1型糖尿病患者CD4+T细胞组蛋白修饰情况的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨1型糖尿病患者CD4+T细胞组蛋白修饰情况(组蛋白3赖氨酸4(H3K4)甲基化,组蛋白3赖氨酸9(H3K9)甲基化,组蛋白3(H3)乙酰化,组蛋白4(H4)乙酰化水平),并研究其组蛋白修饰酶mRNA表达水平。
     方法:收集1型糖尿病患者16例,男9例,女7例,平均年龄33.1(15.0-63.0)岁;收集健康对照16例,男9例,女7例,平均’年龄33.6(20.0-60.0)岁。采用密度梯度离心法(Ficoll)分离外周血单个核细胞,用免疫磁珠进一步分离外周血CD4+T细胞,H3K4/H3K9甲基化及H3/H4乙酰化检测试剂盒提取组蛋白和检测H3K4/H3K9甲基化及H3/H4乙酰化水平。实时荧光定量PCR法检测CD4+T细胞组蛋白甲基转移酶SET1, SUV39H1和SUV39H2,组蛋白乙酰转移酶P300和CREBBP,组蛋白去甲基化酶LSD1,组蛋白去乙酰化酶HDAC1, HDAC2, HDAC5, HDAC7和SIRT1基因mRNA表达水平。
     结果:与健康对照组比较,1型糖尿病患者组CD4+T细胞组蛋白H3K9甲基化水平降低(P<0.05),H3K4甲基化水平有降低趋势,但无统计学意义(P>0.05),组蛋白H3乙酰化水平降低(P<0.01),而H4乙酰化水平无明显改变。1型糖尿病患者组外周血CD4+T细胞组蛋白H3K4甲基化,H3K9甲基化及H3乙酰化水平与空腹血糖,餐后血糖,糖化血红蛋白,空腹C肽和餐后C肽均无明显相关性。实时定量PCR结果显示1型糖尿病患者组CD4+T细胞SET1, SUV39H1, SUV39H2, P300, CREBBP, LSD1, HDAC1, HDAC2, HDAC5, HDAC7和SIRT1基因表达分别是健康对照组的-4.8,-7.6,-7.2,-1.9,-4.4,-1.6,-2.5,-2.0,-1.1,-3.4,-1。1倍。
     结论:1型糖尿病患者外周血CD4+T细胞组蛋白修饰呈现异常,表现为H3K9甲基化水平和H3乙酰化水平降低;1型糖尿病患者外周血CD4+T细胞SET1,SUV39H1, SUV39H2, CREBBP, HDAC1, HDAC2和HDAC7基因表达显著下调。
Objective:To study histone modification patterns in CD4+T lymphocytes from type 1 diabetic patients, including histone 3 lysine 4 (H3K4) methylation, histone 3 lysine 9 (H3K9) methylation, histone 3 (H3) acetylation and histone 4 (H4) acetylation, and investigate associated histone modification enzymes'gene expression. Intended to provide novel epigenetic insights into the pathogenesis of type 1 diabetes.
     Methods:We enrolled 32 volunteers into two groups, the first with 16 patients having a diagnosis of type 1 diabetes (9 male,7 female, median 33.1 years, range 15.0-63.0 years)and the second with 16 healthy volunteers (9 male,7 female, median 33.6 years, range 20.0-60.0 years). Peripheral blood mononuclear cells (PBMC) were isolated by the Ficoll method. The CD4+T cells were positively selected by magnetic beads according to the manufacturer's protocol. Histone extraction and detection of global H3K4/H3K9 methylation and histone H3/H4 aetylation were performed following the protocol of Epigentek assay kit. Furthermore, the mRNA levels of selected histone methyltransferases (SET1, SUV39H1 and SUV39H2), histone acetyltransferases (P300 and CREBBP), histone demethylase (LSD1) and histone deacetylases (HDAC1, HDAC2, HDAC5, HDAC7, SIRT1) were determined by using one step real-time quantitative PCR (TaqMan).
