松材线虫(Bursaphelenchus xylophilus)flp基因与香蕉穿孔线虫(Radopholus similes)Rs-eng-1基因的克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FMRF酰胺类多肽(FMRFamide-like peptide,FLP),是已知的最大和最多样的神经肽家族。FLP介导神经信号传递系统,与寄生线虫的运动和感觉功能密切相关。研究植物寄生线虫FLP,对于了解植物寄生线虫的致病机理,探讨防治植物寄生线虫新途径具有重要意义。β-1,4-葡聚糖酶的主要功能是降解纤维素,引起植物细胞形态和功能上的变化,从而提高线虫在寄主中的寄生能力。编码这些分泌物的基因被看作是寄生基因,克隆这些基因是了解线虫侵染机制的基础。因此,本研究分别从两大外来入侵的植物寄生性线虫松材线虫(Bursaphelenchusxylophilus)和相似穿孔线虫(Radopholus similis)中分离得到FMRF酰胺类多肽基因和葡聚糖酶基因,并进行了较详细的研究,主要研究如下:
     1.利用生物信息学筛选靶标基因的EST序列,采用RACE法从松材线虫体内获得了9个flp基因的cDNA全长和一个cDNA片段(Bx-flp-3b),并进行深入分析。这9个flp基因分别是Bx-flp-1,Bx-flp-2,Bx-flp-3a,Bx-flp-6a,Bx-flp-6b,Bx-flp-6c,Bx-flp-6d,Bx-flp-12,Bx-flp-14,其登陆号分别为EU026161,EU930826,EF422867,FJ151415,FJ151416,FJ151417,FJ151418,EF422868,EF622046。从基因结构上分析发现Bx-flp-1由4个外显子和3个内含子组成:Bx-flp-3a由2个外显子和一个内含子组成;Bx-flp-6基因发生两种不同的剪辑方式,剪切方式分别发生在中间和C端,产生了4种不同的选择性剪切异构体。用Tail-PCR的方法分别得到3个基因的5'侧翼序列,大小分别为857bp、377bp和1630bp。
     2.利用原位杂交的方法将6个flp基因进行定位,发现Bx-flp-1和Bx-flp-3a主要在松材线虫的咽坏和头部表达,Bx-flp-2,Bx-flp-3b,Bx-flp-6a~d,Bx-flp-14主要在松材线虫的尾部表达;而Bx-flp-12的表达模式比较复杂。
     3.体外合成Bx-flp基因片段的dsRNA,利用浸泡法处理松材线虫,对其进行离体干扰效应验证。QPCR分析表明干扰后的靶标基因Bx-flp-1,Bx-flp-3a,Bx-flp-6转录水平明显降低,只达到对照的22%、41%、29%,达到差异显著(P<0.05)。显微镜观测干扰后线虫活动能力明显下降,呈现僵直和假死状态。但是,40℃放置1hr后,僵直的线虫又能恢复活动能力。繁殖能力检测发现,干扰松材线虫Bx-flp-1,Bx-flp-3a,Bx-flp-6不能抑制其繁殖。
     4.用RT-PCR和RACE方法,获得了β-1,4-内切葡聚糖酶基因的cDNA全长,并将该基因命名为Rs-eng-1(GenBank登录号为EU414839)。此cDNA全长序列为1630bp,包括1个1404bp的完整ORF,编码含467个氨基酸的蛋白,其理论分子量与等电点分别为48.22KD,pI为6.04。序列分析表明含有糖基水解酶GHF5的保守结构域,N端具有22个氨基酸残基组成的信号肽,C端含有细菌式样的纤维素结合域(CBDⅡ)。原位杂交结果显示此基因由穿孔线虫的食道腺分泌。Southern分析为多拷贝基因。cDNA与基因组DNA重叠分析表明,此基因包含6个内含子,切割点符合5‘-GT...AG-3'的规律。进化分析表明,与细菌Bacillus subtilis和Erwina carotovora分泌的纤维素酶属于同一支,推测其来源于细菌的水平基因转移。
     5.分别构建了pET-28(a)-Rs-eng-1,pET-42(a)- Rs-eng-1,pGEX-6P-1-Rs-eng-1原核表达载体,转化大肠杆菌BL21,诱导表达,没有发现特异条带。引入EcoRⅠ和pstⅠ两酶切位点构建表达载体,获得表达菌株pMAL-c2X-Rs-eng-1(BL21),诱导表达后出现包涵体。因为包涵体没有活性,故重新构建了酵母表达载体pPIC9K-Rs-eng-1,电击转化酵母细胞,利用甲醇诱导,发现Rs-eng-1在酵母中大量表达并分泌到胞外,SDS-PAGE检测表明表达蛋白的表观分子量约为60kD。并且表达的蛋白具有降解纤维素的活性。
     6.离体RNAi香蕉穿孔线虫Rs-eng-1基因。QPCR检测发现Rs-eng-1基因的mRNA丰度显著下降,其表达量只有对照的15%。纤维素酶活性测定结果显示,经dsRNA处理的线虫纤维素酶分解圈平均值为17cm,而对照为22cm,达到显著差异。繁殖率测定,发现RNAi能抑制香蕉穿孔线虫的繁殖,使其生育滞后。分离RNAi处理后接种的香蕉穿孔线虫,发现雄虫比例上升。
     7.通过植物介导沉默靶标基因对线虫进行RNAi活体效应研究。将Rs-eng-1基因片段分别正向和反向插入到载体中,构建了目的基因的dsRNA干扰植物表达载体pFGC5941-RSENG-RNAi。采用农杆菌介导法转化番茄,获得了dsRNA干扰表达载体的转基因番茄。对转基因番茄进行PCR扩增检测和Southern分析,证明外源基因已成功整合到植物基因组中,RT-PCR验证外源基因高效表达。将香蕉穿孔线虫接种到T_1代植株,45d后发现转基因植株的根系中香蕉穿孔线虫侵染的数目明显少于对照,并且干扰效果优于离体RNAi。将根结线虫2龄幼虫接种到T_1代植株,25d后检测根结数,发现表达Rs-eng-1基因dsRNA的番茄根结数明显减少,表明转基因番茄具有高效的抗线虫作用。
FMFRamide-like peptides(FLPs) occur widely across the phylum Nematoda and FLPs involved neurotransmission plays a central role in plant nematode biology.FLPs appear integral to how these parasites move,feed,sense their environment and perhaps establish parasitism within the plant.Therefore,extensive study of FLPs genes and their functions will greatly improve our understanding of the nematode parasitism and might lead to novel and efficient ways in plant-parasitic nematodes control,β-1, 4-endoglucanase is a large class of cellulases secreted by parasitic nematodes that can degrade cellulose to alter the structure and function of the plant cells.The encoding genes of these secretions,so called parasitism genes,have been thought to greatly enhance the parasitism of the nematodes in the plant.Our study isolated and analyzed the full-length cDNA of flp and ENG genes from two alien invasive plant-parasitic nematodes Bursaphelenchus xylophilus and Radopholus similis,respectively.The study provided possible targets for anti- plant-parasitic nematodes drugs.The main results were as follows:
     1.Based on the EST sequences of the target genes from the gene databases.9 full-length cDNA and 1 cDNA fragment of flp genes(Bx-flp-3b) from B.xylophilus were RACE amplified and analyzed.The 9 obtained flp genes are designated Bx-flp-1, Bx-flp-2,Bx-flp-3a,Bx-flp-6a,Bx-flp-6b,Bx-flp-6c,Bx-flp-6d,Bx-flp-12,Bx-flp-14, respectively,with Genebank access number EU026161,EU930826,EF422867, FJ151415,FJ151416,FJ151417,FJ151418,EF622046,respectively.According to the gene structure analysis,Bx-flp-1 was composed of four 4 exons and 3 introns;Bx-flp-3a was composed of 2 exons and 1 intron;Bx-flp-6 had two different editing mechanisms, one in middle and the other in the C terminus,resulting 4 different selectively edited isomeric products.The 5 flanking sequences of three genes were also obtained by Tail-PCR,with length of 857 bp,377 bp,and 1630 bp,respectively.
