人Oct4蛋白诱导神经干细胞为iPS细胞的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多能性干细胞是一类具有无限自我更新能力及分化为功能细胞的多潜能特殊细胞。科学家们通过各种方法希望获得多能性干细胞,然而目前方法都存在一定问题。通过4种转录因子诱导将已分化成体细胞重编程为多能性干细胞(iPS细胞),很好的解决了目前存在于多能性干细胞获得中的问题。但是iPS细胞的诱导方法并不完善,需要解决其安全性和诱导效率方面的问题。本课题通过原核表达人类Oct4蛋白与细胞穿膜肽融合蛋白,利用人神经干细胞对单个蛋白诱导iPS细胞进行了探索,主要结果如下:
     (1)利用pET系统构建了带有人类Oct4转录因子、11-Arginine穿膜肽和6×His纯化标签的原核表达载体。将重组质粒转化入含大肠杆菌稀有密码子的Rostta2(DE3)工程菌以终浓度为1mM的IPTG,28℃12h诱导表达,获得了43kDa左右的hOct4-11R-His融合蛋白,蛋白处于细菌裂解上清中。经Ni+纯化柱纯化,经Western blotting检测表明融合蛋白表达正确。
     (2)利用EGFP-11R-His和罗丹明标记的hOct4-11R-His蛋白加入BJ和人神经干细胞观察穿膜肽进入细胞情况。证明蛋白加入量为10ug/ml时穿膜效率高且细胞状态好。hOct4-11R-His蛋白对神经干细胞具有高效的穿膜效率和细胞核趋向性。
     (3)利用hOct4-11R-His诱导人神经干细胞ReNcell NSC,以终浓度为10ug/ml加入细胞,12h后换液培养4天为一轮,4轮后细胞出现克隆样生长。经AP染色后部分细胞呈阳性,定量PCR检测Oct4和Nanog基因明显上调。
     蛋白直接诱导iPS细胞避免了病毒和其他以DNA为基础重编程方法所产生的潜在隐患,不涉及任何的遗传修饰,是目前最安全的诱导方法,我们的研究证明通过单个蛋白诱导多能性干细胞是可行的,为进一步研究奠定了基础。
Pluripotent stem cells have both the abilities to unlimitedly self-renew and to differentiate into various functional lineages. Scientists have been making efforts to find effective ways to obtain pluripotent stem cells. In the past five years, generation of pluripotent stem cells using 4 transcriptional factors provided a promising strategy to solve the problems that hamper the acquisition of pluripotent stem cells. However, this strategy needs to be further improved mainly due to low efficiency and safety. To overcome these weakness, we used a fusion protein between a single transcriptional factor, hOct4, and cell penetrating peptides, which is produced using prokaryotic expression systems, to induce human neural stem cells into pluripotent stem cells. The results are as follows:
     1. We successfully constructed a pET-based prokaryotic expression system consisting of hOct4 cDNA, 11 Arg cell penetrating peptide and His purification tag (hOct4-11R-His). Subsequently, the recombinant plasmid was transferred into Rosetta2(DE3)E.coli. The expression of 43 KDa fusion protein was induced by IPTG (1mM) at 28℃. Finally, hOct4-11R-His from the supernatant part of bacterial lysate was purified by Ni affinity chromatography and identified by Western Blotting.
     2. The penetrating capacity of Rhodamine-labelled hOct4-11R-His and EGFP-11R-His was investigated using BJ cells and human neural stem cells. The result showed that recombinant proteins effectively enter the tested cells without cytotoxicity at the concentration of 10μg/ml. hOct4-11R-His was demonstrated to have an effective cell penetrating capacity to human neural stem cells and a tropism to nucleus.
     3. The NSC were treated 12h with the recombinant protein hOct4-11R-His at 10ug/ml in the ReNcell NSC maintain medium supplemented with 1mM valproic acid (VPA),followed by changing to the same media without the recombinant protein, and culturing for 96h before the next cycle of the treatment. After six rounds of treatment, several colonies with iPS-like morphology were observed. Quantitative Real Time-PCR showed increased expression of endogenous Oct4 and Nanog in hOct4-11R-His-treated neural stem cells. Moreover, AP positive cells also appeared in this cell population.
