纤维石膏速成板—钢筋混凝土组合构件受力性能试验研究与有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国墙体改革、建筑节能环保等相关政策的推行,住宅产业现代化逐渐提上日程,加快传统建筑业的技术进步和优化升级,开发新的住宅结构体系成为工程界的首要任务之一。纤维石膏速成板是一种添加防水玻璃纤维的轻质石膏空心大板,在其空腔内浇注混凝土可以作为承重结构,为使纤维石膏速成板—混凝土组合构件在我国应用,本文对这种新型组合构件的受力性能和抗震性能进行较为系统试验研究和有限元分析,主要研究工作如下:
     1.测定纤维石膏速成板抗压强度、抗拉强度、弹性模量和波松比等基本力学性能指标,并且对芯柱混凝土与纤维石膏速成板之间的黏结性能进了初步的探索性试验。试验得到抗压强度、抗拉强度的应力—应变关系,为以后非线性有限元分析提供材料本构关系曲线。
     2.通过对4组14片不同形式组合墙体足尺试件进行水平低周反复荷载作用下的拟静力试验,研究不同灌芯形式速成板组合墙体的抗剪承载能力和主要破坏模式,考查这种墙体的刚度、延性以及能量耗散能力,结果表明不同灌芯形式的组合墙体承受外力时作为一个整体共同工作,墙体具有良好的承载能力、刚度、能量耗散能力以及延性性能,得到四折线骨架曲线,为确定和分析这种墙体的抗震性能提供依据。
     3.应用美国ADINA通用有限元软件进行辅助试验分析,首先建立各种灌芯形式组合墙体的有限元模型,结合试验结果论证有限元模型的合理性,然后进行扩大参数分析,研究混凝土灌芯情况、配筋形式、剪跨比、混凝土强度等级等参数对组合墙体承载力的影响。
     4.本文提出一种新型的纤维石膏速成板—钢筋混凝土密肋叠合板。对此叠合板在单调荷载作用下的弯曲性能进行试验研究,测定叠合板的整体性能,应用ADINA有限元软件对叠合板进行非线性分析,并提出计算叠合板开裂荷载和极限荷载的建议公式。
     5.对隔孔灌注混凝土纤维石膏速成板组合墙体的偏心受压性能进行试验研究,结合已有的澳大利亚试验结果,分析与探讨本文试验墙体的抗压承载能力以及破坏特征。研究结果表明,组合墙体偏心受压破坏形式为失稳破坏,其抗压承载力满足普通多层房屋建筑的承载力要求。
Along with the promotion of policies on wall material innovation and implementation of energy-saving and environmental-friendly buildings in China, modernization of the housing industry has been gradually put on the agenda. One of the tasks under highest priority in engineering would be to accelerate the optimization and upgrade of the traditional building techniques, and to develop new residential structure systems. Fiber-reinforced gypsum panel is a lightweight hollow-section panel made of plasterboard mixed with waterproof glass-fiber, which would work as a gravity-carrying system after the hollow section filled reinforced concrete. In order to promote the use of this type of structural members in our country, the bearing capacity and seismic-resistant behavior of this new type of composite members were investigated through experimental studies and FEM analyses, with research results summarized in this dissertation. The research work mainly covered the following aspects:
     1. Mechanical properties including compressive strength, tensile strength, modulus of elasticity and poisson’s ratio of the fiber-reinforced gypsum panel were tested, and preliminary and exploratory experiments were conducted on the bonding strength between the core concrete and the gypsum panel. The stress-strain curve acquired from the compressive strength test and tensile strength test will be used for the non-linear FEM analysis in the future.
     2. Through pseudo-static cyclic tests on four groups of fourteen full-scale composite walls with different types, the shear capacity and major failure modes of composite walls with different core formation were studied, and the wall stiffness, ductility and energy-dissipation capacity were investigated. It turned out that the, fiber-reinforced gypsum panel and core concrete work together to resist the external load, and the composite wall has good load-carrying capacity, stiffness, energy dissipating capacity and ductility. The four-line skeleton curve is also acquired which could be used for analyzing and determining the seismic-resistant capacity of the wall in the future.