     2.Six flp genes from B.xylophilus were localized by in-stiu hybridization and the result revealed that Bx-flp-1 and Bx-flp-3a were expressed in the pharyngeal ring and the head;Bx-flp-2,Bx-flp-3b,Bx-flp-6a~d and Bx-flp-14 were expressed mainly in the tail;the expression patter of Bx-flp-12 was very complicated.
     3.RNA interference(RNAi) experiments were performed to study the functions of the flp genes,dsRNA fragments were synthesized in vitro and the B.xylophilus nematodes were treated by soaking.Q-PCR was used to compare the differences between the treated and control groups.The results showed that the transcription level of the target genes with treatment was significantly reduced(p<0.05%) to 22%,41% and 29%,respectively.The microscopic observations showed that the mobility of the interfered nematodes was remarkably decreased,appearing to be in rigor and apparent death.However,after incubation at 40℃for 1 h,the mobility could be recovered.The reproductive capability assay demonstrated that the interference of Bx-flp-1,Bx-flp-3a and Bx-flp-6 could not inhibit the reproduction rate.
     4.The full length cDNA sequence ofβ-1,4-endoglucanase gene was obtained by RT-PCR and RACE from R.similes,named Rs-eng-1(GenBank:EU414839).It consisted of 1630 bp,with a 1404 bp ORF encoding a 467 amino acid protein.The putative protein,with theoretical molecular weight 48.22 kDa and pI 6.04,was classified as a member of cellulase(glycosyl hydrolase family 5),and had a 22 amino acids long singal sequence at N terminus and a high similarity to a bacterial type cellulose-binding domainⅡat C terminus.Southern blot analysis showed that there were mμLtiple copies of Rs-eng-1 within R.simile genome.In situ hybridization showed RS-ENG-1 was secreted from R.simile's esophageal gland cells.Genomic analysis suggested Rs-eng-1 contained six introns demarcated by 5'-GT...AG-3' in the splicing sites and phylogenic analysis suggested that Rs-eng-1 had a strong homology to Bacillus.subtilis and Erwina carotovora,which might be indicative of an ancient horizontal gene transfer.
     5.Prokaryotic expression system was tried first to express Rs-eng-1.Rs-eng-1 was sub-cloned into vector pET28a,pET42a and pGEX-6p-1,respectively,using EcoRⅠand NotⅠrestriction sites.After transformed into E.coli BL21 component cells and induced by IPTG,no specific bands were observed on SDS-PAGE gels.A different expression vector pMAL-c2x/Rs-eng-1 was thus constructed using EcoRⅠand PstⅠrestriction sites and transformed into E.coli BL21 component cells.After induced by IPTG,it started to produce inclusion bodies based on SDS-PAGE analysis.The failure of the above trials suggested that Rs-eng-1 coμLd not be expressed in prokaryotic expression systems.Considering the eukaryotic origin of Rs-eng-1,a eukaryotic expression vector pPIC9K/Rs-eng-1 was constructed and transformed into yeast cells by electroporation.After induced by methanol,Rs-eng-1 had a large amount of extracellular expression and showed an expected apparent molecular size of 60 kD on SDS-PAGE gel.The expressed Rs-eng-1 also showed cellulase activity.
     6.The function of Rs-eng-1 was also analyzed by RNAi experiments.Q-PCR resμLts demonstrated that the mRNA abundance of Rs-eng-1 was significantly decreased,only 15%compared to the control.CellμLase activity assays showed that the average size of the decomposition circles of the treated nematodes was 17 cm, significantly different from that of 22 cm of the control nematodes.The reproductive capability assay suggested RNAi of Rs-eng-1 could defer the reproduction of R.similis and increase the proportion of the male nematodes.
     7.Plant expressing vector of Rs-eng-1 fragment was successfully constructed and applied to tomatoes transformation.We obtained many hygromycin-resistant transgenic plants expressing dsRNA by Agrobacterium tumefaciens EHA105 mediated transformation with plasmid pFGC5941-RSENG-RNAi.PCR analysis showed that transgenic plants could amplify the target gene fragment,and southern blot indicated that the Rs-eng-1 fragment was integrated into the genomes of the tomato plants. RT-PCR showed that the target gene was effectively expressed in tomato plants. Compared with the control group,the number of root knots in transgenic tomatoes was significantly less 25 dpi when J2 were inoculated to T_1 plants,suggesting that the transgenic plants exhibited strong resistance to J2.The method described here provided a new way for the control and prevention of plant-parasitic nematodes.
引文
[1]Mamiya,Y.,Kiyohara,T.Description of Bursaphelenchus Lignicolus N.Sp.(Nematoda:Aphelenchoididae) From Pine Wood and Histopathology of Nematode-Infested Trees[J].1972:62-65.