     Results:Reduced global H3K9 methylation(P<0.05) and H3 acetylation(P<0.01) was observed in CD4+T cells of type 1 diabetes patients relative to healthy controls. There was a trend showing reduced H3K4 methylation, but with no statistical significance. However, H4 acetylation lever showed no difference between patients and controls. Type 1 diabetes CD4+T cells H3K4 methylation, H3K9 methylation and H3 acetylation were not related with fasting blood glucose (FBS), postprandial blood glucose (PBS), glycosylated hemoglobin (HbA1c), fasting C-peptide (FCP) and postprandial C-peptide (PCP). A part of selected histone modification enzymes mRNA expression were significantly downregulated in CD4+T cells of type 1 diabetes patients relative to healthy controls, the difference in SET1, SUV39H1, SUV39H2, P300, CREBBP, LSD1, HDAC1, HDAC2, HDAC5, HDAC7 and SIRT1 gene expression in patients compared with healthy controls was-4.8-fold,-7.6-fold,-7.2-fold,-1.9-fold,-4.4-fold,-1.6-fold,-2.5-fold,-2.0-fold,-1.1 fold,-3.4fold,-1.1-fold.
     Conclusion:Abnormal histone modification patterns including reduced H3K9 methylation and H3 acetylation were observed in CD4+T cells from type 1 diabetes; SET1, SUV39H1, SUV39H2, CREBBP, HDAC1, HDAC2 and HDAC7 gene expression were significantly downregulated in CD4+T cells from type 1 diabetes patients.
引文
[1]Goldberg AD, Allis CD, Bernstein E. Epigenetics:a landscape takes shape. Cell, 2007,128(4):635-638.
    [2]Sims RJ 3rd, Reinberg D. Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol,2008,9(10):815-820.
    [3]Razin SV. Chromatin and transcription regulation. Mol Biol(Mosk),2007,41(3): 387-394.
    [4]Vershinin AV. Epigenetics of specific chromosome regions. Genetika,2006,42(9): 1200-1214.
    [5]Perissi V, Rosenfeld MG. Controlling nuclear receptors:the circular logic of cofactor cycles. Nat Rev Mol Cell Biol,2005,6 (7):542-545.
    [6]Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO Rep,2003,4(10):944-947.
    [7]Dang W, Steffen KK, Perry R, et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature,2009,459(7248):802-807.
    [8]Johnsson AE,Wright AP. The role of specific HAT-HDAC interactions in transcriptional elongation. Cell Cycle,2010,9(3):467-471.
    [9]Jenuwein T. The epigenetic magic of histone lysine methylation. FEBS J,2006, 273(14):3121-3135.
    [10]Berger SL. The complex language of chromatin regulation during transcription. Nature,2007,447(7143):407-412.
    [11]Ansari KI, Mandal SS. Mixed lineage leukemia:roles in gene expression, hormone signaling and mRNA processing. FEBS J,2010,277(8):1790-1804.
    [12]Nicholson TB, Chen T. LSD1 demethylates histone and non-histone proteins. Epigenetics,2009,4(3):129-132.
    [13]Miao F, Smith DD, Zhang L, et al. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes,2008,57(12):3189-3198.
    [14]Hewagama A, Richardson B. The genetics and epigenetics of autoimmune diseases. Autoimmun,2009,33(1):3-11.
    [15]Schmittgen TD, Livak KJ.Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc,2008,3(6):1101-1108.
    [16]Sotolongo B, Asaoka T, Island E, et al. Gene expression profiling of MicroRNAs in small-bowel transplantation paraffin-embedded mucosal biopsy tissue. Transplant Proc,2010,42(1):62-65.
    [17]Marino E, Villanueva J, Walters S, et al. CD4(+)CD25(+) T-cells control auto-immunity in the absence of B-cells. Diabetes,2009,58(7):1479-1481.
    [18]Sia C.Replenishing Peripheral CD4(+) Regulatory T Cells:A Possible Immune-Intervention Strategy in Type 1 Diabetes? Rev Diabet Stud,2006,3(3): 102-107.
    [19]Brusko TM, Wasserfall CH, Clare-Salzler MJ, et al. Functional defects and the influence of age on the frequency of CD4+CD25+T-cells in type 1 diabetes. Diabetes,2005,54(5):1407-1414.
    [20]Shizuru JA, Taylor-Edwards C, Banks BA, et al.Immunotherapy of the nonobese diabetic mouse:treatment with an antibody to T-helper lymphocytes. Science, 1988,240(4852):659-662.
    [21]Charlton B, Mandel TE. Recurrence of insulitis in the NOD mouse after early prolonged anti-CD4 monoclonal antibody treatment. Autoimmunity,1989,4(1-2): 1-7.
    [22]Hu N, Qiu X, Luo Y, et al. Abnormal Histone Modification Patterns in Lupus CD4+T Cells. J Rheumatol,2008,35(5):804-810.
    [23]Rice JC, Briggs SD, Ueberheide B, et al.Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell, 2003,12(6):1591-1598.
