2型糖尿病患者血浆中脂肪酸代谢谱的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
代谢组学是继基因组学、转录组学和蛋白质组学之后在学术界兴起的又一门新兴系统生物学分支。其在疾病诊断、药物的药效和毒性评价、药物作用机理研究及中药现代化等方面展现了广阔的前景。当前代谢组学研究中存在两个难点同时也是热点问题:一是代谢产物的定性、定量分析,二是代谢产物复杂数据分析体系中有用信息的提取和挖掘。本论文针对这两个问题,利用气相色谱-质谱(GC-MS)联用仪,结合化学计量学方法中的多元分辨和模式识别方法,对2型糖尿病(T2DM)及相关疾病患者血浆中的脂肪酸代谢谱进行了全面、细致的研究。
     本实验采用一种简单、稳定的氢氧化钠-甲醇/硫酸-甲醇甲酯化方法对人体血浆中的游离脂肪酸(FFA)进行衍生和提取,并运用GC-MS联用技术对衍生产物进行分析检测。借助于直观推导式演进特征投影法(HELP)和选择性离子分析法(SIA)对重叠色谱峰进行分辨和解析,对所有FFA成分进行了准确的定性、定量分析,建立了稳定的2型糖尿患者和健康人血浆中的游离脂肪酸代谢谱。
     本论文运用一种新的变量筛选方法——竞争性自适应的重加权采样法(CARS),结合偏最小二乘-线性判别分析法(PLS-LDA)对2型糖尿病患者和健康人进行判别分析,建立判别模型,取得了较好的预测效果,并筛选出三个潜在的生物标记物:油酸(OLA),α-亚麻酸(ALA)和二十碳五烯酸(EPA)。这对2型糖尿病的临床诊断和评价治疗效果具有非常重要的指导意义。
     本论文还分别对成人腹型肥胖患者、儿童腹型肥胖患者、成人腹型肥胖合并2型糖尿病患者及相关并发症患者血浆中的游离脂肪酸代谢谱进行了研究,发现不同疾病状态的患者之间存在脂肪酸代谢模式的差别。进一步考察脂肪酸代谢模式与临床指标之间的相关关系,结果显示:人体血浆中的脂肪酸代谢谱与临床参数之间存在良好的线性关系,并筛选出一些与疾病相关的重要脂肪酸成分和临床参数。为肥胖、2型糖尿病及相关并发症的发病机理研究和指导不同病人的临床治疗提供有用的信息。
     本研究充分展现了代谢组学研究技术结合化学计量学方法在2型糖尿病及相关疾病研究方面的巨大潜力和优势。这将为各种复杂的代谢性疾病研究提供新的研究策略和技术平台。
Metabolomics is a rising branch of the systems biology methodology after genomics and proteomics. It has been widely applied into disease diagnosis, drug effect and toxicity evaluation, drug mechanism, modernization of Traditional Chinese Medicine (TCM) and other fields. There are two difficult and hot problems in metabolomics research, one is the qualitative and quantitative analysis of metabonome and the other is extracting and mining useful information from complex data system of all metabonome. Aiming at the two problems, a comprehensive and painstaking study on the plasma fatty acid metabolic profiling of type 2 diabetes mellitus (T2DM) and correlated disease patients was done with the help of gas chromatography-mass spectrometry (GC-MS) and chemometric methods in this thesis.
     NaOH-CH3OH/H2SO4-CH3OH esterification method, a simple and stable method, was used to derviate the free fatty acids (FFA) from plasma in this experiment. And then, the products of derivative was detected and analysized by GC-MS. Two chemometric resolution methods, heuristic evolving latent projections (HELP) and selective ion analysis (SIA), have been used to effectively handle overlapping peaks of GC-MS data. All fatty acids were successfully identified and quantified, and stable plasma FFA metabolic profiling of both health controls and T2DM patients were established.
     In this thesis, a newly proposed competitive adaptive reweighted sampling (CARS) method, which can be used to screen variables, coupled with partial least squares linear discriminant analysis (PLS-LDA) was applied for the discriminant analysis between T2DM patients from healthy controls. A discriminant model was established, which got a good result for prediction, and three fatty acids, which were oleic acid (OLA), a-linolenic acid (ALA), and eicosapentaenoic acid (EPA), were finally selected as potential biomarkers. This study would provide important guiding significance for clinical diagnosis and evaluation of the therapeutic efficacy for type 2 diabetic mellitus.