    [2]Wingfield,M.J.,Blanchette,R.A.The pine-wood nematode,Bursaphelenchus xylophilus,in Minnesota and Wisconsin:Insect associates and transmission studies[J].CAN J FOR RES,1983,13(6):1068-1076.
    [3]Wingfield,M.J.Transmission of pine wood nematode to cut timber and girdled trees[J].Plant disease,1983,67(1):35-37.
    [4]Dwinell,L.D.,Nickle,W.R.,Station,N.,Asheville,N.C.An Overview of the Pine Wood Nematode Ban in North America[M].US Dept.of Agricμ Lture,Forest Service,Southeastern Forest Experiment Station,1989.
    [5]Dropkin,V.H.,Foudin,A.,Kondo,E.,Linit,M.,Smith,M.,Robbins,K.Pinewood nematode:a threat to US forests?[Bursaphelenchus xylophilus][J].Plant Diseases (USA),1981,65(12):1022-1027.
    [6]杨宝君,徐福元.松材线虫病树早期诊断的研究:Ⅱ松树品种,接种量及线虫来源对…[J].林业科学研究.1999.12(003):251-255.
    [7]孙建华.土壤真菌培养物对松材线虫生长和繁殖抑制作用的研究[J].南开大学学报(自然科学版),1997,30(003):82-87.
    [8]董锦艳,陈江虹.亮耳菌杀线虫活性的稳定性[J].云南大学学报(自然科学版),2000,22(005):365-368.
    [9]万方浩,王德辉.中国外来入侵生物的危害与管理对策[J].生物多样性,2002,10(001):119-125.
    [10]周国梁,陈晨,戚龙君,胡白石,包云轩.相似穿孔线虫的分类鉴定及其研究进展[J].植物检疫,2005,19(6):366-369.
    [11]Van Weerdt,L.G.Studies On the Biology of Radopholus Similis(Cobb,1893)Thorne,1949[J].1960.
    [12]彭德良.谢丙炎.外来入侵生物香蕉相似穿孔线虫及其发生分布[J].植物保护,2004,30(005):83-87.
    [13]Koshy,P.K.,Sosamma,V.K.HOST-RANGE OF THE BURROWING NEMATODE RADOPHOLUS SIMILIS(COBB,1893) THORNE,1949[J]. 2007.
    [14]Marin,D.H.,Sutton,T.B.,Barker,K.R.Dissemination of Bananas in Latin America and the Caribbean and Its Relationship to the Occurrence of Radopho μ Ls similis[J].Plant Disease,1998,82(9):964-974.
    [15]O' Bannon,J.H.Worldwide dissemination of Radopholus similis and its importance in crop production[J].Journal of Nematology,1977,9(1):16-25.
    [16]Ford,H.W.(1967).Burrowing nematode resistant rootstocks as biological barriers in citrus grovers.
    [17]Uchida,J.Y.,Sipes,B.S.,Kadooka,C.Y.Burrowing Nematode on Anthurium:Recognizing Symptoms,Understanding the Pathogen,and Preventing Disease[J].Plant Disease,2003.
    [18]黄法余.梁琼超.从进口凤梨科植物截获香蕉穿孔线虫[J].植物检疫,2002,16(005):267-267.
    [19]李一农.李芳荣.深圳口岸旅检截获香蕉穿孔线虫[J].植物检疫,2004,18(003):163-163.
    [20]黄法余.陈升毅,黄箭.南海口岸从马来西亚红掌上截获香蕉穿孔线虫[J].植物检疫.2001.15(5):313.
    [21]黄法余,梁琼超,邹焕文.从韩国红掌截获香蕉相似穿孔线虫[J].植物检疫,2001a 15(3):164.
    [22]钟国强,郭权,黎锦荣.广州口岸进境检疫截获的几种重要检疫性线虫[J].云南农业大学学报,1999,14:42-46.
    [23]赵立荣,钟国强,何胜强.从进境旅客携带的露兜树植物中截获香蕉穿孔线虫[J].植物检疫,2004,18(4):203-203.
    [24]Sasser,J.N.,Freckman,D.W.A world perspective on nematology:the role of the society:Society of Nematologists:7-14.
    [25]Rich,J.R.,Dunn,R.A.,Noling,J.W.Nematicides:past and present uses[J].Nematology:advances and perspectives Volume 2:Nematode management and utilization,2004:1179-1200.
    [26]Stewart,G.R.,Perry,R.N.,Wright,D.J.Immunocytochemical studies on the occurrence of gamma-aminobutyric acid in the nervous system of the nematodes Panagrellus redivivus,Meloidogyne incognita and Globodera rostochiensis[J]. Fundamental and applied nematology,1994,17(5):433-439.
    [27] Price,D. A.,Greenberg,M.J.Structure of a molluscan cardioexcitatory neuropeptide [J]. Science, 1977, 197(4304):670-671.
    [28] Kimber, M. J.,Fleming, C. C.,Prior, A.Jones, J. T.,Halton, D. W.,Ma μ Le, A. G. Localisation of Globodera pallida FMRFamide-related peptide encoding genes using in situ hybridisation[J]. International Journal for Parasitology, 2002, 32 (9): 1095-1105.
    [29] Dockray, G. J. The expanding family of-RFamide peptides and their effects on feeding behaviour[J]. Experimental Physiology,2004, 89(3):229-235.
    [30] Davis, R. E.,Stretton, A. O. Structure-activity relationships of 18 endogenous neuropeptides on the motor nervous system of the nematode Ascaris suum[J]. Peptides,2001,22(1):7-23.
    [31] Bowman, J.W., Winterrowd, C.A., Friedman, A. R., Thompson, D.P., Klein, R.D., Davis, J. P.,Ma μ Le, A. G.,Blair, K. L.,Geary, T. G. Nitric oxide mediates the inhibitory effects of SDPNFLRFamide,a nematode FMRFamide-related neuropeptide. in Ascaris suum[J]. Journal of Neurophysiology, 1995,74(5): 1880-1888.
    [32] Moffett, C. L.,Beckett, A. M.,Mousley, A.,Geary, T. G.,Marks, N. J.,Halton, D. W.,Thompson, D. P.,Ma μ Le, A. G. The ovijector of Ascaris suum:m μ Ltiple response types revealed by Caenorhabditis elegans FMRFamide-related peptides[J]. International Journal for Parasitology,2003, 33(8):859-876.