    [24]Peters AH, Kubicek S, Mechtler K, et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell,2003,12(6): 1577-1589.
    [25]Wei G, Wei L, Zhu J, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+T cells. Immunity,2009,30(1):155-167.
    [26]Tikoo K, Meena RL, Kabra DG, et al.Change in post-translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy. Br J Pharmacol, 2008,153(6):1225-1231.
    [27]Orban T, Kis J, Szereday L, et al. Reduced CD4+T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun,2007,28(4):177-187.
    [28]Sulaiman M, Matta MJ, Sunderesan NR, et al. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol,2010,298(3): H833-843.
    [29]Zhang J, Lee SM, Shannon S, et al, The type Ⅲ histone deacetylase Sirtl is essential for maintenance of T cell tolerance in mice. J Clin Invest,2009, 119(10):3048-3058.
    [30]Bronner C, Chataigneau T, Schini-Kerth VB, et al. The "Epigenetic Code Replication Machinery", ECREM:a promising drugable target of the epigenetic cell memory. Curr Med Chem,2007,14(25):2629-2641.
    [31]Redondo MJ Jeffrey J,Fain PR,et al.Concordance for islet autoimmunity among monozygotic twins. N Engl J Med,2008,359(26):2849-2850.
    [32]Fraga MF, Ballestar E, Paz MF, et al.Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA,2005,102(30):10604-10609.
    [33]Richardson B.Effect of an inhibitor of DNA methylation on T cells. Ⅱ. 5-Azacytidine induces self-reactivity in antigen-specific T4+cells. Hum Immunol,1986,17(4):456-470.
    [34]Yung RL,Quddus J,Richardson BC,et al.Mechanism of drug-induced lupus. Ⅰ. Cloned Th2 cells modified with DNA methylation inhibitors in vitro cause autoimmunity in vivo. J Immunol,1995,154(6):3025-3035.
    [35]Natoli G,Saccani S,Bosisio D,et al. Interactions of NF-kappaB with chromatin: the art of being at the right place at the right time. Nat Immunol,2005,6(5): 439-445.
    [1]Goldberg AD, Allis CD, Bernstein E. Epigenetics:a landscape takes shape. Cell, 2007,128(4):635-638.
    [2]Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature,2004,429(6990):457-463.
    [3]Sawalha AH. Epigenetics and T-cell immunity. Autoimmunity,2008,41(4):245-252.
    [4]Gluckman PD, Hanson MA, Buklijas T, et al. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol,2009,5(7): 401-408.
    [5]Sims RJ 3rd, Reinberg D. Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol,2008,9(10):815-820.
    [6]PerissiV, Rosenfeld MG. Controlling nuclear receptors:the circular logic of cofactor cycles. Nat Rev Mol Cell Biol,2005,6 (7):542-545.
    [7]Legube Q Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO Rep,2003,4(10):944-947
    [8]Dang W, Steffen KK, Perry R, et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature,2009,459(7248):802-807.
    [9]Johnsson AE, Wright AP. The role of specific HAT-HDAC interactions in transcriptional elongation. Cell Cycle,2010,9(3):467-471.
    [10]Jenuwein T. The epigenetic magic of histone lysine methylation. FEBS J,2006, 273(14):3121-3135.
    [11]Berger SL. The complex language of chromatin regulation during transcription. Nature,2007,447(7143):407-412.
    [12]Ansari KI, Mandal SS. Mixed lineage leukemia:roles in gene expression, hormone signaling and mRNA processing. FEBS J,2010,277(8):1790-1804.
    [13]Nicholson TB, Chen T. LSD1 demethylates histone and non-histone proteins. Epigenetics,2009,4(3):129-132.
    [14]Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med,2008,359 (1):61-73.
    [15]McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev,2005,85(2):571-633
    [16]Bruce KD, Hanson MA. The developmental origins, mechanisms, and implications of metabolic syndrome. J Nutr,2010,140(3):648-652.
    [17]Reusens B, Remacle C. Programming of the endocrine pancreas by the early nutritional environment. Int J Biochem Cell Biol,2006,38(5-6):913-922.
    [18]Jimenez-Chillaron JC, Isganaitis E, Charalambous M, et al.Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes,2009,58(2):460-468.
    [29]Veena SR, Geetha S, Leary SD, et al. Relationships of maternal and paternal birthweights to features of the metabolic syndrome in adult offspring:an inter-generational study in South India. Diabetologia,2007,50(1):43-54.