     The strategy of protein-mediated induced pluripotent stem (iPS) cells production, which is not involved in any genetic modification, avoids the potential tumor-inducing risk resulting from usage of viral vector and is currently the safest way to acquire iPS cells. Our works showed that single transcriptional factors-mediated iPS production is feasible and provided a research platform for further investigation.
引文
[1] A. Nagy, E. Gocza, E.M. Diaz, V.R. Prideaux, E. Ivanyi, M. Markkula, and J. Rossant, Embryonic stem cells alone are able to support fetal development in the mouse. Development 110 (1990) 815-21.
    [2] M.J. Evans, and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature 292 (1981) 154-6.
    [3] K. Kim, P. Lerou, A. Yabuuchi, C. Lengerke, K. Ng, J. West, A. Kirby, M.J. Daly, and G.Q. Daley, Histocompatible embryonic stem cells by parthenogenesis. Science 315 (2007) 482-6.
    [4] Q. Mai, Y. Yu, T. Li, L. Wang, M.J. Chen, S.Z. Huang, C. Zhou, and Q. Zhou, Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17 (2007) 1008-19.
    [5] I. Wilmut, N. Beaujean, P.A. de Sousa, A. Dinnyes, T.J. King, L.A. Paterson, D.N. Wells, and L.E. Young, Somatic cell nuclear transfer. Nature 419 (2002) 583-6.
    [6] I. Wilmut, A.E. Schnieke, J. McWhir, A.J. Kind, and K.H. Campbell, Viable offspring derived from fetal and adult mammalian cells. Nature 385 (1997) 810-3.
    [7] Q.L. Ying, J. Nichols, E.P. Evans, and A.G. Smith, Changing potency by spontaneous fusion. Nature 416 (2002) 545-8.
    [8] C.A. Cowan, J. Atienza, D.A. Melton, and K. Eggan, Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309 (2005) 1369-73.
    [9] K. Guan, K. Nayernia, L.S. Maier, S. Wagner, R. Dressel, J.H. Lee, J. Nolte, F. Wolf, M. Li, W. Engel, and G. Hasenfuss, Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440 (2006) 1199-203.
    [10] S. Conrad, M. Renninger, J. Hennenlotter, T. Wiesner, L. Just, M. Bonin, W. Aicher, H.J. Buhring, U. Mattheus, A. Mack, H.J. Wagner, S. Minger, M. Matzkies, M. Reppel, J. Hescheler, K.D. Sievert, A. Stenzl, and T. Skutella, Generation of pluripotent stem cells from adult human testis. Nature 456 (2008) 344-9.
    [11] M.J. Shamblott, J. Axelman, S. Wang, E.M. Bugg, J.W. Littlefield, P.J. Donovan, P.D. Blumenthal, G.R. Huggins, and J.D. Gearhart, Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 95 (1998) 13726-31.
    [12] I.G. Brons, L.E. Smithers, M.W. Trotter, P. Rugg-Gunn, B. Sun, S.M. Chuva de Sousa Lopes, S.K. Howlett, A. Clarkson, L. Ahrlund-Richter, R.A. Pedersen, and L. Vallier, Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448 (2007) 191-5.
    [13] K. Hochedlinger, and R. Jaenisch, Nuclear reprogramming and pluripotency. Nature 441 (2006) 1061-7.
    [14] K. Takahashi, and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (2006) 663-76.
    [15] K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 (2007) 861-72.
    [16] J. Yu, M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, V. Ruotti, R. Stewart, Slukvin, II, and J.A. Thomson, Induced pluripotent stem cell lines derived from human somatic cells. Science 318 (2007) 1917-20.
    [17] M.A. Esteban, J. Xu, J. Yang, M. Peng, D. Qin, W. Li, Z. Jiang, J. Chen, K. Deng, M. Zhong, J. Cai, L. Lai, and D. Pei, Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284 (2009) 17634-40.
