded coating.Thin Solid Films,2000,368(1):86-92.
    [71]吴利英.梯度功能材料的发展和应用.航空制造技术,2003,(12):57-61.
    [72]徐智谋,郑家燊,张联盟.新型功能梯度材料研究现状及发展方向.材料导报,2000,14(4):13-15.
    [73]王豫,姚凯伦.功能梯度材料研究的现状与将来发展.2000,29(4):206-211.
    [74]K.A.Khor,Y.W.Gu.Thermal properties of plasma-sprayed functionally graded thermal barrier coatings.Thin Solid Films,2000,372(1-2):104-113.
    [75]阎加强 隋智通.功能梯度材料原理及其在固体氧化物燃料电池中的应用设想.材料导报,1996,6(6):7-11.
    [76]H.Raak,R.Diethelm,S.Riggenbach.European SOFC Forum Oberrohrdorf,Switzerland,2002.
    [77]闫江松,张海鸥,王桂兰,等.等离子熔积直接制造容积式送粉系统设计.华中科技大学学报(自然科学版),2006,34(11):22-24.
    [78]陈广立,耿浩然,陈俊华,等.功能梯度材料组元设计的研究进展.现代制造工程,2006,(1):133-135.
    [79]韩杰才,徐丽,王保林,等.梯度功能材料的研究进展及展望.固体火箭技术,2004,27(3):207-215.
    [80]A.M.Khoddami,A.Sabour,S.M.M.Hadavi.Microstructure formation in thermallysprayed duplex and functionally graded NiCrAlY/Yttria-Stabilized Zirconia coatings.Surface and Coatings Technology,2007,201(12):6019-6024.
    [81]L.Zhou,D.Tang.A functionally graded structural design of mirrors for reducing their thermal deformations in high-power laser systems by finite element method.Optics &Laser Technology,2007,39(5):980-986.
    [82]J.R.Cho.Optimum material composition design for thermal stress reduction in FGM lathe bit.Composites Part A:Applied Science and Manufacturing,2006,37(10):1568-1577.
    [83]J.I.Kim,W.J.Kim,D.J.Choi,et al.Design of a C/SiC functionally graded coating for the oxidation protection of C/C composites.Carbon,2005,43(8):1749-1757.
    [84]J.L.Cui,X.B.Zhao.The design and properties of pseudobinary alloys(PbTe)_(1-x)-(SnTe)_x with gradient composition.Materials Letters,2003,57(16-17):2466-2471.
    [85]J.Zhang,Y.Yin,J.Li,et al.Fabrication and properties of Fe_3Al-Al_2O_3 graded coatings.Journal of Materials Processing Technology,2003,134(2):206-209.
    [86]S.Zha,Y.Zhang,M.Liu.Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs.Solid State Ionics,2005,176(1-2):25-31.
    [87]A.Polat,O.Sarikaya,E.Celik.Effects of porosity on thermal loadings of functionally graded Y_2O_3-ZrO_2/NiCoCrAlY coatings.Materials & Design,2002,23(7):641-644.
    [88]K.A.Khor,Y.W.Gu,C.H.Quek,et al.Plasma spraying of functionally graded hydroxyapatite/Ti-6Al-4V coatings.Surface and Coatings Technology,2003,168(2-3):195-201.
    [89]K.A.Khor,Y.W.Gu,Z.L.Dong.Mechanical behavior of plasma sprayed functionally graded YSZ/NiCoCrAlY composite coatings.Surface and Coatings Technology,2001,139(2-3):200-206.
    [90]刘红林,金志浩,郝志彪,等.碳/碳/Al_2O_3陶瓷功能梯度材料的制备与研究.功能材料与器件学报,2004,10(1):123-127.
    [91]S.Kakac,A.Pramuanjaroenkij,X.Y.Zhou.A review of numerical modeling of solid oxide fuel cells.International Journal of Hydrogen Energy,2007,32(7):761-786.