     3. The experimental results have been compared with analytical results using the FEA program ADINA. The FEA model of each type of concrete-filled composite walls were built, and then validated by comparing the analytical results with experimental results. Parametric studies were conducted on this basis, which would investigate the effects of concrete core formation, rebar lay-out, shear-span ratio and concrete strength on the load-carrying capacity of the composite walls.
     4. A new type of composite floor slabs made of fiber-reinforced gypsum panel and reinforced concrete was proposed in this dissertation. The overall performance of the composite floor slabs was obtained through full scale static bending tests and nonlinear FEA analyses were carried on the composite floor slabs by ADINA. Furthermore the equation for calculating the cracking capacity and the ultimate capacity of the composite slabs was proposed.
     5. The performance of the fiber-reinforced gypsum panel with concrete filled in every one or two or three cores under eccentric axial load is studied through experimental research. The compressive capacity and failure modes were discussed along with experimental results from Australia. The test results showed that the failure mode of the composite wall specimens under compression was buckling, and the compressive capacity satisfied the requirements for ordinary middle-rise and high-rise buildings.
引文
[1]联合国人类住区会议(人居二)的报告,1996年6月3日至14日,伊斯坦布尔,联合国出版物
    [2]国务院批转国家建材局等部门,关于加快墙体材料革新和推广节能建筑意见的通知(国发[1992]66号)
    [3]中国新型建筑材料(集团)公司,新型建材跨世纪发展与应用(1996-2010),北京:中国计划出版社,1997
    [4]关于推进住宅产业现代化提高住宅质量的若干意见的通知(国发[1999]72号)
    [5]关于印发进一步做好禁止使用实心粘土砖工作的意见的通知(发改环资[2004]249号)
    [6]国务院办公厅关于进一步推进墙体材料革新和推广节能建筑的通知(国发[2005]33号)
    [7]陈治环,十年墙改硕果累累,同心协力攻坚“禁实”,砖瓦,2003,7:7
    [8]姚谦峰,新型节能住宅体系的研究与发展,工程力学,2001,增刊:138-155
    [9]李明顺,尚春明主编,小康住宅建筑结构体系成套技术指南,北京:中国建筑工业出版社,2001
    [10]姚谦峰,张荫,新型建筑结构住宅体系发展与应用,工业建筑,2002,32(8):53-56
    [11]丁世文,夏敬谦,于福臻等,多孔砖、粉煤灰砌块、火山渣砌块配筋墙体抗震性能试验研究,地震工程与工程振动,2000,20(2):76-84
    [12]李宏男,张景玮,刘莉,多孔砖保温夹心墙体抗震性能试验与分析,建筑结构学报,2001,22(6):73-80
    [13]杨德健,高永孚,孙锦镖等,构造柱-芯柱体系混凝土砌块墙体抗震性能试验研究,建筑结构学报,2000,21(4):22-27
    [14]成全喜,杨德健,孙锦镖等,带芯柱混凝土小型空心砌块墙体抗剪承载力试验研究,天津城市建设学院学报,2000,6(1):46-49
    [15]杨建江,高永孚,赵彤,带构造柱加圈梁小型混凝土砌块砌体抗剪强度分析,建筑结构学报,1998,19(3):33-38
    [16]邱战洪、赵成文、陈兆才,配筋砼小砌块剪力墙的抗剪性能,沈阳建筑工程学院学报,2001,17(1):14-17
    [17]全成华,唐岱新,高强砌块配筋砌体剪力墙抗剪性能试验研究,建筑结构学报,2002,23(2):79-82
    [18]戴航,关国雄,张佑启,带缝钢筋混凝土高剪力墙抗震性能研究,东南大学学报(自然科学版),1997,27(11):39-44