     In this study, it was found that there was difference on fatty acid metabolic patterns among different stages of disease, based on the fatty acid metabolic profiling about abdominal obesity patients, abdominal obesity children, and abdominal obesity with T2DM complicated with hyperlipidemia patients. The further research demonstrated that there existed linear relationship between fatty acid metabolic pattern and clinical parameters. Several important fatty acids and clinical parameters relating to disease have been selected, which could provide important information for the study of pathogenesis and clinical intervention on T2DM and correlated disease.
     This study has fully demonstrated the huge potential and vantage of the combination of metabolomics and chemometrics on the research of T2DM and correlated disease. It will provide a novel study strategy and technology platform for the research on complex metabolic disease.
引文
[1]Fiehn O. Metabolomics-the link between genotypes and phenotypes. Plant Molecular Biology,2002,48:155~171.
    [2]Garlow S J. And Now, Transcriptomics. Neuron,2002,34(3):327~328.
    [3]Gilchrist A, Au C E, Hiding J, et al. Quantitative proteomics analysis of the secretory pathway. Cell,2006,127(6):1265~1281.
    [4]Kern A, Tilley E, Hunter I S, et al. Engineering primary metabolic pathways of industrial micro-organisms. Journal of Biotechnology,2007,129(1):6~29.
    [5]Heijne W H M, Stierum R H, Slijper M, et al. Toxicogenomics of bromobenzene hepatotoxicity:a combined transcriptomics and proteomics approach. Biochemical Pharmacology,2003,65(5):857-875.
    [6]Brindle J T, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using H-1-NMR-based metabonomics. Nature Medicine,2002,8:1439~1444.
    [7]Gao H C, Dong B J, Liu X, et al. Metabonomic profiling of renal cell carcinoma:high-resolution proton nuclear magnetic resonance spectroscopy of human serum with multivariate data analysis. Analytica Chimica Acta,2008, 624:269~277.
    [8]Xue R Y, Lin Z X, Deng C H, et al. A serum metabolomic investigation on hepatocellular carcinoma patients by chemical derivatization followed by gas chromatogrphy-mass spectrometry. Rapid Communications in Mass Spectrometry,2008,22:3061~3068.
    [9]Yang J, Xu G W, Zheng Y F, et al. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. Journal of Chromatography B,2004,813:59~65.
    [10]Makinen V P, Soininen P, Forsblom C, et al. Diagnosing diabetic nephropathy by 1H NMR metabonomics of serum. Magnetic Resonance Materials Physics, Biology and Medicine.2006,19:281~296.
    [11]Yang J, Xu G W, Hong Q F, et al. Discriminatiion of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. Journal of Chromatography B,2004,813:53~58.
    [12]Huhn S D, Szabo C M, Gass J H, et al. Metabolic profiling of normal and hypertensive rat kidney tissues by hrMAS-NMR spectroscopy. Analytical and Bioanalytical Chemistry,2004,378:1511~1519.
    [13]Brindle J T, Nicholson J K, Schofield P M, et al. Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst,2003,128:32~36.
    [14]蔡潭溪,刘平生,杨福全,等.脂质组学研究进展.生物化学与生物物理进展,2009.
    [15]Han X L, Gross R W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry:a bridge to lipidomics. Journal of Lipid Research,2003,44(6):1071~1079.
    [16]Watson A D. Lipidomics:a global approach to lipid analysis in biological systems. Journal of Lipid Research,2006,47:2101~2111.
    [17]Van M G Cellular lipidomics. The European Molecular Biology Organizaion Journal,2005,24:3159~3165.
    [18]Fahy E, Subramaniam S, Brown H A, et al. A comprehensive classification system for lipids. Journal of Lipid Research,2005,46:839~861.
    [19]Hall W L. Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function. Nutrition Research Reviews,2009,22:18~38.
    [20]Yanagisawa K, Odaka A, Suzuki N, et al. GM1 gangloside-bound amyloid beta-protein (AB)-a possible form of preamyloid in alzheimers-disease. Nature Medicine,1995,1(10):1062~1066.
    [21]Bergman R N, Ader M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends in Endocrinology and Metabolism,2000,11:351~356.
