LDMOS功率器件的电热效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
横向双扩散MOS晶体管LDMOS(Lateral Double-diffused MOS transistors)因性能、价格和易于集成等优势,在智能功率集成电路SPIC(Smart Power IntegratedCircuits)中被广泛应用,常作为功率开关器件。随着微电子技术的发展,LDMOS的可靠性成为影响SPIC性能和寿命的关键问题之一。LDMOS器件通常在交流电条件下工作,根据脉冲个数的多少,交流电又可分为正常开关工作的多脉冲和不期望的异常瞬态单脉冲。一方面,在正常开关工作过程中,LDMOS器件自身的电功耗会引起自热现象,器件或SPIC的局部温度会上升;另一方面,当异常的瞬态大电流或高电压单脉冲来临时,例如静电放电ESD(Electro Static Discharge)或过度电应力EOS(Electro Over Stress)脉冲来临时,若LDMOS器件自身泄放静电的ESD能力或抗过度电应力的EOS能力过低,也会发生自热现象,器件或SPIC的局部温度也会急剧上升。如果温度上升过高,就可能引发多晶硅或金属连线的烧毁、器件的热二次击穿、甚至硅片管芯的熔化等严重后果。另外,温度升高也会引发器件本身或周边低压电路的性能发生变化。因此,LDMOS器件的温度特性是关系器件或SPIC热安全工作和可靠性方面的重要问题。
     本论文正是针对上述问题,在充分了解国内外功率器件电热效应和静电放电方面研究现状的基础上,以通常用于SPIC的40V-LDMOS器件为例,重点研究在正常开关模式(重复多脉冲)和异常ESD/EOS(瞬态单脉冲)情况下工作时LDMOS器件内部的电热效应和温度特性,深入分析其物理机制,得到一系列的结论,这些结论可以为深入研究和改善功率器件的可靠性和热安全工作区提供参考。
     本文的独创性工作主要表现在第三章、第四章、第五章和第六章,主要内容为:
     1,利用LDMOS器件的等效热路模型得到器件在外加交流电作用下的温度表达式,并阐述公式所描述的物理意义。在单脉冲作用下器件升温公式的基础上,本文提出单脉冲作用下的降温公式和多脉冲作用下的温度公式,并对照实验结果给予证明和分析。器件内部的温度与初始温度、热特性(热阻和热容等)、外加的电脉冲等参数密切相关。当器件在多脉冲下工作时,温度会发生周期性的“升温、降温、升温”的过程,该过程可以用稳态响应或暂态响应来描述。
     2,研究LDMOS器件在交流电下工作时器件内部的最高温度与工作频率之间的关系,给出较低频率和较高频率下最高温度的表达式。在不同频率下,影响器件温度的参数是不一样的,因此为令器件工作在热安全区,需要调整和优化的参数是随着工作频率而变化的。在较低频率下工作时,最高温度是热阻、热容、功耗、占空比、周期的函数;在较高频率下工作时,器件会处于“一直升温”状态,此时热阻和周期的影响作用将消失,而热容和连续工作时间却成为影响器件温度的主要因素,并给出一定的实验结果予以证明。
     3,研究栅接地LDMOS(Gate-Grounded LDMOS)器件在关断期间,瞬态大电流单脉冲来临时(如ESD脉冲)器件内部发生的电热效应和物理机制。当器件工作在ESD大电流区时,其内部寄生NPN晶体管触发导通,用等温分析方法和电热分析方法得到的输出特性是不同的,本文给出原因分析,并分析温度的分布和温度弛豫时间对漏极电压弛豫时间的影响。电热分析方法既可更准确预测器件的输出特性,还可预测热击穿发生的位置。
     4,研究栅耦合LDMOS(Gate-Coupled LDMOS)器件在正常导通期间,瞬态大电流单脉冲来临时(如ESD脉冲)器件内部发生的电热效应和物理机制。同栅接地相比,正栅压相当于增加寄生NPN管发射极的注入效率,有源区的电流密度、功率密度和温度增加,不利于器件在ESD大电流区工作;而负栅压相当于降低寄生NPN管发射极的注入效率,有源区的电流密度、功率密度和温度减少,利于器件在ESD大电流区工作。
LDMOS (Lateral Double-diffused MOS transistors) power devices are widely used as output drivers in switching modes in SPIC (Smart Power Integrated Circuits) because of their low cost and specific performances. It is significant that the reliabilities of LDMOS devices play a more and more important role responsible for the reliabilities and life-span of both themselves and SPIC with the development of micro-electronics technology. LDMOS devices often operate under DC (Direct Current) or AC (Alternating Current) conditions, where AC includes continuous multi-pulses and the ultra transient single pulse such as ESD (Electro Static Discharge) and EOS (Electro Over Stress). When LDMOS devices operate in switching modes under continuous pulses of applied electric power, the self-heating effects induced by power dissipation occurs and the temperature will fluctuate within the devices. When LDMOS devices operate in self-protecting modes under the ultra transient single pulse such as ESD protection, the ultra transient high current passes through gate-grounded or gate-coupled LDMOS devices and the thermal runaway will often happen. However, LDMOS devices often show a very small thermal safe operation area and striking ESD/EOS vulnerability. If the maximum temperature of LDMOS is beyond the rated range, LDMOS devices will fail and thermally break down, and wires will burn away in SPIC, and other transistors and circuits nearby will degrade, and even chips will melt. It will be especially useful to understand the responsible mechanisms in order to optimize the thermal safe operation area. Therefore, the lattice temperature of LDMOS devices is an important issue.