    [33] Nelson, L. S.,Kim, K.,Memmott, J. E.,Li, C. FMRFamide-related gene family in the nematode, Caenorhabditis elegans[J]. Molec μ Lar Brain Research, 1998, 58 (1-2): 103-111.
    [34] Reinitz,C.A.,Herfel,H.G.,Messinger,L.A.,Stretton, A. O. W. Changes in locomotory behavior and cAMP produced in Ascaris suum by neuropeptides from Ascaris suum or Caenorhabditis elegans[J]. Molec μ Lar & Biochemical Parasitology,2000, 111(1 ):185-197.
    [35] Papaioannou, S.,Marsden, D., Franks, C. J.,Walker, R. J.,Holden-Dye, L. Role of a FMRFamide-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans[J]. J Neurobiol,2005,65(3):304-319.
    [36] Mousley, A.,Marks, N. J.,Ma μ Le, A. G. Neuropeptide signalling:a repository of targets for novel endectocides?[J].Trends in Parasitology,2004, 20(10):482-487.
    [37] Husson, S. J.,Clynen, E.,Baggerman, G.,De Loof, A.,Schoofs, L. Discovering neuropeptides in Caenorhabditis elegans by two dimensional liquid chromatography and mass spectrometry[J]. Biochemical and Biophysical Research Communications,2005, 335(1):76-86.
    [38] McVeigh, P.,Leech, S.,Mair, G. R.,Marks, N. J.,Geary, T. G.,Ma μ Le, A. G. Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda[J]. International Journal for Parasitology,2005, 35(10): 1043-1060.
    [39] Shingles, J.,Lilley, C. J., Atkinson, H. J.,Urwin, P. E. Meloidogyne incognita: Molec μ Lar and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi[J]. Experimental Parasitology,2007, 115(2):114-120.
    [40] Masler, E. P.,Kovaleva, E. S.,Sardanelli, S. Comparison of FaRP Immunoreactivity in Free-living Nematodes and in the Plant-parasitic Nematode Heterodera glycines[J]. Annals of the New York Academy of Sciences, 1999, 897(1 NEUROPEPTIDES:STRUCTURE AND FUNCTION IN BIOLOGY AND BEHAVIOR):253-263.
    [41] Kimber, M. J.,Fleming, C. C.,Bjourson, A. J.,Halton, D. W.,Ma μ Le, A. G. FMRF amide-related peptides in potato cyst nematodes [J]. Molec μ Lar & Biochemical Parasitology,2001, 116(2): 199-208.
    [42] Brownlee, D. J. A.,Holden-Dye, L.,Fairweather, I.,Walker, R. J. The action of serotonin and the nematode neuropeptide KSAYMRFamide on the pharyngeal muscle of the parasitic nematode, Ascaris suum[J]. Parasitology(London Print), 1995, 111(3):379-384.
    [43] Cowden, C., Stretton, A. O. W. AF 2, an Ascaris neuropeptide:isolation, sequence, and bioactivity[J]. Peptides(New York, NY 1980),1993, 14(3):423-430.
    [44] Sobczak, M.,Golinowski, W.,Grundler, F. M. W. M Ltrastructure of feeding plugs and feeding tubes formed by Heterodera schachtii[J]. Nematology, 1999, 1(4): 363-374.
    [45] Kimber, M. J.,Fleming, C. C. Neuromusc μ Lar function in plant parasitic nematodes:a target for novel control strategies?[J]. Parasitology,2005, 131:S129.
    [46] Marks, N. J.,Ma μ Le, A.G.,Geary,T.G.,Thompson, D. P.,Li, C.,Halton, D.W.,Shaw, C. KSAYMRFamide (PF3/AF8) Is Present in the Free-Living Nematode, Caenorhabditis elegans[J]. Biochemical and Biophysical Research Communications, 1998, 248(2):422-425.
    [47] Ma μ Le, A. G.,Shaw, C.,Bowman, J. W.,Halton, D. W.,Thompson, D. P.,Geary, T. G.,Thim, L. KSAYMRFamide:a novel FMRFamide-related heptapeptide from the free-living nematode, Panagrellus redivivus, which is myoactive in the parasitic nematode,Ascaris suum[J].Biochemical and biophysical research communications (Print), 1994, 200(2):973-980.
    [48] de Boer, J. M.,Smant, G.,Goverse, A.,Davis, E. L.,Overmars, H. A.,Pomp, H.,van Gent-Pelzer, M.,Zilverentant, J. F.,Stokkermans, J. P.,Hussey, R. S. Secretory gran μ Le proteins from the subventral esophageal glands of the potato cyst nematode identified by monoclonal antibodies to a protein fraction from second-stage juveniles[J]. Mol Plant Microbe Interact, 1996, 9(1):39-46.
    [49] Keating. C., Thorndyke. M. C., Holden-Dye, L.,Williams, R. G.Walker, R. J. The isolation of a FMRFamide-like peptide from the nematode Haemonchus contortus [J]. Parasitology,1995, 111:515-521.
    [50] Marks, N. J.,Sangster, N. C.,Ma μ Le, A. G., Halton, D. W.,Thompson, D. P.,Geary, T. G.,Shaw, C. Structural characterisation and pharmacology of KHEYLRFamide (AF2) and KSAYMRFamide (PF3/AF8) from Haemonchus contortus[J]. Molec μ Lar & Biochemical Parasitology, 1999, 100(2): 185-194.
    [51] Edison, A. S.,Messinger, L. A.,Stretton, A. O. afp-l:a gene encoding m μ Ltiple transcripts of a new class of FMRFamide-like neuropeptides in the nematode Ascaris suum[J]. Peptides, 1997, 18(7):929-935.
    [52] Day, T. A.,Ma μ Le, A. G. Parasitic peptides! The structure and function of neuropeptides in parasitic worms[J]. Peptides, 1999, 20(8):999-1019.
    [53] Fellowes, R. A.,Ma μ Le, A. G.,Marks, N. J.,Geary, T. G.,Thompson, D. P.,Halton, D. W. Nematode neuropeptide mod μ Lation of the vagina vera of Ascaris suum:in vitro effects of PF1, PF2, PF4, AF3 and AF4[J]. Parasitology,2000, 120(01):79-89.