    [19]容柏生,高层住宅建筑中的短肢剪力墙体结构体系,建筑结构学报,1997,18(6):14-19
    [20]叶列平,康胜,曾勇,双功能带缝剪力墙的弹性受力性能分析,清华大学学报(自然科学板),1999,39(12):79-81
    [21]曹万林,张建伟,常卫华,带支撑双肢短肢剪力墙抗震性能试验研究,地震工程与工程振动,2006,21(1):64-70
    [22]曹万林,董宏英,胡国振.钢筋混凝土带暗支撑双肢剪力墙抗震性能试验研究.建筑结构学报,2004,25(3):22-28
    [23]曹万林,王洪星,带X形暗支撑设暗竖缝剪力墙抗震性能试验研究,世界地震工程,2001,17(2):39-42
    [24]罗英、赵世春,带SRC边框低剪力墙的抗震性能试验研究,西安公路交通大学学报,1999,12(2):66-69
    [25]杨伟军,施楚贤,胡庆国,配筋砌块砌体剪力墙的研究和应用,工业建筑,2002,32(9):64-66
    [26]蒋欢军,吕西林,新型抗震耗能剪力墙地震耗能计算及优化分析,同济大学学报,2000,28(4):383-387
    [27]王忠礼,于庆荣,张同亿等,介绍一种新型抗震节能住宅结构体系——CL结构体系,基建优化,2001,22(1):8-10
    [28]张同亿,吴敏哲,于庆荣,复合墙异形柱组合结构抗震性能试验研究,西安建筑科技大学学报,2000,32(2):127-131
    [29]黄炜,密肋复合墙体抗震性能及设计理论研究,[博士学位论文],西安:西安建筑科技大学,2004,6
    [30]黄炜,姚谦峰,关于新型节能复合墙体的若干问题探讨,建筑技术开发,2005,32(5):110-113
    [31]姚谦峰,黄炜,田洁,丁永刚,密肋复合墙体受力机理及抗震性能试验研究,建筑结构学报,2004,25(6):67-74
    [32]彭晓彤,林晨,满杰,轻钢结构住宅体系发展现状,四川建筑科学研究,2005,31(6):18-21
    [33]戴航,关国雄,张佑启,一种新型带缝钢筋混凝土高剪力墙抗震性能分析与设计(Ⅱ)-整体结构性能分析,建筑结构,1997,8:3-8
    [34]全国新型建材情报信息网编,现代与未来的国内外新型建筑材料,北京:中国建材工业出版社,1995
    [35]陈福广,新型墙体材料手册,北京:中国建材工业出版社,2000
    [36]丁大钧,墙体改革与可持续发展,北京:机械工业出版社,2006
    [37]郑立,姚通稳,新型墙体材料技术读本,北京:化学工业出版社,2005
    [38]向才旺,建筑石膏及其制品,北京:中国建材工业出版社,1998
    [39]赵永生,赵学强,李新慧等,环保节能型绿色建材——速成墙板(Rapidwall),建材产品与应用,2002,3:34-35
    [40]方承仕,石膏资源综合利用的新途径——澳大利亚速成墙和速成建筑系统,建材工业信息,2002,5:34-35
    [41]湛轩业,崔霞,新型轻质石膏空心大板速成墙及速成建筑体系,新型建筑材料,2002,6:28-29
    [42]沈在康,潘景龙,混凝土结构试验方法标准讲义,北京:中国建筑科学研究院,1990
    [43]中华人民共和国国家标准,GB50152-92,混凝土结构试验方法标准,北京:中国建筑工业出版社,1992
    [44]中华人民共和国行业标准,JCJ101-96,建筑抗震试验方法规程,北京:中国建筑工业出版社,1997
    [45]朱伯龙,结构抗震试验,北京:地震出版社,1989
    [46]姚振纲,刘祖华,建筑结构试验,上海:同济大学出版社,1996
    [47]邱法维,钱稼茹,陈志鹏,结构抗震试验方法,北京:科学出版社,2000
    [48]朱伯龙,董振祥,钢筋混凝土非线性分析,上海:同济大学出版社,1985
    [49]康清梁,钢筋混凝土有限元分析,北京:中国水利水电出版社,1996
    [50]吕西林,金国芳,吴晓涵,钢筋混凝土非线性有限元理论与应用,上海:同济大学出版社,1997
    [51]江见鲸,钢筋混凝土结构非线性有限元分析,西安:陕西科学技术出版社,1994
    [52]朱伯芳,有限单元法原理与应用,北京:中国水利水电出版社,1998
    [53]董哲仁,钢筋混凝土非线性有限元法原理与应用,北京:中国水利水电出版社,2002
    [54] Ted Belytschko, Wing Kam Liu, Brian Moran, Nonlinear finite elements for continua and structures, John Wiley, New York, 2000
    [55] Robert D. Cook, David S. Malkus, Michael E. Plesha, Concepts and applications of finite element analysis, John Wiley, New York, 2000
    [56] Yu-Fei Wu, Mike P.Dare, Axial and Shear Behavior of Glass Fiber Reinforced Gypsum Wall Panels:Tests, Journal of Composites for Construction, 2004(8):569-578
    [57]薛立红,蔡绍怀,钢管混凝土柱组合界面的粘结强度(上),建筑科学,1996,3:22-28
    [58]薛立红,蔡绍怀,钢管混凝土柱组合界面的粘结强度(下),建筑科学,1996,4:19-23