     In this thesis, the basic responsible physical mechanisms of electro-thermal effects and temperature characteristics mentioned-above have been explored and analyzed for 40V-LDMOS power devices. Then the main results are investigated and veritified which correspond to both switching mode during continuous applied pulses and ultra high voltage/current stress during a single unexpected transient pulse such as ESD conditions. The results given here can be used as a criterion for design the thermal safe operation condition of power devices.
     The author's original main work is summarized as follows, especially in Chapter 3, Chapter 4, Chapter 5 and Chapter 6.
     Firstly, the specific temperature formulas are given and verified to describe periodical characteristics of lattice temperature of LDMOS devices during both continuous multi-pulses and a single pulse of applied electric power with equal thermal circuits, and the rise and fall processes of temperature during a single pulse is described in detail. There are many parameters responsible for the lattice temperature of LDMOS devices such as the initialization, thermal characteristics including thermal resistance and thermal capacitance, the details of applied pulses. Under continuous pulses LDMOS devices will have the periodical rise and fall processes of temperature, then transient response and steady response of lattice temperature are proposed and analysied.
     Secondly, the relation between the maximum temperature and the switching conditions of LDMOS devices under different frequencies is studied. The results show that the maximum temperature in the device depends on the thermal capacitance, the power dissipation, the duty circle and the time of continuous operating under a high switching frequency. Whereas under a low switching frequency, the maximum temperature not only depends on those four parameters, but also depends on the thermal resistance and the period of the cycle.
     Thirdly, the electro-thermal effects of GG-LDMOS (Gate-Grounded LDMOS) under ESD stress are studied. Under ESD stress the intrinsic bipolar transistor will operate. The different output characteristics of GG-LDMOS's intrinsic bipolar transistors by the isothermal and non-isothermal methods are compared and analyzed. The space distribution characteristics of GG-LDMOS are described and the influence of delay time of lattice temperature on delay time of drain voltage is proposed. It is shown that the results of the non-isothermal method are more consistent with experimental data than those of the isothermal method. With the non-isothermal method, the better output characteristics of GG-LDMOS can be gained, and the location where thermal failure will occur can be estimated.
     Fourthly, the electro-thermal effects of GC-LDMOS (Gate-Coupled LDMOS) under ESD stress are studied. The influence of gate voltages on temperature of GC-LDMOS under ultra-high transient currents is studied. In comparison with gate-grounded conditions, the temperature in the device rises when gate voltages are positive which add the injection efficiency of electrons in intrinsic bipolar transistor, and that the temperature falls when gate voltages are negative which reduce the injection efficiency of electrons in intrinsic bipolar transistor. The distributions of electric fields, conduction currents and dissipated power densities under different gate voltages are investigated and compared. It is proved that positive gate voltages weaken the ESD capability of GC-LDMOS, and that negative gate voltages enhance the ESD capability.
引文
[1]Chen Xing-bi,Theory of a novel voltage-sustainning composite buffer(CB) layer for power devices.Chinese Journal of Electronics,1998,7(3):211-216.