    [54] Fire, A.,Xu, S.,Montgomery, M. K.,Kostas, S.,Driver, S.,Mello, C. Potent and specific genetic interference mediated by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998, 391:806 - 811.
    
    [55] Tabara, H.,Grishok, A. REVERSE GENETICS:RNAi in C. elegans: Soaking in the Genome Sequence[J]. Science,1998, 282(5388):430.
    
    [56] Hussein, A. S.,Kichenin, K.,Selkirk, M. E. Suppression of secreted acetylcholinesterase expression in Nippostrongylus brasiliensis by RNA interference[J]. Molec μ Lar & Biochemical Parasitology,2002, 122(1):91-94.
    
    [57] Aboobaker, A. A.,Blaxter, M. L. Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi[J]. Molec μ Lar & Biochemical Parasitology,2003, 129(1):41-51.
    
    [58] Lustigman, S.,Zhang, J.,Liu, J.,Oksov, Y.,Hashmi, S. RNA interference targetin cathepsin L and Z-like cysteine proteases of Onchocerca volv μ Lus confirmed their essential function during L3 molting[J]. Molec μ Lar & Biochemical Parasitology, 2004, 138(2): 165-170.
    
    [59] Urwin, P. E.,Lilley, C. J.,Atkinson. H. J. Ingestion of Double-Stranded RNA by Preparasitic Juvenile Cyst Nematodes Leads to RNA Interference[J]. Molec μ Lar Plant-Microbe Interactions.2002, 15(8):747-752.
    
    [60] Fanelli, E.,Di Vito, M.,Jones, J. T.,De Giorgi, C. Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi[J]. Gene, 2005, 349:87-95.
    
    [61] Fraser, A. G.,Kamath, R. S.,Zipperlen, P.,Martinez-Campos, M.,Sohrmann, M., Ahringer, J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference[J]. Nature,2000, 408(6810):325-330.
    
    [62] Kamath, R. S.,Martinez-Campos, M.,Zipperlen, P.,Fraser, A. G.,Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double- stranded RNA in Caenorhabditis elegans[J]. Genome Biology,2001, 2(1):0002.
    
    [63] Maeda, I.,Kohara, Y.,Yamamoto, M.,Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi[J]. Current Biology, 2001,11 (3): 171-176.
    
    [64] Tavernarakis, N.,Wang, S. L.,Dorovkov, M.,Ryazanov, A.,Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes [J]. Nature Genetics,2000, 24:180-183.
    [65] Hussey, R. S.,Grundler, F. M. W. Nematode parasitism of plants[J]. Physiology and Biochemistry of Free-Living and Plant-Parasitic Nematodes RN Perry and DJ Wright, eds CAB International Press, Wallingford, UK,1998:213-243.
    [66] Bird, A. F.,Zuckerman, B. M.,Rhode, R. A. Plant Parasitic Nematodes[J]. Parasitic Nematodes:Molec u Lar Biology, Biochemistry and Immunology,2001.
    [67] Hussey, R. S.,Davis, E. L.,Baum, T. J. Secrets in secretions:genes that control nematode parasitism of plants[J]. Brazilian Journal of Plant Physiology,2002, 14: 183-194.
    [68] Endo, B. Y. MLtrastructure of the esophagus of Larvae of the soybean cyst nematode, Heteroda glycines[J]. Proceedings of the Helminthological Society of Washington, 1984, 51(1): 1-24.
    [69] Hussey, R. S.,Minis, C. W. M Ltrastructure of esophageal glands and their secretory gran μ Les in the root-knot nematodeMeloidogyne incognita[J]. Protoplasma.1990, 156(1):9-18.
    [70] Burgess. T. L.,Kelly. R. B. Constitutive and Reg μ Lated Secretion of Proteins[J]. Annual Reviews in Cell Biology,1987, 3(1):243-293.
    [71] Shepherd, P. R.,Salvesen, G.,Toker, A.,Hoekstra, D.,Hooper, N. M.,Anderson, R. A.,Blank, J.,Blatt, M.,Booth, P.,Chernomordik, L. Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM[J]. Biochem J,2002, 367:87-95.
    [72] Qin, L..Overmars, H.,Helder, J.,Popeijus, H.,van der Voort, J. R.,Groenink, W.,van Koert, P.,Schots, A.,Bakker, J.,Smant, G. An Efficient cDNA-AFLP-Based Strategy for the Identification of Putative Pathogenicity Factors from the Potato Cyst Nematode Globodera rostochiensis[J]. Molec μ Lar Plant-Microbe Interactions,2000, 13(8):830-836.
    [73] Lambert, K. N.,Allen, K. D.,Sussex, I. M. Cloning and Characterization of an Esophageal-Gland-Specific Chorismate Mutase from the Phytoparasitic Nematode Meloidogyne javanica[J]. Molec μ Lar Plant-Microbe Interactions, 1999, 12(4): 328-336.
    [74] Huang, G.,Gao, B.,Maier, T.,Allen, R.,Davis, E. L.,Baum, T. J.,Hussey, R. S. A Profile of Putative Parasitism Genes Expressed in the Esophageal Gland Cells of the Root-knot Nematode Meloidogyne incognita[J]. Molec μ Lar Plant-Microbe Interactions,2003, 16(5):376-381.
    
    [75] Bird, A. F. Changes associated with parasitism in nematodes. IV. Cytochemical studies on the amp μ Lla of the dorsal esophageal gland of Meloidogyne javanica and on exudations from the buccal stylet[J]. J Parasitol,1968, 54:879-890.
    [76] Endo, B. Y. Feeding plug formation in soybean roots infected with the soybean cyst nematode[J]. Phytopathology, 1978, 68:1022-1031.
    [77] Boeckenhoff, A.,Grundler, F. M. W. Studies on the nutrient uptake by the beet cyst nematode Heterodera schachtii by in situ microinjection of fluorescent probes into the feeding structures in Arabidopsis thaliana[J]. PARASITOLOGY-CAMBRIDGE-,1994, 109:249-249.
    [78] Hussey, R. S.,Mims, C. W. M Ltrastructure of feeding tubes formed in giant-cells induced in plants by the root-knot nematode Meloidogyne incognita[J]. Protoplasma,1991, 162(2):99-107.
    [79] Meutter, J..Schueren. E.,Montagu. M.,Gheysen, G.,Tytgat. T.,Smant, G.,Schots, A.,Coomans. A. Cloning of two endoglucanase genes from Heterodera schachtii [J]. Mededelingen-Fac μ Lteit Landbouwkundige en Toegepaste Biologische Wetenschappen,1998, 63(2b):619-623.