    [22]Way J M, Gorgun R, Tong Q, et al. Adipose tissue resistin expression is severely suppressed in obesity and stimulated by PPAR (gamma) agonists. Journal of Biological Chemistry,2001,10(5):1074~1076.
    [23]Koutsari C, Jensen M D. Free fatty acid metabolism in human obesity. Journal of Lipid Research,2006,47:1643~1650.
    [24]Alicia L, Eduard O, Ozlem G A, et al. Glucocerebrosidase mutations in subjects with Parkinsonism. Molecular Genetics and Metabolism,2004,81(1): 70~73.
    [25]Bergman R N, Ader M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends in Endocrinology and Metabolism,2000,11(9):351~356.
    [26]Wyne K L. Free fatty acids and type 2 diabetes mellitus. The American Journal of Medicine,2003,115(8):29~36.
    [27]梁逸曾,俞汝勤主编.化学计量学[M].北京:化学工业出版社,2003.
    [28]Nicholson J K, Lindon J C, Holmes E.'Metabolomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica,1999,29:1181~1189.
    [29]Brazma A, Krestyaninova M, Sarkans U. Standards for systems biology. Nature Review,2006,7:593~605.
    [30]Kikuchi K, Kakeya H. A bridge between chemistry and biology. Nature Chemical Biology,2006,2(8):392~394.
    [31]Nicholson J K, Connelly J, Lindon J C, et al. Metabonomics:a platform for studying drug toxicity and gene function. Nature Review Drug Discovery, 2002,1(2):153~161.
    [32]Taylor J, King R D, AltmannT, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics, 2002,18:241~248.
    [33]许国旺,杨军.代谢组学及其研究进展.色谱,2003,21(4):316~320.
    [34]Lindon J C, Holmes E, Nicholson J K. So what's the deal with metabolomics? Analytical Chemistry,75(17):384A~391A.
    [35]Nielsen J, Olivers S. The next wave in metabolome analysis. Trends Biotechnology,2005,23(11):544~546.
    [36]Dunn W B, Ellis D I. Metabolomies:current analytical platforms and methodologies. Trends in Analytical Chemistry,2005,24(4):285~294.
    [37]Brey W W, Edison A S, Nast R E, et al Design, construction, and validation of a 1-mm triple-resonance high-temperature-superconducting probe for NMR. Journal of Magnetic Resonance,2006,179:290~293.
    [38]Bart J, Kolkman A J, Oosthoek-de V A J, et al. A microfluidic high-resolution NMR flow probe. Journal of the American Chemical Society,2009,131: 5014~5018.
    [39]Zheng X T, Shen J, Liu Q, et al. Plasma fatty acids metabolic profiling analysis of coronary heart disease based on GC-MS and pattern recognition. Journal of Pharmaceutical and Biomedical Analysis 2009,49:481~486.
    [40]Han L D, Liang Q L, Wang M Y, et al. A new metabonomics method for simultaneous determination of EFAs and NEFAs in plasma using GC-MS and its application. Chinese Chemical Letters,2009,20:1103~1106.
    [41]Law W S, Huang P Y, Ong E S, et al. Metabonomics investigation of human urine after ingestion of green tea with gas chromatography-mass spectrometry, liquid chromatogrpahy-mass spectrometry and 1H-NMR spectrometry. Rapid Communications in Mass Spectrometry,2008,22:2436~2446.
    [42]Ogiso H, Suzuki T, Taguchi R. Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Analytical Biochemistry,2008,375:124~131.
    [43]Hu C X, Van-Der H R, Wang M, et al. Analytical strategies in lipidomics and applications in disease biomarker discovery. Journal of Chromatography B, 2009,877(26):2836~2846.
    [44]Harrigan G G, LaPlante R H, Cosma G N, et al. Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies:contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicology Letters,2004,146:197~205.
    [45]林艳萍,司端运,刘昌孝.液相色谱和质谱联用技术结合化学计量学用于与代谢组学的研究进展.分析化学,2007,35(10):1535~1540.
    [46]Chen X D, Halberg R B, Ehrhardt W M, et al. Clusterin as a biomarker in murine and human interstinal neoplasia. PNAS,2003,100(16):9530~9535.