    [2]张立.电力电子技术的现状与未来.电子了望,1992,8:11-14
    [3]阮刚.集成电路工艺和器件的计算机模拟.上海:复旦大学出版社,2007,7-224
    [4]Jai P A.Power Electronic Systems-Theory and Design,北京:清华大学出版社,2001,3-7
    [5]Wyk J D,Lee F C.Power electronics technology at the dawn of the new millennium-status and future.IEEE,Power Electronics Specialists Conference(PESC1999),1999,3-12
    [6]Baliga B J,Trends in Power Semiconductor Devices,IEEE Trans.on Electron Devices,1996,43(10):1717-1731
    [7]Amato M,Bruning G,Mukherjee S,et.al.Power integrated circuits.Philips Tech.1989,44(8):310-320
    [8]Baliga B J.An overview of smart power technology.IEEE Trans.on Electron Devices,1991,38(7):1568-1575
    [9]陈星弼.功率MOSFET与高压集成电路.南京:东南大学出版社,1990,148-357
    [10]Rossel P,Buxo J,Bafleur M,et.al.Smart power and high voltage integrated circuits and related MOS technologies.Microelectronics Journal,1989,Vol.20:77-102
    [11]Robb S P,Sutor J L,Terry L.Industry Trends in Power Integrated Circuits.IEEE International Electron Devices Meeting(IEDM'88) Tech.Dig.,1988,792-795
    [12]Cini C,Palara S,Seragnoli G.A new chip and a new package for higher power.IEEE Trans.on Consumer Electronics,1980,26(2):54-71
    [13]Josef Einzinger,Ludwig Leipoid,Jeno Tihanyi,et.al.Monolithic IC Power Switch for Automotive Applicatons.IEEE International Solid-State Circuits Conference(ISSCC86),1986,22-23
    [14]Menniti P,Pellegrini F,Seragnoli G.A New Voltage Regulator Protects the Automotive Electronics.IEEE Trans.on Consumer Electronics,1980,Vol.26:211-221
    [15]Wacyk I,Amato M,Rumennik V.A power IC with CMOS analog control.IEEE International Solid-State Circuits Conference(ISSCC'86),1986,16-17
    [16]Pappia Z,Ander C,Salama T,et.al.A CMOS-Compatible High-Voltage IC Process.IEEE Trans.on Electron Devices,1988,35(10):1687-1694
    [17]Elmoznine A,Buxo J,Bafleur M,et.al.The smart power high-side switch:description of a specific technology,its basic devices,and monitoring circuits.IEEE Trans.on Electron Devices,1990,37(4):1154-1160
    [18]Shibib M A.A Cost-Effective Smart Power BiCMOS Technology.International Symposium on Power Semiconductor Devices and ICs(ISPSD'95),1995,48-53
    [19]Chen X B,Mawby P A,Salama C A T,et.al.Lateral high-voltage devices using an optimized variational lateral doping.International Journal of Electronics,1996,80(3):449-459
    [20]Chen Xing-bi,Fan xue-feng.Optimum VLD makes SPIC better and cheaper.Solid-State and Integrated-Circuit Technology(ICSICT'01),2001,Vol.1:104-108
    [21]陈星弼.一种用于有浮动端的半导体器件的耐压层.中国专利,电学,申请专利号98116187.1,公开号CN1243334A,公开日 2000.2.2
    [22]陈星弼.横向低侧高压器件及高侧高压器件.中国专利,电学,申请专利号CN200310101268.6,公开号CN1529363,公开日2004.09.15
    [23]Rumennik V.Power devices are in the chips.IEEE Spectrum,July 1985:42-48
    [24]Einzinger J,Leipoid L,Tihanyi J,et.al.Monolithic IC Power Switch for Automotive Applicatons.IEEE International Solid-State Circuits Conference,1986,22-23
    [25]Menniti P,Pellegrini F,Seragnoli G.A New Voltage Regulator Protects the Automotive Electronics.IEEE Trans.on Consumer Electronics,1980,26(3):211-223
    [26]Baliga B J.Power IC in the saddle.IEEE Spectrum,32(7),July 1995:34-40,45-9
    [27]全球半导体及功率半导体市场综述,http://article.ednchina.com/2003-8/AtcShow20051271307451.htm
    [28]林渭勋.现代电力电子技术.北京:机械工业出版社,2006,7-9
    [29]Chen Xing-bi.Semiconductor power devices with alternating conductivity type high-voltage breakdown regions.U.S.,Electronic Science and Technology,University of Electronic Science and Technology of China(CN),U.S.Patent:5,216,275,June 1,1993