    [92]C.W.Tanner,A.V.Virkar.A simple model for interconnect design of planar solid oxide fuel cells.Journal of Power Sources,2003,113(1):44-56.
    [93]E.Achenbach.Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack.Journal of Power Sources,1994,49(1-3):333-348.
    [94]H.Yakabe,T.Sakurai.3D simulation on the current path in planar SOFCs.Solid State Ionics,2004,174(1-4):295-302.
    [95]H.Yakabe,T.Ogiwara,M.Hishinuma,et al.3-D model calculation for planar SOFC. Journal of Power Sources, 2001,102(1-2): 144-154.
    [96] H. Yakabe, M. Hishinuma, M. Uratani, et al. Evaluation and modeling of performance of anode-supported solid oxide fuel cell. Journal of Power Sources, 2000, 86(1-2): 423-431.
    
    [97] H. Yakabe, Y. Baba, T. Sakurai, et al. Evaluation of the residual stress for anode-supported SOFCs. Journal of Power Sources, 2004,135(1-2): 9-16.
    [98] H. Yakabe, Y. Baba, T. Sakurai, et al. Evaluation of residual stresses in a SOFC stack. Journal of Power Sources, 2004,131(1-2): 278-284.
    [99] J. Yuan, M. Rokni, B. Sunden. Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells. International Journal of Heat and Mass Transfer, 2003, 46(5): 809-821.
    [100] X.P. Wang, G. Corbel, S. Kodjikian, et al. Isothermal kinetic of phase transformation and mixed electrical conductivity in Bi_3NbO_7. Journal of Solid State Chemistry, 2006, 179(11): 3338-3346.
    [101] B. Todd, J.B. Young. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling. Journal of Power Sources, 2002, 110(1): 186-200.
    [102] T. Tanaka, Y. Inui, A. Urata, et al. Three dimensional analysis of planar solid oxide fuel cell stack considering radiation. Energy Conversion and Management, 2007, 48(5): 1491-1498.
    [103] C. Stiller, B. Thorud, S. Seljebo, et al. Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells. Journal of Power Sources, 2005, 141(2): 227-240.
    [104] C. Stiller, B. Thorud, O. Bolland, et al. Control strategy for a solid oxide fuel cell and gas turbine hybrid system. Journal of Power Sources, 2006,158(1): 303-315.
    [105] Y. Shiratori, Y. Yamazaki. Discharge characteristics of planar stack fuel cells. Journal of Power Sources, 2003,114(1): 80-87.
    [106] K. Scott, Y.P. Sun. Simulation and reaction engineering of electrochemical gas/ liquid reactions. Electrochimica Acta, 1995,40(4): 423-431.
    [107] M. Roos, E. Batawi, U. Harnisch, et al. Efficient simulation of fuel cell stacks with the volume averaging method. Journal of Power Sources, 2003,118(1-2): 86-95.
    [108] K.P. Recknagle, R.E. Williford, L.A. Chick, et al. Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks. Journal of Power Sources, 2003, 113(1): 109-114.
    [109] Y. Qi, B. Huang, J. Luo. Dynamic modeling of a finite volume of solid oxide fuel cell: The effect of transport dynamics. Chemical Engineering Science, 2006, 61(18): 6057-6076.
    
    [110] H.-C. Liu, C.-H. Lee, Y.-H. Shiu, et al. Performance simulation for an anode-supported SOFC using Star-CD code. Journal of Power Sources, 2007,167(2): 406-412.
    [111] T. Nann, J. Heinze. Simulation in electrochemistry using the finite element method part 2: scanning electrochemical microscopy. Electrochimica Acta, 2003, 48(27): 3975-3980.
    [112] T. Nann, J. Heinze. Simulation in electrochemistry using the finite element method Part 1. The algorithm. Electrochemistry Communications, 1999,1(7): 289-294.
    [113] M. Lockett, M.J.H. Simmons, K. Kendall. CFD to predict temperature profile for scale up of micro-tubular SOFC stacks. Journal of Power Sources, 2004,131(1-2): 243-246.