    [59]姜绍飞,韩林海,乔景川,钢管混凝土中钢与混凝土粘结问题初探,哈尔滨建筑大学学报,2000,3(2):24-28
    [60]Shakir Khalil H., Pushout Strength of Concrete-Filled Hollow Sections, The structure Engineering, 1993, 71(13): 230-233
    [61]韩林海,杨有福,现代钢管混凝土结构技术,北京:中国建筑工业出版社,2004
    [62] Virdi K.S. and Dowling P.J., Bond Strength in Concrete-Filled Steel Tubes, IABSE Proceedings, 1980,125-139
    [63]薛建阳,杨勇,赵鸿铁,型钢混凝土推出试验及其粘结强度研究,钢结构,2006,21(6):28-32
    [64]冯浩,朱清江,混凝土外加剂工程应用手册(第二版),北京:中国建筑工业出版社,2005
    [65] T. Paulay, M. J. N. Priestley, Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley, New York, 1992
    [66] Englekirk, Robert E., Seismic design of reinforced and precast concrete buildings, John Wiley, New York, 2003
    [67]包世华,方鄂华,高层建筑结构设计(第二版),北京:清华大学出版社,1995
    [68]沈聚敏,周锡元,高小旺,留晶波,抗震工程学,北京:中国建筑工业出版社,2000
    [69]全成华,配筋砌块砌体剪力墙抗剪静动力性能研究,[博士学位论文],哈尔滨:哈尔滨工业大学,2002,6
    [70] Tony F. Zahrah and William J.Hall, Earthquake Energy Absorption in SDOF Structures, Journal of Structural Engineering, ASCE,1984,110(8):1757-1772
    [71] Chia-Ming Uang and Vitelmo V.Bertero, Evaluation of Seismic Energy in Structures, Earthquake Engineering and Structural Dynamics, 1990,19:77-90
    [72]陈惠发,A.F.萨里普,混凝土和土的本构方程,北京:中国建筑工业出版社,2004
    [73]宋玉普,多种混凝土材料的本构关系和破坏准则,北京:中国水利水电出版社,2002
    [74] ADINA. Theory and Modeling Guide,ADINA R&Dinc.,2005
    [75] ADINA User Interface Primer, ADINA R&Dinc.,2005
    [76] K.J. Bathe, Finite Element Procedures, Prentice Hall, Englewood Cliffs, NJ, 1996
    [77]江见鲸,陆新征,叶列平,混凝土结构有限元分析,北京:清华大学出版社,2006
    [78] K.J. Bathe,赵兴华等译,ADINA/ADINAT使用手册—自动动态增量非线性分析有限元程序,北京:机械工业出版社,1986
    [79]沈荣熹,王璋水,崔玉忠,纤维增强水泥与纤维增强混凝土,北京:化学工业出版社,2006
    [80] Loannis D. Lefas, Micheal D. Kotsovos, and Nicholas N. Ambraseys, Behavior of Reinforced Concrete Structural Walls: Strength, Deformation Characteristics and Failure Mechanism, ACI Structural Journal, 1990, 87(1):23-31
    [81] Loannis D. Lefas, Micheal D. Kotsovos, and Nicholas N. Ambraseys, Strength and Deformation Characteristics of Reinforced Concrete Walls under Load Reversals, ACI Structural Journal, 1990, 87(6):716-726
    [82] Makato Kawakami, Tadahiko Ito, Nonlinear Finite Element Analysis Prestressed Concrete Members using ADINA, Computers&Structures, 2003, 81:727-734
    [83] M. Elmorsi, M. Reza Kianoush, and W.K. Tso, Nonlinear Analysis of Cyclically Loaded Reinforced Concrete Structures, ACI Structural Journal, 1998,95(6):725- 739
    [84] Qiuhong Zhao and Abolhassan Astaneh-Asl, Cyclic Behavior of Traditional and Innovative Composite Shear Walls, Journal of Structure Engineering○C ASCE, 2004, 130(2):271-284