    [30]Lorentz L,Deboy G,Knapp A,et.al.COOLMOS/sup TM/-a new milestone in high voltage power MOS.Proc.of 11th International Symposium on Power Semiconductor Devices and ICs (ISPSD'99)(IEEE),1999,3-10
    [31]2007年电子行业三大绿色预言,http://www.eetchina.com/ART_8800449930_480201_bf595cd8200701.HTM
    [32]Wacyk I,Amato M,Rumennik V.A power IC with CMOS analog control.IEEE International Solid-State Circuits Conference(ISSCC'86),1986,16-17
    [33]黄江,王卫华.新型的功率器件——射频LDMOS.微波学报,2006,22(3):48-51
    [34]Appels J A,Collet M G,Hart P A H,et al.Thin layer high-voltage devices(RESURF devices).Philips J.Res.,1980,35(1):1-13
    [35]Colak S.Effects of Drift Region Parameters on the Static Properties of Power LDMOST.IEEE Trans.on Electron Devices,1981,28(12):1455-1466
    [36]Stupp E H,Colak S,Ni J.Low Specific On-Resistance 400V LDMOST.IEEE International Electron Devices Meeting(IEDM'81) Tech.Dig.,1981,426-428
    [37]Serag ED Habib.The ALDMOST:A new power MOS transistor.IEEE Electron Device Lett.,1987,8(6):257-259
    [38]Charitat G,Bouanane M A,Rossel P.A new junction termination technique for power devices:RESURF LDMOS with SIPOS layers.Proc.of 4th International Symposium on Power Semiconductor Devices and ICs(ISPSD'92)(IEEE),Tokyo,1992,213-216
    [39]Nezar A.,Salama C A T.Breakdown voltage in LDMOS transistors using internal field ring.IEEE Trans.on Electron Devices,1991,38(7):1676-1680
    [40]Ajit J S,Kinzer D,Ranjian N.1200V High-Side Lateral MOSFET in Junction-Isolated Power IC Technology Using Two Field-Reduction Layers.Proc.of 5th International Symposium on Power Semiconductor Devices and ICs(ISPSD'93)(IEEE),1993,230-235
    [41]Terashima T,Yoshizawa M,Fukunaga M,et.al.Structure of 600V IC and A new voltage sensing device.Proc.of 5th International Symposium on Power Semiconductor Devices and ICs (ISPSD'93)(IEEE),1993,224-229
    [42]Mena J G,Salama C A T.HIGH-VOLTAGE MULTIPLE-RESISTIVITY DRIFT-REGION LDMOS.Solid-State Eletronics,1986,29(6):647-656
    [43]Chen Xing-bi,Song Z Q,Li Z J.Theoey of optimum design of reversed-biased p-n junctions using resisitive field plates and variational lateral doping.Solid State Electronics,1992,Vol.35:1365-1370
    [44]陈星弼,蒋旭.突变平面结表面电场的近似公式.成都电讯工程学院学报,1986,15(3):34-44
    [45]Sameer Pendharkar.Technology Requirements for Automotive Electronics.Vehicle Power and Propulsion,2005 IEEE Conference,2005,860-811
    [46]Hower P L,Pendharkar S.Short and long-term safe operating area considerations in LDMOS transistors.Reliability Physics Symposium,43rd Annual,2005,545-550
    [47]Mergens M,Wilkening W,Mettler S,et al.Analysis and Compact Modeling of Lateral DMOS Power Devices under ESD Stress Conditions.Proc.21st.EOS/ESD Symp.,Orlando,FL,1999,1-10
    [48]Mergens M,Wilkening W,Mettler S,et al.Analysis of Lateral DMOS Power Devices under ESD Stress Conditions.IEEE Trans.on Electron Devices,2000,47(11):2128-2137
    [49]Amerasekera Ajith,Duvvury Charvaka.ESD in Silicon Integrated Circuits.2nd Edition John Wiley & Sons Ltd,2002,1-15
    [50]Baliga B J.Power semiconductor device figure-of-merit for high-frequency applications.IEEE Electron Device Lett.,1989,10(10):455-457
    [51]Sze S M.Physicsof Semiconductor Devices.2nd edition,USA,John Wiley & Sons,Inc,1981,41-43
    [52]陈星弼,唐茂成.晶体管原理与设计.成都:成都电讯工程学院出版社,1987,147-154
    [53]Green T.A review of EOS/ESD field failures in military equipment,Proceedings of the 10th EOS/ESD Symposium,1988,7-14