    [114] T.-H. Lim, R.-H. Song, D.-R. Shin, et al. Operating characteristics of a 5 kW class anode-supported planar SOFC stack for a fuel cell/gas turbine hybrid system. International Journal of Hydrogen Energy, 2008, 33(3): 1076-1083.
    [115] P.-W. Li, M.K. Chyu. Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack. Journal of Power Sources, 2003, 124(2): 487-498.
    [116] M. Yokoo, Y. Tabata, Y. Yoshida, et al. Highly efficient and durable anode-supported SOFC stack with internal manifold structure. Journal of Power Sources, 2008, 178(1): 59-63.
    [117] W. Ying, Y.-J. Sohn, W.-Y. Lee, et al. Three-dimensional modeling and experimental investigation for an air-breathing polymer electrolyte membrane fuel cell (PEMFC). Journal of Power Sources, 2005,145(2): 563-571.
    [118] Y. Yin, S. Li, C. Xia, et al. Electrochemical performance of IT-SOFCs with a double-layer anode. Journal of Power Sources, 2007,167(1): 90-93.
    [119] H. Zhu, R.J. Kee. A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies. Journal of Power Sources, 2003, 117(1-2): 61-74.
    [120] J.H. Yu, G.W. Park, S. Lee, et al. Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode. Journal of Power Sources, 2007, 163(2): 926-932.
    [121] Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk. Electrochemical study of a planar solid oxide fuel cell: Role of support structures. Journal of Power Sources, 2008, 177(2): 254-261.
    [122] S.G. Neophytides. The reversed flow operation of a crossflow solid oxide fuel cell monolith. Chemical Engineering Science, 1999, 54(20): 4603-4613.
    [123] S. Murthy, A.G. Fedorov. Radiation heat transfer analysis of the monolith type solid oxide fuel cell. Journal of Power Sources, 2003,124(2): 453-458.
    [124] D. Mao, J.R. Edwards, A.V. Kuznetsov, et al. Three-dimensional numerical simulation of a circulating fluidized bed reactor for multi-pollutant control. Chemical Engineering Science, 2004, 59(20): 4279-4289.
    [125] M. Kleitz, F. Petitbon. Optimized SOFC electrode microstructure. Solid State Ionics, 1996, 92(1-2): 65-74.
    [126] H. Yokokawa, H. Tu, B. Iwanschitz, et al. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, In Press, Corrected Proof: 499.
    [127] H. Yokokawa, N. Sakai, T. Horita, et al. Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes. Journal of Alloys and Compounds, 2008, 452(6): 41-47.
    [128] A.V. Virkar. A model for solid oxide fuel cell (SOFC) stack degradation. Journal of Power Sources, 2008,172(2): 713-724.
    [129] H. Tu, U. Stimming. Advances, aging mechanisms and lifetime in solid-oxide fuel cells. Journal of Power Sources, 2004, 127(1-2): 284-293.
    [130] A. Lussier, S. Sofie, J. Dvorak, et al. Mechanism for SOFC anode degradation from hydrogen sulfide exposure. International Journal of Hydrogen Energy, 2008, 33(14): 3945-3951.
    [131] J. Laurencin, G. Delette, F. Lefebvre-Joud, et al. A numerical tool to estimate SOFC mechanical degradation: Case of the planar cell configuration. Journal of the European Ceramic Society, 2008, 28(9): 1857-1869.
    [132] D. Larrain, J. Van herle, D. Favrat. Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk. Journal of Power Sources, 2006, 161(1): 392-403.
    [133] J.I. Gazzarri, O. Kesler. Short stack modeling of degradation in solid oxide fuel cells: Part Ⅱ. Sensitivity and interaction analysis. Journal of Power Sources, 2008, 176(1): 155-166.
    [134] J.I. Gazzarri, O. Kesler. Short-stack modeling of degradation in solid oxide fuel cells: Part Ⅰ. Contact degradation. Journal of Power Sources, 2008,176(1): 138-154.