    [18] H. Liu, F. Zhu, J. Yong, P. Zhang, P. Hou, H. Li, W. Jiang, J. Cai, M. Liu, K. Cui, X. Qu, T. Xiang, D. Lu, X. Chi, G. Gao, W. Ji, M. Ding, and H. Deng, Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3 (2008) 587-90.
    [19] J. Liao, C. Cui, S. Chen, J. Ren, J. Chen, Y. Gao, H. Li, N. Jia, L. Cheng, H. Xiao, and L. Xiao, Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4 (2009) 11-5.
    [20] W. Li, W. Wei, S. Zhu, J. Zhu, Y. Shi, T. Lin, E. Hao, A. Hayek, H. Deng, and S. Ding, Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4 (2009) 16-9.
    [21] J. Hanna, S. Markoulaki, P. Schorderet, B.W. Carey, C. Beard, M. Wernig, M.P. Creyghton, E.J. Steine, J.P. Cassady, R. Foreman, C.J. Lengner, J.A. Dausman, and R. Jaenisch, Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133 (2008) 250-64.
    [22] T. Aasen, A. Raya, M.J. Barrero, E. Garreta, A. Consiglio, F. Gonzalez, R. Vassena, J. Bilic, V. Pekarik, G. Tiscornia, M. Edel, S. Boue, and J.C. Belmonte, Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26 (2008) 1276-84.
    [23] J.B. Kim, V. Sebastiano, G. Wu, M.J. Arauzo-Bravo, P. Sasse, L. Gentile, K. Ko, D. Ruau, M. Ehrich, D. van den Boom, J. Meyer, K. Hubner, C. Bernemann, C. Ortmeier, M. Zenke, B.K. Fleischmann, H. Zaehres, and H.R. Scholer, Oct4-induced pluripotency in adult neural stem cells. Cell 136 (2009) 411-9.
    [24] J.B. Kim, H. Zaehres, G. Wu, L. Gentile, K. Ko, V. Sebastiano, M.J. Arauzo-Bravo, D. Ruau, D.W. Han, M. Zenke, and H.R. Scholer, Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454 (2008) 646-50.
    [25] N. Meyer, and L.Z. Penn, Reflecting on 25 years with MYC. Nat Rev Cancer 8 (2008) 976-90.
    [26] K. Okita, T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature 448 (2007) 313-7.
    [27] P.M. Evans, and C. Liu, Roles of Krupel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim Biophys Sin (Shanghai) 40 (2008) 554-64.
    [28] D. Huangfu, K. Osafune, R. Maehr, W. Guo, A. Eijkelenboom, S. Chen, W. Muhlestein, and D.A. Melton, Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26 (2008) 1269-75.
    [29] C.A. Sommer, M. Stadtfeld, G.J. Murphy, K. Hochedlinger, D.N. Kotton, and G. Mostoslavsky, Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27 (2009) 543-9.
    [30] B.W. Carey, S. Markoulaki, J. Hanna, K. Saha, Q. Gao, M. Mitalipova, and R. Jaenisch, Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106 (2009) 157-62.
    [31] F. Soldner, D. Hockemeyer, C. Beard, Q. Gao, G.W. Bell, E.G. Cook, G. Hargus, A. Blak, O. Cooper, M. Mitalipova, O. Isacson, and R. Jaenisch, Parkinson's disease patient-derivedinduced pluripotent stem cells free of viral reprogramming factors. Cell 136 (2009) 964-77.
    [32] K. Woltjen, I.P. Michael, P. Mohseni, R. Desai, M. Mileikovsky, R. Hamalainen, R. Cowling, W. Wang, P. Liu, M. Gertsenstein, K. Kaji, H.K. Sung, and A. Nagy, piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458 (2009) 766-70.
    [33] M. Stadtfeld, M. Nagaya, J. Utikal, G. Weir, and K. Hochedlinger, Induced pluripotent stem cells generated without viral integration. Science 322 (2008) 945-9.
    [34] K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka, Generation of mouse induced pluripotent stem cells without viral vectors. Science 322 (2008) 949-53.