    [54]Wagner R G,Soden J,Hawkins C F R.,et al.Extent and cost of EOS/ESDdamage in an IC anufacturing process.Proc.15th,EOS/ESD Symp,1993,49-55
    [55]Chung Y S,Valenzuela O,Baird B.Mechanism of power dissipation capability of power MOSFET devices:comparative study between LDMOS and VDMOS transistors.Proc.of 13th International Symposium on Power Semiconductor Devices and ICs(ISPSD'01)(IEEE),Osaka,Japan,2001,275-278
    [56]Khandelwal P,Trivedi M,Shenai K,et al.Thermal and package performance limitations in LDMOSFETs for RFIC applications.IEEE Trans Microwave Theory Tech,1999,47(5):575-584
    [57]顾祖毅,田立林,富力文.半导体物理学.北京:电子工业出版社,1995,255-258
    [58]Ma G;Burger W,Dragon C,Gillenwater T.High Efficiency LDMOS Power FET for Low Voltage Wireless Communications.IEEE International Electron Devices Meeting(IEDM'96)Tech.Dig.,San Francisco,CA,USA,1996,91-94
    [59]Brech H,Brakensiek W,Burdeaux D,et al.Record Efficiency and Gain at 2.1GHz of High Power RF Transistors for Cellular and 3G Base Station,IEEE International Electron Devices Meeting(IEDM'03) Tech.Dig.,2003,359-602
    [60]Ma G,Chen Q,Tornblad O,et al.High frequency power LDMOS technologies for base station applications status,potential,and benchmarking.IEEE International Electron Devices Meeting (IEDM'05) Tech.Dig.,2005,361-364
    [61]TMA Medici,Avant Technology Modeling Associates,Inc Version 2,Palo Alto,CA,USA,1994,2-80
    [62]Yu Z,Dutton R W,SEDAN Ⅲ-a generalized electronic material device analysis program.Integrated Circuits Laboratory,Technical Report,Stanford University(1985)(unpublished)(无页码).
    [63]Stratton R.Semiconductor current-flow equations(diffusion and degeneracy).IEEE Trans.Electron Devices,1972,19(12):1288-1300
    [64]Mayaram K,Chem J H,Arledge L,et al.Electrothermal simulation tools for analysis and design of ESD protection devices.IEEE International Electron Devices Meeting(IEDM'91)Tech.Dig.,1991,909-912
    [65]Gaur S P,Navon D H.Two-dimensional carrier flow in a transistor structure under nonisothermal conditions.IEEE Trans.on Electron.Devices,1976,23(1):50-57
    [66]Wachutka K.Rigorous thermodynamic treatment of heat generation and conduction in emiconductor device modeling.IEEE Trans.on Computer-Aided Design,1990,9(11):1141-1149
    [67]田立林,郝明.半导体器件电热耦合模拟程序的开发与应用.清华大学学报(自然科学版),1999,39(supp.1)(无页码)
    [68]Tauc J,Abraham A.Thermal breakdown in silicon p-n junctions.Phys.Rev.,1957,108(4):936-937
    [69]Scarlett R M,Shockley W,Haitz R H.Thermal instabilities and hot spots in junction transistors.Physics of Failure in Electronics,M.F.Goldberg and J.Vaccaro,Eds.Baltimore,MD:Spartan Books,1963,194-203
    [70]Thomton C G,Simmons C D.A new high current mode of transistor operation.IEEE Trans.on Electron Devices,1958,5(1):6-10
    [71]Schafft H A,French J C.Second breakdown in transistors.IEEE Trans.on Electron Devices,1962,9(2):129-136
    [72]Schafft H A,French J C.A survey of second breakdown.IEEE Trans.on Electron Devices,1966,13(8):613-618
    [73] Schafft H A, French J C. Second breakdown and current distributions in transistors.Solid State Electronics, 1966,9(7): 681-688
    [74] Bergmann F, Gerstner D. Some new aspects of thermal instability of the current distribution in power transistors. IEEE Trans. on Electron Devices, 1966,13(8): 630- 634
    [75] Melchior H, Strutt M J O. Secondary breakdown in transistors. Proceedings of the IEEE, 1964, 52(4): 439-440
    [76] Khurana B S, Sugano T, Yanai H. Thermal breakdown in silicon p-n junction devices. IEEE Trans. on Electron Devices, 1966,13(11): 763- 770.