    [85]Thomas N.Salonikios, Andreas J.Kappos, Ioannis A.Tegos, and Georgios G.Penelis, Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls: Failure Modes, Strength and Deformation Analysis, and Design Implications, ACI Structural Journal, 2000,97(1):132-141
    [86] A.A.Tasnimi, Strength and Deformation of Mid-Rise Shear Walls under Load Reversal, Engineering Structures, 1999, 22:311-322
    [87]Tariq S.Cheema and Richard E.klingner, Failure Criteria for Deformed Reinforement Anchored in Grouted Concrete masonry, ACI Journal, 1985,82: 434-442
    [88] David C.Salmon, Amin Einea, Maher K.Tadros, anf Todd D.Culp, Full Scale Testing of Precast Concrete Sandwich Panels, ACI Structural Journal, 1997, 94(4):354-362
    [89] Mohamed A.H. Abdel-Halim and Samer A.Barakat, Cyclic Performance of Concrete-Backed Stone Masonry Walls, Journal of Structure Engineering○CASCE, 2003, 129(5):596-605
    [90]翟希梅,唐岱新,混凝土小型空心砌块空腔墙体的恢复力试验研究,哈尔滨建筑大学学报,2001,34(6):26-31
    [91]施楚贤,周海兵,配筋砌体剪力墙的抗震性能,建筑结构学报,1997,18(6):32-39
    [92]张毅斌等,混凝土小型空心砌块组合墙抗侧力试验研究,世界地震工程,2001,17(2):98-103
    [93]李振威,刘伟庆,设置芯柱的混凝土小型空心砌块墙体抗震性能研究,工程抗震,1999,2:8-11
    [94]庞同和等,混凝土小型空心砌块墙抗震性能的试验研究,东南大学学报,1997,27( Sup.):51-57
    [95] PCI Ad Hoc Committee on Precast Walls, Design for Lateral Force Resistance with Precast Concrete Shera Walls, PCI Journal, 1997,42(5):44-64
    [96]张景玮,李宏男,张曰果,低周反复荷载作用下空心砖夹心墙体试验,沈阳建筑工程学院学报(自然科学版),2002,18(1):5-8
    [97]刘莉,李宏男,张景玮,保温夹心节能墙体抗震性能分析,地震工程与工程振动,2002,22(1):79-84
    [98]顾祥林,高连玉,砌体结构与墙体材料基本理论和工程应用,上海:同济大学出版社,2005
    [99]2006第一届结构工程新进展国际论坛文集,新型结构材料与体系,北京:中国建筑工业出版社,2006
    [100]刘康,混凝土灌芯纤维增强石膏板抗震性能的试验研究及有限元分析, [硕士学位论文],天津:天津大学,2003
    [101]D.J.Hannant, Fibre Cements and Fibre Concretes, Wiley-Interscience Publication, John Wiley & sons, 1978
    [102]叶列平,混凝土结构,北京:清华大学出版社,2002
    [103]周旺华,现代混凝土叠合结构,北京:中国建筑工业出版社,1998
    [104]赵顺波,张新中,混凝土叠合结构设计原理与应用,北京:中国水利水电出版社,2001 [105孙训方,方效淑,吴来泰,材料力学,北京:高等教育出版社,1996
    [106]陈世鸣,压型钢板-混凝土组合楼板的承载能力研究,建筑结构学报,2002,23(3) :19~26
    [107]朱茂存,陈忠汉,一种新型的住宅楼板-大跨夹芯叠合板,建筑技术开发,2002,29(12):34~36
    [108]聂建国,崔玉萍,钢-混凝土组合梁在单调荷载下的变形及延性,建筑结构学报,1998,19(2): 30~36
    [109] KW Neale, FRPs for structural rehabilitation: a survey of recent progress, Progress in Structural Engineering and Materials, 2000, 2(2): 133-138
    [110] J.M.Lees, Fibre-reinforced polymers in reinforced and prestressed concrete applications: moving forward, Progress in Structural Engineering and Materials, 2001,3:122-131