    [47]Crockford D J, Holmes E, Lindon J C, et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data Sets: application in metabonomic toxicology studies. Analytical Chemistry,2006, 78(2):363~371.
    [48]Doolittle D J, Lee C K, Ivett J L, et al. Genetic toxicology studies comparing the activity of sidestream smoke from cigarettes which burn or only heat tobacco. Genetic Toxicology,1990,240(2):59~72.
    [49]颜贤忠,赵剑宇,彭双清,等.代谢组学在后基因组时代的作用.波谱学杂志,2004,21(2):263~268.
    [50]陈慧梅,刘志红.代谢组学及其研究方法和应用.肾脏病与透析肾移植杂志,2005,14(1):59~63.
    [51]Raamsdonk L M, Teusink B, Broadhurst D, et al. A functional genomics strategy that uses metabolome data to reveal the phenptype of silent mutations. Nature Biotechnology,2001,19(3):45~50.
    [52]Vizan P, Mazurek S, Cascante M. Robust metabolic adaptation underlying tumor progression. Metabolomics,2008,4:1~12.
    [53]Griffin J. Understanding mouse models of disease through metabolomics. Current Opinion in Chemical Biology,2006,10(4):309~315.
    [54]Griffin J L. Metabonomics:NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Current Opinion in Chemical Biology,2003,7(5): 648~654.
    [55]Brindle J T, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Medicine,2002,8:1439~1445.
    [56]Keun H C. Metabonomic modeling of drug toxicity. Pharmacology & Therapeutics,2006,109(1-2):92~106.
    [57]Griffin J L. The potential of metabonomics in drug safety and toxicology. Drug Discovery Today:Technologies,2004,1(3):285~293.
    [58]Ulrich-Merzenich G, Zeitler H, Jobst D, et al. Application of the "-Omic-" technologies in phytomedicine. Phytomedicine,2007,14(1):70~82.
    [59]Schauer N, Fernie A R. Plant metabolomics:towards biological function and mechanism. Trends in Plant Science,2006,11(10):508~516.
    [60]贾伟,蒋健,刘平,等.代谢组学在中医药复杂理论体系研究中的应用.中国中药杂志,2006,31(8):621~624.
    [61]沈一丁,费贵强,张宇.代谢组学促进中医药现代化.精细化工,2005,22(6):444~446.
    [62]谢培山.中药现代化的取向与质量控制模式.中药新药与临床药理,2002,13(4):201~203.
    [63]Van-Der-Greef J, Smilde A K. Symbiosis of chemometrics and metabolomics: past, present, and future. Journal of Chemometrics,2005,19:376~386.
    [64]Yamamoto H, Hada K, Yamaji H, et al Application of regularized alternating least squares and independent component analysis to HPLC-DAD data of Haematococcus pluvialis metabolites. Biochemical Engineering Journal,2006, 32(3):149~156.
    [65]Grande B V, Manne R C. Use of convexity for finding pure variables in two-way data from mixtures. Chemometrics and Intelligent Laboatory Systems,2000,50(1):19~33.
    [66]Jiang J H, Liang Y Z, Ozaki Y. On simplex-based method for self-modeling curve resolution of two-way data.. Chemometrics and Intelligent Laboatory Systems,2003,65(1):51~65.
    [67]Liang Y Z, Kvalheim O M. Resolution of two-way data:theoretical background and practical problem-solving Part 1:Theoretical background and methodology. Fresenius' Journal of Analytical Chemistry,2001,370(6): 694~704.
    [68]龚范,梁逸曾,宋又群,等.平胃散挥发性成分的研究(Ⅱ)--厚朴挥发油的GC/MS分析.高等学校化学学报,2001,22(9):1481~1485.
    [69]Gong F, Liang Y Z, Cui H, et al. Determination of volatile components in peptic powder by gas chromatography-mass spectrometry and chemometric resolution. Journal of Chromatography A,2001,909(2):237~247.
    [70]Holmes E, Antti H. Chemometric contributions to the evolution of metabononics:mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst,2002,127(12):1549~1557.
    [71]Taylor J, Ross D K, Thomas A, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics, 2002,18(2):241~248.
    [72]Gavaghan C L, Wilson I D, Nicholson J K. Physiological variation in metabolic phenotyping and functional genomic studies:use of orthogonal signal correction and PLS-DA. FEBS Letters,2002,530(1-3):191~196.