    [77] Shaw M P, Mitin V, Scholl V E, et al. The Physics of Instabilities in Solid State Electron Devices. New York, Plenum Pubilishing corporation, 1992,393-396
    [78] Orvis W J, Mcconaghy C F, Yee J H. Modeling and testing for second breakdown phenomena. Proc. 5th EOS/ESD Symp., 1983,108-117
    [79] Ward A L. An electrothermal model of second breakdown. IEEE Trans. Nucl. Sci., 1976, Vol. 23:1679-1684
    [80] Ward A L. Studies of second breakdown in silicon diodes. IEEE Trans.Parts, Mater. Packag, 1977,Vol.13:361-368
    [81] Chen H C, Portnoy W M, Ferry D K. Doping dependence of second breakdown in a p-n junction. Solid-State Electronics, 1971, Vol.14:747-751
    [82] Wunsch D C, Bell R R. Determination of threshold failure levels of semiconductor diodes and transistors due to pulse voltages. IEEE Trans. Nucl. Sci., 1968, Vol.15:244-259
    [83] Tasca D M. Pulse power failure modes in semiconductors. IEEE Trans. Nucl. Sci., 1970, Vol. 17: 364-372
    [84] Amerasekera A, Roozendaal L van, Bruines J, et al. Characterization and modeling of second breakdown in NMOST's for the extraction of ESD-related process and design parameters. IEEE Trans. on Electron Devices, 1991, 38(9):2161-2168
    [85] English A C. Mesolasmas and second breakdown in silicon junctions. Solid State Electronics, 1963, 6(5):511-521
    
    [86] Ridley B K. Specific negative resistance in solids.Proc. Phys. Soc, 1963, Vol.82:954-966
    [87] Bamett A M, Milnes A G. Filamentary injection in semiinsulating silicon. J. Appl. Phys., 1966,Vol. 37: 4215-4223
    [88] English A C. Physical investigation of the mesoplasma in silicon. IEEE Trans. on Electron Devices, 1966, Vol.13: 662-667
    [89] Amerasekera A, Chang A, Seitchik M C, J A, et al. Self-heating effects in basic semiconductor structures.IEEE Trans. on Electron Devices, 1993,40(10): 1836-1844
    [90] Merchantn S, Baird R, Bennett P, et al. Energy capability of lateral and vertical DMOS transistors in an advanced automotive smart power technology . Proc. of 10th International Symposium on Power Semiconductor Devices and ICs (ISPSD'98)(IEEE), 1998,317 - 320
    [91] Hower P, Lin J, Haynie S, et al. Safe operating area considerations in LDMOS transistors. Proc. of 11th International Symposium on Power Semiconductor Devices and ICs (ISPSD'99)(IEEE), 1999,55-58
    [92] Hower P L, Lin J, Merchant S. Snapback and safe operation area of LDMOS transistors. IEEE International Electron Devices Meeting (IEDM'99) Tech. Dig., 1999,193-196
    [93] Hower P, Tsai C Y, Merchant S, et al. Avalanche-induced thermal instability in Ldmos transistors. Proc. of 13th International Symposium on Power Semiconductor Devices and ICs (ISPSD'01)(IEEE), 2001,153 - 156
    [94] Hower P, Safe operating area - a new frontier in Ldmos design. Proc. of 14th International Symposium on Power Semiconductor Devices and ICs (ISPSD'02)(IEEE), 2002 ,1-8.