    [80] Smant, G.,Stokkermans, J.,Yan, Y.,de Boer, J. M.,Baum, T. J.,Wang, X.,Hussey, R. S.,Gommers, F. J.,Henrissat, B.,Davis, E. L. Endogenous cell μ Lases in animals: Isolation of β -1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes:National Acad Sciences:4906-4911.
    [81] Ding, X.,Shields, J.,Allen, R.,Hussey, R. S. A secretory cell μ Lose-binding protein cDNA cloned from the root-knot nematode (Meloidogyne incognita)[J]. Mol Plant-Microbe Interact, 1998, 11:952-959.
    [82] Kikuchi, T.,Shibuya, H.,Aikawa, T.,Jones, J. T. Cloning and Characterization of Pectate Lyases Expressed in the Esophageal Gland of the Pine Wood Nematode Bursaphelenchus xylophilus[J]. Molec μ Lar Plant-Microbe Interactions,2006, 19(3):280-287.
    [83]张志荣,廖金铃,崔汝强,卓侃,李迅东,郑静君,陈海燕,王鲜.爪哇根结线虫β-1,4-内切葡聚糖酶基因cDNA全长克隆和序列分析[J].植物病理学报,2006,:06.
    [84]Mitreva-Dautova,M.,Roze,E.,Overmars,H.,de Graaff,L.,Schots,A.,Helder,J.,Goverse,A.,Bakker,J.,Smant,G.A Symbiont-Independent Endo-1,4-β-Xylanase from the Plant-Parasitic Nematode Meloidogyne incognita[J].Molec μ Lar Plant-Microbe Interactions,2006,19(5):521-529.
    [85]Doyle,E.A.,Lambert,K.N.Cloning and Characterization of an Esophageal-Gland-Specific Pectate Lyase from the Root-Knot Nematode Meloidogyne javanica[J].Molecμ Lar Plant-Microbe Interactions,2002,15(6):549-556.
    [86]Huang,G.,Dong,R.,Allen,R.,Davis,E.L.,Baum,T.J.,Hussey,R.S.Developmental expression and molec μ Lar analysis of two Meloidogyne incognita pectate lyase genes[J].International Journal for Parasitology,2005,35(6):685-692.
    [87]Kudla,U..Milac,A.L.,Qin,L.,Overmars,H..Roze,E.,Holterman,M.,Petrescu,A.J..Goverse.A..Bakker,J..Helder.J.Structural and functional characterization of a novel,host penetration-related pectate lyase from the potato cyst nematode Globodera rostochiensis[J].Molec μ Lar Plant Pathology,2007,8(3):293-305.
    [88]Vanholme,B.,Van Thuyne,W.,Vanhouteghem,K.,De Meutter,J.A.N.,Cannoot,B.,Gheysen,G.Molec μ Lar characterization and functional importance of pectate lyase secreted by the cyst nematode Heterodera schachtii[J].Molec μ Lar Plant Pathology,2007,8(3):267-278.
    [89]高英,王学臣.扩张蛋白(Expansin)研究进展[J].中国农学通报,2005,21(007):82-86.
    [90]Davis,E.L.,Hussey,R.S.,Baum,T.J.Getting to the roots of parasitism by nematodes[J].Trends in Parasitology,2004,20(3):134-141.
    [91]Niebel,A.,de Almeida Engler,J.,Hemerly,A.,Ferreira,P.,Inze,D.,Van Montagu,M.,Gheysen,G.Induction of cdc2a and cyclAt expression in Arabidopsis thaliana during early phases of nematode-induced feeding cell formation[J].The Plant Journal,1996,10(6):1037-1043.
    [92] Goverse, A.,de Almeida Engler, J.,Verhees, J.,van der Krol, S.,Helder, J.,Gheysen, G. Cell cycle activation by plant parasitic nematodes[J]. Plant Molec μ Lar Biology, 2000, 43(5):747-761.
    [93] de Almeida Engler, J.,Van Poucke, K.,Karimi, M.,De Groodt, R.,Gheysen, G.,Engler, G.,Gheysen, G. Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots[J]. The Plant Journal,2004, 38(1): 12-26.
    [94] Goverse, A.,van der Voort, J. R.,van der Voort, C. R.,Kavelaars, A.,Smant, G.,Schots, A.,Bakker, J.,Helder, J. Naturally Induced Secretions of the Potato Cyst Nematode Co-stim μ Late the Proliferation of Both Tobacco Leaf Protoplasts and Human Peripheral Blood Mononuclear Cells[J]. Molec μ Lar Plant-Microbe Interactions, 1999, 12(10):872-881.
    [95] Smant, G.,Qin, L.,Goverse, A.,Schots, A.,Helder, J.,Bakker, J. Gene discovery in sedentary plant-parasitic nematodes[J]. Plant-microbe interactions,2003, 6(2003): 285-307.
    [96] Nakamura, M.,Masuda, H.,Horii, J.,Kuma, K.,Yokoyama, N.,Ohba, T.,Nishitani, H..Miyata, T.,Tanaka. M..Nishimoto. T. When Overexpressed. a NovelCentrosomal Protein. RanBPM. Causes Ectopic MicrotubμLe Nucleation Similar to γ-TubμLin:Rockefeller Univ Press:1041-1052.
    [97] Wang, D.,Li, Z.,Messing, E. M.,Wu, G. Activation of Ras/Erk Pathway by a Novel MET-interacting Protein RanBPM[J]. Journal of Biological Chemistry,2002, 277(39):36216-36222.
    [98] Rao, M. A.,Cheng, H.,Quayle, A. N.,Nishitani, H.,Nelson, C. C.,Rennie, P. S.RanBPM, a Nuclear Protein That Interacts with and Reg u Lates Transcriptional Activity of Androgen Receptor and Glucocorticoid Receptor[J]. Journal of Biological Chemistry,2002, 277(50):48020-48027.
    [99] Umeda, M.,Nishitani, H.,Nishimoto, T. A novel nuclear protein, Twal, and Muskelin comprise a complex with RanBPMfJ]. Gene,2003, 303:47-54.