    [73]Kell D B, King R D. On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes:the need for machine learning. TBTECH,2003,18:93~98.
    [74]Lindon J C, Nicholson J K, Holmes E, et al. Contemporary issues in toxicology-The role of metabonomics in toxicology and its evaluation by the COMET project. Toxicology Application of Pharmacology,2003,187(3): 137~146.
    [75]Stumvoll M, Goldstein B J, Haeften T W. Type 2 diabetes:principles of pathogenesis and therapy. Lancet,2005,365(12):1333~1346.
    [76]Weyer C, Bogardus C, Mott D M, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Journal of Clinical Investigation,1999,104:787~794.
    [77]王玉珍,赵德明.糖尿病合并大血管病变的危险性研究.中国糖尿病杂志,2006,14(3):197~200.
    [78]许樟荣,王玉珍,王先丛,等.糖尿病慢性并发症与糖尿病治疗关系的调.中华医学杂志,1997,77(5):119~122.
    [79]王少华,段文若,杜冠华主编.内分泌代谢疾病合理用药[M].北京:人民卫生出版社,2004:297~297.
    [80]傅祖植.肥胖症的诊断和治疗进展.新医学,2003,34(9):580~583.
    [81]Steppan C M, Bailey S T, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature,2001,409(1):307~310.
    [82]Krotkiewski M P, Bjorntorp L, Smith U. Impact of obesity on metabolism in men and women. Journal of Clinical Investigate,1983,72:1150~1162.
    [83]Martin M L, Jensen M D. Effects of body fat distribution on regional lipolysis in obesity. Journal of Clinical Investigate,1991,88:609~613.
    [84]Simopoulos A P. Essential fatty acids in health and chronic disease. American Society for Clinical Nutrition,1999,70(suppl):560s~569s.
    [85]Simopoulos A P. Omega-3 fatty acids in health and disease and in growth and development. American Society for Clinical Nutrition,1991,54:438~463.
    [86]张越华,曾和平.脂肪酸在生命过程中的作用研究进展.中国油脂,2006,31(12):11~16.
    [87]Wyne K L. Free fatty acids and type 2 diabetes mellitus. The American Journal of Medicine,2003,115(8A):29s~36s.
    [88]Boden G, Lebed B, Schatz M, et al. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes,2001,50:1612~1617.
    [89]Yehuda S, Rabinovitz S, Mostofsky D I. Essential fatty acids are mediators of brain biochemistry and cognitive functions. Journal of Neuroscience Research, 1999,56(8):565~570.
    [90]耿珊珊.短链脂肪酸对结肠肿瘤细胞增殖分化的影响.肠外与肠内营养,2005,12(5):295~298.
    [91]Chen Z Y, Rex S, Tseng C C. Kruppel-like factor 4 is transactivated by butyrate in colon cancer cells. Nutrition,2004,134(4):792~798.
    [92]Levy P, Robin H, Bertrand F, et al. Butyrate 2 treated colonic Caco-2 cells exhibit defective integrin-mediated signaling together with increased apoptosis and differentiation. Cell Physiology,2003,197(3):336~347.
    [93]毛绚霞.不同膳食脂肪酸与2型糖尿病关系的人群研究.国外医学卫生学分册,2005,32(5):92~94.
    [94]刘毅,高聆,完强,等.饱和脂肪酸对AMPKa表达和活性的影响.毒理学杂志,2006,20(1):13~15.
    [95]王景梓,徐贵发.单不饱和脂肪酸与冠心病的关系.食品与药品,2005,7(10):21~22.
    [96]Caterina R D, Madonna R, Bertolotto A B, et al. n-3 fatty acids in the treatment of diabetic patients. Diabetes Care,2007,30(4):1012~1026.
    [97]Schmidt E B. n-3 fatty acids and the risk of coronary heart disease. Danish Medical Bulletin,1997,44:1~22.
    [98]Yaney G C, Corkey B E. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia,2003,46(10):1297~1312.
    [99]Rise P, Ghezzi S, Priori I, et al. Differential modulation by simvastatin of the metabolic pathways in the n-9, n-6 and n-3 fatty acid series, in human monocytic and hepatocytic cell lines. Biochemical Pharmcology,2005,69: 1095~1100.