    [20]Anway MD, Cupp AS, Uzumcu M, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science,2005,308(5727):1391-1392.
    [21]Chakrabarti SK, Francis J, Ziesmann SM, et al. Covalent Histone Modifications Underlie the Developmental Regulation of Insulin Gene Transcription in Pancreatic β Cells. J Biol Chem,2003,278(26):23617-23623
    [22]Francis J, Chakrabarti SK, Garmey JC, et al. Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. J Biol Chem,2005,280(43):36244-36253
    [23]Deering TG, Ogihara T, Trace AP, et al. Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes,2009, 58(1):185-193.
    [24]Susick L, Senanayake T, Veluthakal R, et al. A novel histone deacetylase inhibitor prevents IL-lbeta induced metabolic dysfunction in pancreatic beta-cells. J Cell Mol Med,2009,13(8B):1877-1885.
    [25]Zhang J. The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem,2007,282(47):34356-34364.
    [26]Liang F, Kume S, Koya D. SIRT1 and insulin resistance. Nat Rev Endocrinol, 2009,5(7):367-373.
    [27]Rausa FM 3rd, Hughes DE, Costa RH. Stability of the hepatocyte nuclear factor 6 transcription factor requires acetylation by the CREB-binding protein coactivator. J Biol Chem,2004,279(41):43070-43076.
    [28]Hewagama A, Richardson B. The genetics and epigenetics of autoimmune diseases. Autoimmun,2009,33(1):3-11.
    [29]Miao F, Smith DD, Zhang L, et al. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes,2008,57(12):3189-3198.
    [30]Chen SS, Jenkins AJ, Majewski H. Elevated plasma prostaglandins and acetylated histone in monocytes in Type 1 diabetes patients. Diabet Med,2009, 26(2):182-186.
    [31]Litherland SA. Immunopathogenic interaction of environmental triggers and genetic susceptibility in diabetes:is epigenetics the missing link? Diabetes,2008, 57(12):3184-3186.
    [1]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297.
    [2]Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature,2008,455(7209):64-71.
    [3]Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA,2004, 10(2):185-191.
    [4]Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol,2009,10(2):126-139.
    [5]Pratt AJ, MacRae IJ. The RNA-induced silencing complex:a versatile gene-silencing machine. J Biol Chem,2009,284(27):17897-17901.
    [6]Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes.Cell,2006, 126(6):1203-1217.
    [7]Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and
    computational identification of human microRNA genes. Cell,2005,120(1): 21-24.
    [8]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005,120(1):15-20.
    [9]Zhang B, Farwell MA. microRNAs:a new emerging class of players for disease diagnostics and gene therapy. J Cell Mol Med,2008,12(1):3-21.
    [10]Tang X, Muniappan L, Tang G, et al. Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription. RNA, 2009,15(2):287-293.
    [11]Roggli E, Britan A, Gattesco S, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes, 2010,59(4):978-986.
    [12]Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem, 2008,389(3):305-312.
    [13]Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature,2004,432 (7014):226-230.
    [14]Xia HQ, Pan Y, Peng J, et al. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells. Mol Biol Rep,2010 Feb 3, Epub ahead of print.
    [15]Norlin S, Ahlgren U, Edlund H. Nuclear factor-{kappa}B activity in{beta}-cells is required for glucose-stimulated insulin secretion. Diabetes,2005,54 (1): 125-132.
    [16]El Ouaamari A, Baroukh N, Martens GA, et al. miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells. Diabetes,2008,57(10):2708-2717.
    [17]Hashimoto N, Kido Y, Uchida T, et al. Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet,2006,38(5): 589-593.
    [18]He A, Zhu L, Gupta N, et al. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol,2007,21(11):2785-2794.
    [19]Herrera BM, Lockstone HE, Taylor JM, et al. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Med Genomics,2009,2(1):54.
    [20]Herrera BM, Lockstone HE, Taylor JM, et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia,2010 Mar 3, Epub ahead of print.
    [21]Lynn FC, Skewes-Cox P, Kosaka Y, et al. Micro RNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes,2007,56(12):2938-2945.
    [22]Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific micro-RNAs during human pancreatic development. Gene Expr Patterns,2009,9(2): 109-113.
    [23]Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science,2005,309 (5732):310-311.
    [24]Bravo-Egana V, Rosero S, Molano RD, et al. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun,2008,366 (4):922-926.
    [25]Plaisance V, Abderrahmani A, Perret-Menoud V, et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem,2006,281 (37):26932-26942.
    [26]Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem, 2007,282(27):19575-19588.