    [95] Chung Y S, Baird B. Electrical-thermal coupling mechanism on operating limit of LDMOS transistor. IEEE International Electron Devices Meeting (IEDM'2000) Tech.Dig., 2000, 83 - 86
    [96] Chung Y S, Valenzuela O, Baird B.Mechanism of power dissipation capability of power MOSFET devices: comparative study between LDMOS and VDMOS transistors. Proc. of 13th International Symposium on Power Semiconductor Devices and ICs (ISPSD'01)(IEEE), 2001, 275-278
    [97] Hower P L, Pendharkar S. Short and long-term safe operating area considerations in LDMOS transistors. Reliability Physics Symposium, Proceedings. 43rd Annual. IEEE International, 2005, 545-550
    [98] Pendharkar S, Higgins R, Debolske T, et al. Optimization of low voltage n-channel LDMOS devices to achieve required electrical and lifetime SOA. Proc. of 14th International Symposium on Power Semiconductor Devices and ICs (ISPSD'02)(IEEE), 2002 , 261 - 264
    [99] Moens P, Van Den Bosch G Characterization of Total Safe Operating Area of Lateral DMOS Transistors. Device and Materials Reliability. IEEE Transactions, 2006, 6(3):349 - 357
    [100] Chung Y S. Junction temperature induced thermal snapback breakdown of MOSFET device. IEEE Electron Device Lett, 2002,23(10): 615-617
    [101] Besse P, Nolhier N, Bafleur M, et al. Investigation for a Smart Power and self-protected device under ESD stress through geometry and design considerations for automotive applications, Proc. ESD/EOS Symp. 2002, 348-353
    [102] Moens P, Bychikhin S, Reynders K, et al. Dynamic of integrated vertical DMOS transistors under 100 ns TLP stress. IEEE Trans, on Electron Devices, 2005,52( 5):1008-1013
    [103] Dwyer V M, Franklin A J, Campbell D S.Thermal failure in semiconductor devices. Solid State Electron., 1990, 33(5):553-560
    [104] Efland T R, Tsai CY. Pendharkar S.Lateral thinking about power devices (LDMOS). IEEE International Electron Devices Meeting (IEDM'98) Tech.Dig., 1998,679-682
    [105] Merchant S, Baird R, Bennett P, et al. Energy capability of lateral and vertical DMOS transistors in an advanced automotive Smart Power technology, Proc. of 10th International Symposium on Power Semiconductor Devices and ICs (ISPSD'98)(IEEE), Kyoto, Japan, 1998,317-320
    [106] Hower P, Tsai CY, Merchant S, et al. Avalanche-induced thermal instability in LDMOS transistors, Proc. of 13th International Symposium on Power Semiconductor Devices and ICs (ISPSD'01)(IEEE), 2001,153-156
    [107] Khemka V, Parthasarathy V, Zhu R, et al. Experimental and theoretical analysis of energy capability of RESURF LDMOSFETs and its correlation with static electrical safe operating area, IEEE Trans. on Electron Devices, 2002,49(6): 1049-1058
    [108] Alagi F, Labate L, Andreini A, et al. Sub-millisecond energy handling capability improvement of IC power devices with thick copper metallization. Proc. of 15th International Symposium on Power Semiconductor Devices and ICs (ISPSD'03)(IEEE), 2003,249-252
    [109] Khemka V, Parthasarathy V, Zhu R, et al. Detection and optimization of temperature distribution across large-area power MOSFETs to improve energy capability, IEEE Trans.on Electron Devices, 2004, 51(6): 1025-1032
    [110] Khemka V, Parthasarathy V, Zhu R, et al. A novel technique to decouple electrical and thermal effects in SOA limitation of power LDMOSFET, IEEE Electron Device Lett., 2004,25(10): 705-707
    [111] Versari R, Pieracci A, Manzini S, et al. Hot carrier reliability in submicrometer LDMOS transistors, International Electron Devices Meeting (IEDM'97) Tech.Dig., Washington, DC, USA, 1997,371-374
    [112] Versari R, Pieracci A. Experimental study of hot-carrier effects in LDMOS transistors, IEEE Trans. on Electron Devices, 1999,46(6): 1228-1233
    [113] Donovan V O, Whiston S, Deignan A, et al. Hot carrier reliability of lateral DMOS transistors, Proc. Int. Reliab. Phys. Symp. (IRPS'2000), 2000,174-179
    [114] Manzini S, Gallerano A. Avalanche injection of hot holes in the gate oxide of LDMOS transistors, Solid State Electronics, 2000,44(7): 1325-1330