    [135] J. Malzbender, R.W. Steinbrech. Threshold fracture stress of thin ceramic components. Journal of the European Ceramic Society, 2008, 28(1): 247-252.
    [136] A. Selimovic, M. Kemm, T. Torisson, et al. Steady state and transient thermal stress analysis in planar solid oxide fuel cells. Journal of Power Sources, 2005, 145(2): 463-469.
    [137] C.-K. Lin, T.-T. Chen, Y.-P. Chyou, et al. Thermal stress analysis of a planar SOFC stack. Journal of Power Sources, 2007,164(1): 238-251.
    [138] V. Kumar, A. Arora, O.P. Pandey, et al. Studies on thermal and structural properties of glasses as sealants for solid oxide fuel cells. International Journal of Hydrogen Energy, 2008, 33(1): 434-438.
    [139] W. Fischer, J. Malzbender, G. Blass, et al. Residual stresses in planar solid oxide fuel cells. Journal of Power Sources, 2005,150: 73-77.
    [140] J. Yuan, F. Ren, B. Sunden. Analysis of chemical-reaction-coupled mass and heat transport phenomena in a methane reformer duct for PEMFCs. International Journal of Heat and Mass Transfer, 2007, 50(3-4): 687-701.
    [141] K. Yamaji, H. Kishimoto, Y. Xiong, et al. Catalytic methane decomposition on nickel-based model anodes of SOFCs fabricated on various oxide ion conductors. Solid State Ionics, 2008,179(27-32): 1526-1530.
    [142] O. Yamada. Generation of hydrogen gas by reforming biomass with superheated steam. Thin Solid Films, 2006, 509(1-2): 207-211.
    [143] P. Vernoux, M. Guillodo, J. Fouletier, et al. Alternative anode material for gradual methane reforming in solid oxide fuel cells. Solid State Ionics, 2000,135(1-4): 425-431.
    [144] J. Van herle, F. Marechal, S. Leuenberger, et al. Process flow model of solid oxide fuel cell system supplied with sewage biogas. Journal of Power Sources, 2004, 131(1-2): 127-141.
    
    [145] J. Van herle, F. Marechal, S. Leuenberger, et al. Energy balance model of a SOFC cogenerator operated with biogas. Journal of Power Sources, 2003, 118(1-2): 375-383.
    [146] W. Sangtongkitcharoen, S. Vivanpatarakij, N. Laosiripojana, et al. Performance analysis of methanol-fueled solid oxide fuel cell system incorporated with palladium membrane reactor. Chemical Engineering Journal, 2008, 138(1-3): 436-441.
    [147] D. Sanchez, R. Chacartegui, A. Munoz, et al. Thermal and electrochemical model of internal reforming solid oxide fuel cells with tubular geometry. Journal of Power Sources, 2006,160(2): 1074-1087.
    [148] D. Sanchez, R. Chacartegui, A. Munoz, et al. On the effect of methane internal reforming modelling in solid oxide fuel cells. International Journal of Hydrogen Energy, 2008, 33(7): 1834-1844.
    [149] K. Piotrowski, K. Mondal, H. Lorethova, et al. Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process. International Journal of Hydrogen Energy, 2005,30(15): 1543-1554.
    [150] A.O. Omosun, A. Bauen, N.P. Brandon, et al. Modelling system efficiencies and costs of two biomass-fuelled SOFC systems. Journal of Power Sources, 2004, 131(1-2): 96-106.
    [151] L. Mingyi, Y. Bo, X. Jingming, et al. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production. Journal of Power Sources, 2008,177(2): 493-499.
    [152] T.J. Lee, K. Kendall. Characterisation of Electrochemical Performance of Anode Supported Micro-Tubular SOFC with Methane Fuel. Journal of Power Sources, 2008, 181(2): 195-198.
    [153] P. Ivanov. Thermodynamic modeling of the power plant based on the SOFC with internal steam reforming of methane. Electrochimica Acta, 2007, 52(12): 3921-3928.