    [100]Simopoulos A P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine Pharmacother,2002,56:365~379.
    [101]张清兰,李威,刘冰,等.脂肪酸与细胞凋亡的研究进展.东北农业大学学报,2006,37(4):539~535.
    [102]张亚刚,樊莉,马莉,等.用紫外可见分光光度法测定共轭亚油酸的含量.中国科学院研究生院学报,2002,19(4):436~442.
    [103]易斌,李小洁.2型糖尿病患者血清游离脂肪酸浓度的检测.中南大学学报(医学版),2004,29(2):212~214.
    [104]黄作君,徐刚,黎月玲,等.高效液相色谱法测定大鼠血浆中游离脂肪酸浓度[J].广东药学院学报.2004,20(6):656~658.
    [105]Ingalls S T, Xu Y, Hoppel C L. Determination of plasma non-esterified fatty acids and triglyceride fatty acids by gas chromatography of their methyl esters after isolation by column chromatography on silica gel. Journal of chromatography B,1995,666(1):1~12.
    [106]Yi, L, He, J, Liang, Y Z, et al. Simultaneously quantitative measurement of comprehensive profiles of esterified and non-esterified fatty acid in plasma of type 2 diabetic patients. Chemistry and Physics of Lipids,2007,150: 204~216.
    [107]Seppanen-Laakso T, Laakso I, Hiltunen R. Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Analytical Chimica Acta,2002,465(1-2):39~62.
    [108]Van-Der-Greef J, Stroobant P, Van-Der-Heijden R. The role of analytical sciences medical systems biology. Current Opinion in Chemical Biology,2004, 8:559~565.
    [109]Kvalheim O M, Liang Y Z. Heuristic Evolving Latent Projections:Resolving Two-way Multicomponent Data.1. Selectivity, Latent-Projective Graph, Datascope, Local Rank, and Unique Resolution. Analytical Chemistry,1992, 64:936~946.
    [110]Liang Y Z, Kvalheim O M, Keller H R, et al. Heuristic Evolving Latent Projections:Resolving Two-way Multicomponent Data.2. Detection and Resolution of Minor Constituents. Analytical Chemistry,1992,64:946~953.
    [111]Liang Y Z, Kvalheim O M, Rahmanli A, et al. Resolution of strongly overlapping two-way multicomponent data by means of heuristic evolving latent projections. Journal of Chemometrics,1993,7:15~43.
    [112]Kawata S, Komeda H, Sasaki K, et al. Advanced Algorithm for Determining Component Spectra Based on Principal Component Analysis. Applied Spectroscopy,1985,39:610~614.
    [113]Mjos S A. The prediction of fatty acid structure from selected ions in electron impact mass spectra of fatty acid methyl esters. European Journal of Lipid Science and Technology,2004,106:550~560.
    [114]Mjos S A, Grahl-Nielsen O. Prediction of gas chromatographic retention of polyunsaturated fatty acid methyl esters. Journal of Chromatography A,2006, 1110:171~180.
    [115]Li H D, Liang Y Z, Xu Q S, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta,2009,648:77~84.
    [116]Matsuzaka T, Shimano H, Yahagi N, et al. Crucial role of a long-chain fatty acid elongase, Elov16, in obesity-induced insulin resistance. Nature Medicine, 2007,13:1193~1202.
    [117]Matsuzaka T, Shimano H, Yahagi N, et al. Cloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs. Journal of Lipid Research,2002,43:911~920.
    [118]Moon Y A, Shah N A, Mohapatra S, et al. Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. Journal of Biological Chemistry,2001,276:45358~45366.
    [119]Madigan C, Ryan M, Owens D, et al. Comparison of diets high in monounsaturated versus polyunsaturated fatty acid on postprandial lipoproteins in diabetes. Irish Journal of Medical Science,2005,174:8~20.
    [120]Ebbeling C B, Pawlak D B, Ludwig D S, Childhood obesity:public-health crisis, common sense cure. Lancet,2002,360:473~482.
    [121]Schwartz M B, Puhl R, Childhood obesity:a societal problem to solve, Obesity Reviews,2003,4:57~71.
    [122]Martin M L, Jensen M D. Effects of body fat distribution on regional lipolysis in obesity. Journal of Clinical Investigation,1991,88:609~613.