    [35] J. Yu, K. Hu, K. Smuga-Otto, S. Tian, R. Stewart, Slukvin, II, and J.A. Thomson, Human induced pluripotent stem cells free of vector and transgene sequences. Science 324 (2009) 797-801.
    [36] M. Bosnali, and F. Edenhofer, Generation of transducible versions of transcription factors Oct4 and Sox2. Biol Chem 389 (2008) 851-61.
    [37] H. Zhou, S. Wu, J.Y. Joo, S. Zhu, D.W. Han, T. Lin, S. Trauger, G. Bien, S. Yao, Y. Zhu, G. Siuzdak, H.R. Scholer, L. Duan, and S. Ding, Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4 (2009) 381-4.
    [38] D. Kim, C.H. Kim, J.I. Moon, Y.G. Chung, M.Y. Chang, B.S. Han, S. Ko, E. Yang, K.Y. Cha, R. Lanza, and K.S. Kim, Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4 (2009) 472-6.
    [39] K. Okamoto, H. Okazawa, A. Okuda, M. Sakai, M. Muramatsu, and H. Hamada, A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60 (1990) 461-72.
    [40] M.H. Rosner, M.A. Vigano, K. Ozato, P.M. Timmons, F. Poirier, P.W. Rigby, and L.M. Staudt, A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345 (1990) 686-92.
    [41] H.R. Scholer, R. Balling, A.K. Hatzopoulos, N. Suzuki, and P. Gruss, Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J 8 (1989) 2551-7.
    [42] H.R. Scholer, S. Ruppert, N. Suzuki, K. Chowdhury, and P. Gruss, New type of POU domain in germ line-specific protein Oct-4. Nature 344 (1990) 435-9.
    [43] R. Brandenberger, H. Wei, S. Zhang, S. Lei, J. Murage, G.J. Fisk, Y. Li, C. Xu, R. Fang, K. Guegler, M.S. Rao, R. Mandalam, J. Lebkowski, and L.W. Stanton, Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 22 (2004) 707-16.
    [44] J. Nichols, B. Zevnik, K. Anastassiadis, H. Niwa, D. Klewe-Nebenius, I. Chambers, H. Scholer, and A. Smith, Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95 (1998) 379-91.
    [45] H. Niwa, J. Miyazaki, and A.G. Smith, Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24 (2000) 372-6.
    [46] S. Gidekel, G. Pizov, Y. Bergman, and E. Pikarsky, Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4 (2003) 361-70.
    [47] V. Nordhoff, K. Hubner, A. Bauer, I. Orlova, A. Malapetsa, and H.R. Scholer, Comparativeanalysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm Genome 12 (2001) 309-17.
    [48] L.A. Boyer, T.I. Lee, M.F. Cole, S.E. Johnstone, S.S. Levine, J.P. Zucker, M.G. Guenther, R.M. Kumar, H.L. Murray, R.G. Jenner, D.K. Gifford, D.A. Melton, R. Jaenisch, and R.A. Young, Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122 (2005) 947-56.
    [49] J.L. Chew, Y.H. Loh, W. Zhang, X. Chen, W.L. Tam, L.S. Yeap, P. Li, Y.S. Ang, B. Lim, P. Robson, and H.H. Ng, Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25 (2005) 6031-46.
    [50] F. Wei, H.R. Scholer, and M.L. Atchison, Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem 282 (2007) 21551-60.
    [51] M. Green, and P.M. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55 (1988) 1179-88.
    [52] D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, and A. Prochiantz, Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271 (1996) 18188-93.
    [53] M. Matsushita, K. Tomizawa, A. Moriwaki, S.T. Li, H. Terada, and H. Matsui, A high-efficiency protein transduction system demonstrating the role of PKA in long-lasting long-term potentiation. J Neurosci 21 (2001) 6000-7.
    [54] T. Jiang, E.S. Olson, Q.T. Nguyen, M. Roy, P.A. Jennings, and R.Y. Tsien, Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A 101 (2004) 17867-72.
    [55] J.R. Maiolo, M. Ferrer, and E.A. Ottinger, Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim Biophys Acta 1712 (2005) 161-72.
    [56] F.H. Gage, Mammalian neural stem cells. Science 287 (2000) 1433-8.