    [154] J.M. Klein, Y. Bultel, S. Georges, et al. Modeling of a SOFC fuelled by methane: From direct internal reforming to gradual internal reforming. Chemical Engineering Science, 2007, 62(6): 1636-1649.
    [155] V.M. Janardhanan, O. Deutschmann. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. Journal of Power Sources, 2006,162(2): 1192-1202.
    [156] C.M. Grgicak, R.G. Green, J.B. Giorgi. SOFC anodes for direct oxidation of hydrogen and methane fuels containing H_2S. Journal of Power Sources, 2008, 179(1): 317-328.
    [157] C.O. Colpan, I. Dincer, F. Hamdullahpur. Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas. International Journal of Hydrogen Energy, 2007, 32(7): 787-795.
    [158] S.H. Chan, O.L. Ding. Simulation of a solid oxide fuel cell power system fed by methane. International Journal of Hydrogen Energy, 2005, 30(2): 167-179.
    [159] F. Zhao, A.V. Virkar. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. Journal of Power Sources, 2005, 141(1): 79-95.
    [160] A.V. Virkar, J. Chen, C.W. Tanner, et al. The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics, 2000,131(1-2): 189-198.
    [161] R. Suwanwarangkul, E. Croiset, M.W. Fowler, et al. Performance comparison of Fick's, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode.Journal of Power Sources,2003,122(1):9-18.
    [162]M.Ni,M.K.H.Leung,D.Y.C.Leung.A modeling study on concentration overpotentials of a reversible solid oxide fuel cell.Journal of Power Sources,2006,163(1):460-466.
    [163]Z.Luo,J.Xiao,F.Xia,et al.Steady polarization process modelling of noble metal-electrolyte cermet composite electrode.Transactions of Nonferrous Metals Society of China,2006,16(1):142-147.
    [164]Z.Lin,J.W.Stevenson,M.A.Khaleel.The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs.Journal of Power Sources,2003,117(1-2):92-97.
    [165]Y.-K.Kwok,C.C.K.Wu.Numerical simulation of electrochemical diffusion- migration model with reaction at electrodes.Computer Methods in Applied Mechanics and Engineering,1996,132(3-4):305-317.
    [166]T.Kenjo,H.Tanabe,Y.Hoshiba.Polarization reduction by a highly resistant electrolyte film in SOFC oxygen electrodes.Solid State Ionics,2003,159(3-4):197-207.
    [167]T.Kenjo,D.Nojiri.Non-uniform polarizations in SOFC oxygen electrodes.Electrochimica Acta,2004,50(4):995-1004.
    [168]S.H.Chan,K.A.Khor,Z.T.Xia.A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness.Journal of Power Sources,2001,93(1-2):130-140.
    [169]A.M.Svensson,S.Sunde,K.Nisancioglu.A mathematical model of the porous SOFC cathode.Solid State Ionics,1996,86-88(Part 2):1211-1216.
    [170]Y.-P.Sun,K.Scott.An analysis of the influence of mass transfer on porous electrode performance.Chemical Engineering Journal,2004,102(1):83-91.
    [171]W.Sun,B.A.Peppley,K.Karan.An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters.Electrochimica Acta,2005,50(16-17):3359-3374.
    [172]L.C.R.Schneider,C.L.Martin,Y.Bultel,et al.Discrete modelling of the electrochemical performance of SOFC electrodes.Electrochimica Acta,2006,52(1):314-324.
    [173]V.H.Schmidt,C.-L.Tsai.Anode-pore tortuosity in solid oxide fuel cells found from gas and current flow rates.Journal of Power Sources,2008,180(1):253-264.
    [174]倪萌,L.MICHAE,L.DENNIS.固体氧化物燃料电池阴极气体传输的研究.电源 技术,2007,31(10):777-778.
    [175]林子敬,顾晔,张晓华.YSZ中温燃料电池的稳态模拟.电化学,2002,8(4):445-451.
    [176]林子敬,张晓华.固体氧化物燃料电池电化学与热分析耦合的二维模型.无机材料学报,2003,18(3):661-666.