    [100] Jaubert, S.,Ledger, T. N.,Laffaire, J. B.,Piotte, C.,Abad, P.,Rosso, M. N. Direct identification of stylet secreted proteins from root-knot nematodes by a proteomic approach[J]. Molec μ Lar & Biochemical Parasitology,2002, 121(2):205-211.
    [101] Tytgat, T.,Vercauteren, I.,Vanholme, B.,De Meutter, J.,Vanhoutte, I.,Gheysen, G.,Borgonie, G.,Coomans, A.,Gheysen, G. An SXP/RAL-2 protein produced by the subventral pharyngeal glands in the plant parasitic root-knot nematode Meloidogyne incognita[J]. Parasitology Research,2005, 95(1):50-54.
    [102] Reddigari, S. R.,Sundermann, C. A.,Hussey, R. S. Isolation of subcell μ Lar gran μ Les from second-stage juveniles of Meloidogyne incognita[J]. Journal of Nematology, 1985, 17:482-488.
    [103] Robertson, L.,Robertson, W. M.Jones, J. T. Direct analysis of the secretions of the potato cyst nematode Globodera rostochiensis[J]. Parasitology, 1999, 119(02): 167-176.
    [104] Bekal, S.,Niblack, T. L.,Lambert, K. N. A Chorismate Mutase from the Soybean Cyst Nematode Heterodera glycines Shows Polymorphisms that Correlate with Vir μ Lence[J]. Molec μ Lar Plant-Microbe Interactions,2003, 16(5):439-446.
    [105] Jones, J. T.,Furlanetto, C.,Bakker, E.,Banks, B.,Blok, V.,Chen, Q.,Phillips, M.,Prior, A. Characterization of a chorismate mutase from the potato cyst nematode Globodera pallida[J]. Molec u Lar Plant Pathology,2003, 4(1):43-50.
    [106] Perry. R. N. Analysis of the sensory responses of parasitic nematodes using electrophysiology[J]. International Journal for Parasitology,2001, 31(9):909-918.
    [107] Fioretti, L.,Porter, A.,Haydock, P. J.,Curtis, R. Monoclonal antibodies reactive with secreted-excreted products from the amphids and the cuticle surface of Globodera pallida affect nematode movement and delay invasion of potato roots[J]. International journal for parasitology,2002, 32(14): 1709-1718.
    [108] Semblat, J. P.,Rosso, M. N.,Hussey, R. S.,Abad, P.,Castagnone-Sereno, P. Molec μ Lar Cloning of a cDNA Encoding an Amphid-Secreted Putative Avir μ Lence Protein from the Root-Knot Nematode Meloidogyne incognita[J]. Molec μ Lar Plant-Microbe Interactions,2001, 14(1):72-79.
    [109] Jones, J. T.,Reavy, B.,Smant, G.,Prior, A. E. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis[J]. Gene,2004, 324:47-54.
    [110] Prior, A.,Jones, J. T.,Blok, V. C.,Beauchamp, J.,McDermott, L.,Cooper, A., Kennedy, M. W. A surface-associated retinol-and fatty acid-binding protein (Gp- FAR-1) from the potato cyst nematode Globodera pallida.lipid binding activities, structural analysis and expression pattern[J]. BIOCHEMICAL JOURNAL- LONDON-,2001, 356(2):387-394.
    [111] Forrest, J. M. S. Observations on the cuticle surface of second stage juveniles of Globodera rostochiensis and Meloidogyne incognita[J]. Revue N é nzatol,1989, 12(4):337-341.
    [112] Wallace, H. R. The Influence of Soil Moisture On Survival and Hatch of Meloidogyne Javanica[J]. ,1968, :.
    [113] Orion, D.,Kritzman, G. Antimicrobial activity of Meloidogyne javanica gelatinous matrix[J]. Revue de Nematologie,1991, 14:481-483.
    [114] Papert, A.,Kok, C. J. Size and community metabolic profile of the bacterial pop μ Lation of Meloidogyne hapla egg masses[J]. Nematology,2000, 2(5):581-584.
    [115] Orion, D.,Loots, G. C., Orion, T. Cell lysis activity of Meloidogyne gelatinous matrix[J]. Revue de nématologie, 1987, 10(4):463-465.
    [116] Rosso. M. N., Favery, B.,Piotte, C., Arthaud, L.,De Boer, J. M.,Hussey, R. S.,Bakker. J.,Baum. T. J..Abad, P. Isolation of a cDNA Encoding a β -1, 4-endoglucanase in the Root-Knot Nematode Meloidogyne incognita and Expression Analysis During Plant Parasitism[J]. Molec μ Lar Plant-Microbe Interactions, 1999, 12(7):585-591.
    [117] Dropkin, V. H. Pathology of Meloidogyne-Galling, Giant Cell Formation, Effects on Host Physiology[J]. EPPO B μ Lletin,1972, 2(6):23-32.
    [118] Kochba. J.,Samish, R. M. Level of endogenous cytokinins and auxin in roots of nematode resistant and susceptible peach rootstocks[J]. J Am Soc Hortic Sci,1972, 97:115-119.
    [119] Fan. D. F.,Maclachlan, G. A. Massive Synthesis of Ribonucleic Acid and Cell μ Lase in the Pea Epicotyl in Response to Indoleacetic Acid, With and Without Concurrent Cell Division 1[J]. Plant Physiology, 1967, 42(8): 1114-1122.
    [120] Giebel, J. Biochemical mechanisms of plant resistance to nematodes:A review[J]. Journal of Nematology, 1974, 6(4):.
    [121] Yu, P. K.,Viglierchio,D. R. PLANT GROWTH SUBSTANCES AND PARASITIC NEMATODES.I. ROOT KNOT NEMATODES AND TOMATO[J]. Exp Parasitol, 1964,15:242-248.
    [122] Opperman, C. H.,Taylor, C. G.,Conkling, M. A. Root-Knot Nematode-Directed Expression of a Plant Root-Specific Gene[J]. Science, 1994,263(5144):221-223.
    [123] Bird, A. F.,Loveys, B. R. The involvement of cytokinins in a host-parasite relationship between the tomato (Lycopersicon esc μ Lentum) and a nematode (Meloidogyne javanica)[J]. Parasitology,1980, 80:497-505.
    [124] De Meutter, J.,Tytgat, T.,Witters, E.,Gheysen, G.,Van Onckelen, H.,Gheysen, G. Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita[J]. Molec μ Lar Plant Pathology, 2003,4(4): 271-277.