    [115] Brisbin D, Strachan A, Chaparala P. Hot carrier reliability of N-LDMOS transistor arrays for power BiCMOS applications, Proc. Int. Reliab. Phys. Symp(IRPS'2002), 2002,105-110
    [116]Labate L, Manzini S, Rogerro R. Hot-hole-induced dielectric breakdown in LDMOS transistors. IEEE Trans. on Electron Devices, 2004,50(2): 372-377
    [117] Moens P, Tack M, Degraeve R, et al. A novel hothole injection degradation mechanism for lateral nDMOS transistors. International Electron Devices Meeting (IEDM'01) Tech.Dig., Washington, DC, USA ,2001, 877-880
    [118] Moens P, Van den bosch G, Groeseneken G. Hot carrier degradation phenomena in lateral and vertical DMOS transistors, IEEE Trans.on Electron Devices, 2004,51(4):623-628
    [119] Moens P, Van den bosch G, De Keukeleire C, et al. Hot hole degradation effects in lateral nDMOS transistors, IEEE Trans.on Electron Devices, 2004, 51(10): 1704-1710
    [120] Wagner R G, Soden J, Hawkins C F.Extent and cost of EOS/ESD damage in an IC manufacturing process, Proceedings of the 15th EOS/ESD Symposium, 1993,49-55
    [121] Merrill R, Issaq E.ESD design methodology.Proceedings of the 15th EOS/ESD Symposium, 1993,233-237
    [122] Jeremy Smallwood. A Guide to ESD, Electrostatic Solutions Ltd, EMS&Compliance journal, 2003,23-31
    [123] Ming-Dou Ker.Whole-Chip ESD Protection Design with Efficient VDD-to-VSS ESD Clamp Circuits for Submicron CMOS VLSI.IEEE Trans. on Electron Devices, 2004,46(1): 173-183
    [124] Duwury C, Carvajal F, Jones C, et al. Lateral DMOS design for ESD robustness. International Electron Devices Meeting (IEDM'97) Tech.Dig., 1997, 375-378
    [125]Pendharkar Sameer,Ross Teggatz,Joe Devore,et al.SCR-LDMOS-A novel LDMOS Device with ESD Robustness.Proc.of 12th International Symposium on Power Semiconductor Devices and ICs(ISPSD'2000)(IEEE),Toulouse,France,2000,341-344
    [126]Lee JH,Shih JR,Tang CS,et al.Novel ESD Protection Structure with Embedded SCR LDMOS for Smart Power Technology.IEEE 40th Annual Intenational Reliability Physics Symposium,Dallas,Texas,2002,156-161
    [127]Parthasarathy V,Khemka V,Zhu Ronghua,et al.A Double RESURF LDMOS With Drain Profile Engineering for Improved ESD Robustness,IEEE Electron Device Lea.,2002,23(4):212-214
    [128]Chung Y,Besse P,Zeeri M,et al.Geometry Effect on Power and ESD Capality of LDMOS Power Devices.Proc.of 15th International Symposium on Power Semiconductor Devices and ICs(ISPSD'03)(IEEE),Cambridge,UK,2003,265-268
    [129]Dolny G M,Nostrand G E,Hill KE,et al.The Effect of Temperature on Lateral DMOS Transistors in a Power IC Technology.IEEE Trans.on Electron Devices,1992,39(4):990-995
    [130]Denison M,Blaho M,Rodin P,et al.Moving Current Filaments in Intergrated DMOS Transistors under Short-Duration Current Stress,IEEE Trans.on Electron Devices,2004,51(10):1695-1703
    [131]李梅芝,韦光萍,陈星弼.LDMOS的局部电热效应分析.半导体学报,2005,26(9):1823-1828
    [132]李梅芝,郭超,陈星弼.LDMOS在正常开关工作下的瞬态热效应.半导体学报,2006.27(11):1889-1993
    [133]Kevin F,Krishna S.Electrothermal effects during unclamped inductive switching(UIS) of power MOSFET's.IEEE Trans.on Electron Devices,1997,44(5):874-878
    [134]李瀚荪.电路分析基础.第三版(中册),北京:高等教育出版社,1993,57-79
    [135]Min Y J,Palisoc A L,Lee C C.Transient thermal study of semiconductor devices,sixth IEEE semi-therm TM symposim,1990,82-88
    [136]Angel C,Gillon R,Ionescu A M.Self-heating characterization and extraction method for thermal resistance and capacitance in HV MOSFETS.IEEE Trans.on Electron Devices,2004,25(3):141-143
    [137]Tazzoli A,Meneghesso G,Zanoni E.A novel fast and versable temperature measurement system for LDMOS transistors.Microelectronincs Reliability,2005,Vol.45:1742-1745
    [138]Min Y J,Palisoc A L,Lee C C.Transient thermal study of semiconductor devices.IEEE Trans.on Components,HYBRIDS and manufacturing technology,1990,13(14):980-988
    [139]Baliga B J.Power Semiconductor Device Figure of Merit for High-Frequency Applications.IEEE Trans.on Electron Devices,1989,10(10):455-457
    [140]李梅芝,陈星弼.LDMOS开关在不同频率下的热安全工作.半导体学报,2007,28(6):938-942
    [141]Vinson C A,David HN,Luke J,et al.Time-dependent carrier flow in a transistor stucture under nonisothermal conductions.IEEE Trans.on Electron Devices,1977,Vol.24:1297-1304