    [177]J.Li,G.-Y.Cao,X.-J.Zhu,et al.Two-dimensional dynamic simulation of a direct internal reforming solid oxide fuel cell.Journal of Power Sources,2007,171(2):585-600.
    [178]X.Zhang,G.Li,J.Li,et al.Numerical study on electric characteristics of solid oxide fuel cells.Energy Conversion and Management,2007,48(3):977-989.
    [179]程健,许世森.固体氧化物燃料电池发电系统的模拟与优化研究.热力发电,2005,34(12):23-26.
    [180]汤根土,骆仲泱,倪明江,等.平板状阳极支撑固体氧化物燃料电池的数值模拟及性能分析.中国电机工程学报,2005,25(10):116-121.
    [181]汤根土.平板状阳极支撑固体氧化物燃料电池的实验与数值模拟.浙江:浙江大学,2005.
    [182]王求生,王乘,任波,等.固体氧化物燃料电池三维模拟与性能分析.能源工程,2007,28(1):16-21.
    [183]王求生,任波,李利军,等.平板式阳极支撑固体氧化物燃料电池传质传热仿真研究.热科学与技术,2006,5(4):339-345.
    [184]谢光远,崔崑,肖建中,等.阳极支撑平板SOFC单电池热应力数学模型分析,华中科技大学学报(自然科学版),2002,30(11):90-92.
    [185]陈弦,杨杰,蒲健,等.平板式SOFC结构热应力的有限元分析.无机材料学报,2007,22(2):339-343.
    [186]R.H.Perry,D.W.Green.Perry's Chemical Engineers' Handbook.2007.
    [187]R.C.Reid,T.K.Sherwood.The Properties of Gases and Liquids.New York:McGraw-Hill,1997.
    [188]J.A.W.R.Krishna.The Maxwell-Stefan approach to mass transfer.Chemical Engineering Science,1997,52(6):861-911.
    [189]J.Comiti,N.E.Sabiri,A.Montillet.Experimental Characterization of Flow Regimes in Various Porous Media-Ⅲ:Limit of Darcy's or Creeping Flow Regime for Newtonian and Purely Viscous Non-Newtonian Fluids.Chem Eng Sci,2000,55(55):3057-3061.
    [190]H.Teng,and T.S.Zhao.An Extension of Darcy's Law to Non-Stokes Flow in Porous Media.Chem Eng Sci,2000,55(55):2727-2735.
    [191]A.Bejan.Convective Heat Transfer in Porous Media,Handbook of Single-phase Convective Heat Transfer.New York:Wiley & Sons,1987.
    [192]J.R.Ferguson,J.M.Fiard,R.Herbin.Three-dimensional numerical simulation for various geometries of solid oxide fuel cells.Journal of Power Sources,1996,58(2):109-122.
    [193]莫茂松,王银海,刘松琴,等.钛掺杂的α-Fe_2O_3-K_2O系纳米湿敏陶瓷的复阻抗谱.无锡轻工大学学报,2000,19(6):611-613.
    [194]苏树兵,宋世庚,郑应智,等.CoMnCuO系NTC热敏电阻的复阻抗分析.材料科学与工程,2002,20(3):386-388.
    [195]杜慧玲,王国梅,雷家珩.Cu注入PTC BaTiO_3陶瓷的复阻抗谱研究.功能材料与器件学报,1997,28(5):495-498.
    [196]李英,谢裕生、唐子龙.(Y_2O_3,Yb_2O_3)复合掺杂ZrO_2材料的中低温电导率.功能材料与器件学报,2001,32(5):484-486.
    [197]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.北京:北京科学出版社,2004.
    [198]王常珍.固体电解质和化学传感器.北京:冶金工业出版社,2000.
    [199]章天金,李东,徐超.BST薄膜的复阻抗谱及其电导性能的研究.湖北大学学报(自然科学版),2002,24(1):38-42.
    [200]尹艳红.中温固体氧化物燃料电池阳极材料及电池性能研究.中国:中国科学技术大学,2004.