    [125] Favery, B.,Complainville, A.,Vinardell, J. M.,Lecomte, P.,Vaubert, D.,Mergaert, P.,Kondorosi, A.,Kondorosi, E.,Crespi, M.,Abad, P. The Endosymbiosis-Induced Genes ENOD40 and CCS52a Are Involved in Endoparasitic-Nematode Interactions in Medicago truncat μ La[J]. Molec μ Lar Plant-Microbe Interactions, 2002, 15(10): 1008-1013.
    [126] Bird, D. M. K..Koltai, H. Plant Parasitic Nematodes:Habitats. Hormones. and Horizontally-Acquired Genes[J]. Journal of Plant Growth Reg μ Lation.2000, 19(2):183-194.
    [127] Scholl, E. H.,Thorne, J. L.,McCarter, J. P.,Bird, M. Horizontally transferred genes in plant-parasitic nematodes:a high-throughput genomic approach[J]. Genome Biology,2003, 4(6):R39.
    [128] Doss, R. P.,Oliver, J. E.,Proebsting, W. M.,Potter, S. W.,Kuy, S. R.,Clement, S. L.,Williamson, R. T.,Carney, J. R.,DeVilbiss, E. D. Bruchins:Insect-derived plant reg μ Lators that stim μ Late neoplasm formation:National Acad Sciences:6218-6223.
    [129] Blaxter, M. L.,De Ley, P.,Garey, J. R.,Liu, L. X.,Scheldeman, P.,Vierstraete, A.,Vanfleteren, J. R.,Mackey, L. Y.,Dorris, M.,Frisse, L. M. A molec μ Lar evolutionary framework for the phylum Nematoda[J]. Nature(London),1998, 392 (6671):71-75.
    [130] White, J. G.,Southgate, E.,Thomson, J. N.,Brenner, S. The Structure of the Nervous System of the Nematode Caenorhabditis elegans[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences (1934-1990), 1986, 314( 1165): 1 -340.
    [131] Burglin, T. R.,Lobos, E.,Blaxter, M. L. Caenorhabditis elegans as a model for parasitic nematodes[J].International Journal for Parasitology, 1998,28(3):395-411.
    
    [132] Cowden, C.,Stretton, A. O. Eight novel FMRFamide-like neuropeptides isolated from the nematode Ascaris suum[J]. Peptides,1995, 16(3):491-500.
    [133] Fellowes, R. A.,Ma μ Le, A. G.,Marks, N. J.,Geary, T. G.,Thompson, D. P.,Shaw, C.,Halton, D. W. Mod u Lation of the motility of the vagina vera of Ascaris suum in vitro by FMRFamide-related peptides[J]. Parasitology, 1998, 116(03):277-287.
    [134] Trent, C.,Tsung, N.,Horvitz, H. R. EGG-LAYING DEFECTIVE MUTANTS OF THE NEMATODE CAENORHABDITIS ELEGANS[J]. Genetics, 1983, 104(4): 619-647.
    [135] Schinkmann, K.,Li, C. Localization of FMRFamide-like peptides in Caenorhabditis elegans[J]. J Comp Neurol,1992, 316(2):251-260.
    [136] Fellowes. R. A.,Dougan, P. M..Ma μ Le, A. G.,Marks. N. J.,Halton, D. W. Neuromusc μ Lature of the Ovijector of Ascaris suum (Ascaroidea, Nematoda):An M Ltrastructural and Immunocytochemical Study[J]. THE JOURNAL OF COMPARATIVE NEUROLOGY, 1999, 415:518-528.
    [137] Li, C.,Kim, K.,Nelson, L. S. FMRFamide-related neuropeptide gene family in Caenorhabditis elegans[J]. Brain Research, 1999, 848(1 -2):26-34.
    [138] Thompson, D. P.,Davis, J. P.,Larsen, M. J.,Coscarelli, E. M.,Zinser, E. W.,Bowman, J. W.,Alexander-Bowman, S. J.,Marks, N. J.,Geary, T. G. Effects of KHEYLRFamide and KNEFIRFamide on cyclic adenosine monophosphate levels in Ascarissuum somatic muscle[J]. International Journal for Parasitology, 2003, 33(2): 199-208.
    [139] Pang, F. Y.,Mason, J.,Holden-Dye, L.,Franks, C. J.,Williams, R. G.,Walker, R. J. The effects of the nematode peptide, KHEYLRFamide (AF2), on the somatic musc μ Lature of the parasitic nematode Ascaris suum[J]. Parasitology,1995, 110(Pt 3):353-362.
    [140]王运生,谢丙炎,万方浩,肖启明,戴良英.相似穿孔线虫在中国的适生区预测[J].中国农业科学,2007,40(011):2502-2506.
    [141]Smant,G,Stokkermans,J.,Yan,Y.,de Boer,J.M.,Baum,T.J.,Wang,X.,Hussey,R.S.,Gommers,F.J.,Henrissat,B.,Davis,E.L.Endogenous cell μ Lases in animals:Isolation of beta-1,4-endoglucanase genes from two species of plantparasitic cyst nematodes[J].Proceedings of the National Academy of Sciences,1998,95(9):4906.
    [142]Gao,B.,Allen,R.,Maier,T.,Davis,E.L.,Baum,T.J.,Hussey,R.S.Identification of putative parasitism genes expressed in the esophageal gland cells of the soybean cyst nematode Heterodera glycines[J].Mol Plant-Microbe Interact,2001,14:1247-1254.
    [143]Gao,B.,Allen,R.,Maier,T.,Davis,E.L.,Baum,T.J.,Hussey,R.S.Identification of a new β-1,4-endoglucanase gene expressed in the esophageal subventral gland cells of Heterodera glycines[J].Journal of nematology,2002,34(1):12-15.
    [144]Lashbrook.C.C..Gonzalez-Bosch,C.,Bennett,A.B.Two divergent endo-β-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers[J].Plant Cell,1994,6(10):1485-1493.
    [145]Wang,X.,Meyers,D.,Yan,Y.,Baum,T.,Smant,G,Hussey,R.,Davis,E.In planta localization of a β-1,4-endoglucanase secreted by Heterodera glycines[J].Mol Plant-Microbe Interact,1999,12:64-67.
    [146]Goellner,M.,Wang,X.,Davis,E.L.Endo-beta-1,4-glucanase expression in compatible plant-nematode interactions[J].Plant Cell,2001,13(10):2241-2255.