    [111] R El-Hacha, RG Wight, MF Green, Prestressed fibre-reinforced polymer laminates for strengthening structures, Progress in Structural Engineering and Materials, 2001, 3:111-121
    [112]顾震隆,短纤维复合材料力学,北京:国防工业出版社,1987
    [113]郇筱林,纤维增强石膏板&钢筋混凝土叠合楼板的试验研究和有限元分析, [硕士学位论文],天津:天津大学,2003
    [114]冯德纯,新型装配式建材速成墙板,杭州,新型建筑材料,2002
    [115]刘光栋,罗汉泉,杆系结构稳定,北京:人民交通出版社,1988
    [116]赵雷,结构稳定分析方法的研究,建筑结构,2002
    [117]施楚贤,砖砌体偏心受压构件的承载力分析,砌体结构研究论文集,长沙:湖南大学出版社,1989
    [118]张兴武,偏压砖柱的强度相关公式,砌体结构研究论文集,长沙:湖南大学出版社,1989
    [119] Isaac Elishakoff,Uncertain buckling:its past,present and future,International Journal of Solids and Structures, 2000, 37:6869-6889
    [120]唐岱新,砌体结构设计规范理解与应用,北京:中国建筑工业出版社,2002
    [121]中华人民共和国国家标准,GB 50010-2002,混凝土结构设计规范,北京:中国建筑工业出版社,2002
    [122]中华人民共和国国家标准,GB 50003-2001,砌体结构设计规范,北京:中国建筑工业出版社,2002
    [123] Juan I.Velazquez-Dimas, Mohammad R.Ehsani and Hamid Saadatamanesh, Out-of-Plane Behavior of Brick Masonry Walls Strengthened with Fiber Composites, ACI Structural Journal, 2000, 97(3):377-387
    [124] Sameer A.hamoush, Mark W.McGinley, Paul Mlakar, David Scott and Kenneth Murray, Out-of-Plane Strengthening of Masonry Walls with Reinforced Composites, Journal of Composite for Construction, 2001, 5(3):139-145
    [125] Albert M.L, Elwi A.E ,Cheng R., Strengthening of Unreinforced Masonry Walls Using FRPs, Journal of Composite for Construction, 2001,5(2):76-84
    [126] H.R. Hamilton III, C.W. Dolan, Flexural Capacity of Glass FRP Strengthened Concrete Masonry Walls, Journal of Composite for Construction, 2001, 5(3):170-178
    [127] A.W. Page and N.G. Shrive, Concentrated Loads on Hollow Concrete Masonry, ACI Structure Journal, 1990, 87(4):436-444
    [128] Xiao Xiaosong and Lu Xilin, Study on Bearing Capacity of Concrete Masonry, Proceedings of the 11th IBBMaC, Shaihai, P.R.China, 1997
    [129]翟希梅,于芳,配筋砌块墙体平面外偏心受压承载能力分析,建筑砌块与砌块建筑,2006,2:4-8
    [130]许淑芳,李守恒,张兴虎等,平面外偏心受压空心钢筋混凝土剪力墙受力性能试验研究,西安建筑科技大学学报(自然科学板),2002,34(3):249-251
    [131]刘洪,孙恒军,程才渊等,配筋砌体墙片轴心受压及小偏心受压的试验研究,结构工程师,2003,3:71-75
    [132] A. Ghobarah and K. El Mandooh Galal, Out-of-Plane Strengthening of Unreinforced Masonry Walls with Openings, Journal of Composite for Construction, 2001, 8(4):298-305
    [133] Kiang Hwee Tan and M. K. H. Patoary, Strengthening of Masonry Walls against Out-of-Plane Loads using Fiber-Reinforced Polymer Reinforcement, Journal of Composite for Construction, 2004, 8(1):79-87
    [134]四校合编,混凝土结构(上、中)中国建筑工业出版社,2001