遥感影像数据的保护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术迅猛发展,遥感影像数据日益成为民用空间信息服务的主要数据源,因此海量遥感影像数据的专项保护技术急待研究。
     目前,针对一维文本数据、多维多媒体数据的保护方法,如版权保护的数字水印技术,保障数据机密性的加密技术,已有大量的可行性研究。但这些保护技术面对遥感影像数据的海量、重构图的精度要求,显示了无法克服的弱点。
     分组加密算法常用于大数据量的加密保护。如果直接用于遥感数据,就无法避免同一密钥的高频使用。此外,以数学复杂变换为保障的分组加密算法所需的计算资源,是实时数据处理中难于承受的。
     数字水印技术是用于数字多媒体数据的版权保护的技术。遥感数据解译精度要求,使得水印的添加位置和强度大小受到限制,必须具有强抗压缩的能力。
     依照Kerckhoff第一安全原则和系统安全判定的依据,本文结合遥感影像的编码方法和遥感影像解译的要求,提出了以下保护方法:
     (1)基于嵌入式零树编码(Zero-tree Embedded Coding ,EZW)的鲁棒性版权保护方法:
     压缩是对遥感影像数据版权的主要攻击手段。EZW是高效的编码方法,在遥感数据的EZW域,采取量化替换策略进行水印添加,在满足遥感影像数据精度的要求下,实现了具有抗压缩攻击能力的鲁棒性版权保护。
     (2)引入混沌加密理论的数据保护方法:
     混沌系统对初始条件敏感,长期性演化不可预测,为实现计算机真随机数序列提供了方法。本文首次引入了安全的TD-ERCS混沌系统,实现了静态专题解译遥感影像数据在DCT压缩域多维单向性置乱保护的方法,解决了分组加密时密钥复用的致命弱点。
     (3)提出了EZW算法与混沌加密相结合的实时传输保护方法:
     实时数据处理的计算资源是有限的,数据加密过程受到计算资源的制约。本文提出的组合算法,运用混沌理论,在遥感影像数据的EZW压缩域,对实时数据进行置乱保护,满足遥感影像精度要求的同时解决了计算资源占用的问题。
With the rapid development of space technology, data from global positioning systems, photogrammetric and remote sensing technology have become the important data source of SIG service. Therefore, the protection technologies for remote sensing images are in urgent need to research.
     There are a large number of feasible protection methods for one-dimensional text stream and multi-dimensional multimedia stream. However, these technologies are incapable to protect the massive remote sensing data.
     Block cipher algorithm is current the protection means for large volume of data. If it were directly applied to remote sensing data, there would be the following problems. Firstly, it can not be avoided the high-frequency of key use. Secondly, the computer resources are rarely capability for encryption on real-time data processing.
     Digital watermarking technology is copyright protection for digital multimedia data. The request of remote sensing data interpretation accuracy makes the watermark position and intense are limited. Compression attack is the main attack means for robust watermark.
     Therefore, the remote sensing copyright protection technology must be strong enough to against compression assault.
     Accordance with the Kerckhoff’s first principle of security and the deduced rule of system security, this paper proposes protection methods for remote sensing images with the coding technology by analyzing the statistical characteristics of remote sensing data to satisfy the precision request of interpretation. The protection methods are followed:
     (1) Robust copyright protection scheme based on Zero-tree Embedded Coding (EZW)
     EZW is a highly efficient coding method for the massive data compression ratio during the datum transmission. The proposed watermark scheme in this paper on the EZW domain satisfies the requirements of precision and compression.
     (2) Introducing the chaos encryption theory to encrypt data
     The chaotic encryption theory is different from the traditional way on key’s diffuseness and confusion. The proposed scheme in this paper takes full advantage of the sensitivity on initial values to diffuse key to get certain and stochastic chaotic sequences, and takes full advantage of the reconstruction difficulty of the non-period and reproducible chaotic sequence to to get non-correlated chaotic sequences. The proposed symmetrical algorithm avoids the high frequency use of key in block cipher algorithm by introducing secured TD-ERCS chaotic model.
     (3) Encryption algorithm combining EZW and chaos for the real-time/ quasi-real-time remote sensing image
     The massive volume real-time/quasi-real-time remote sensing image protection and transmission are limited by the computing resources. The proposed algorithm scrambled the EZW coefficients by chaotic sequences to ensure the data confidentiality in transmission.
引文
[1] Allcock W E, Foster I, Madduri R. 2004. Reliable Data Transport: A Critical Service for the Grid. In: Building Service Based Grids Workshop, Global Grid Forum 11.
    [2] Allcock W, Chervenak A, Foster I, et al. 2001. Globus Toolkit Support for Distributed Data-Intensive Science. In: Proc. Computing in High Energy Physics (CHEP '01), Sept. 2001. Tokyo Japan: Universal Academy Press, 35-38.
    [3] Alvarez G, Montoya F, Romera M, et al. 2003. Cryptanlysis of a chaotic secure communication system. Physics Letters A, 306:200-205.
    [4] Anderson R J, Fabien A. P. Petitcolas. 1998. On the Limits of Stegannography. IEEE Journal of Selected Areas in Communications, 16(4):474-481.
    [5] Andra K, Chakrabarti C, Acharya T. 2002. A VLSI architecture for lifting-based forward and inverse wavelet. Signal Procesing, IEEE Transactions on, 50(4):966-977.
    [6] Antonini M. 1992. Image coding using Wavelet Transform. IEEE Trans. Image Proc, 1(2):205-220.
    [7] Beylkin G. 1992. On the Representation of Operators in Bases of Compactly Supported Wavelets. SIAM J Numer Anal, 29(3)1716-1740.
    [8] Biryukov A, Canniere C D. 2003. A toolbox for cryptanalysis: linear and affine equivalence algorithms. In: Proceedings of Eurocrypt’2003, LNCS2656, 33-50.
    [9] Canetti R., Krawczyk H. 2001. Analysis of key-exchange protocols and their use for building secure channels. Proceedings of the Cryptology-Eurocrypt, 453-474.
    [10] Chang C C, Hu Y S, Lu T C. 2006. A watermarking-based image ownership and tampering authentication scheme. Pattern Recognition Letters, 27:439–446.
    [11] Chen G, Mao Y B, Chui C K. 2004. A sysmmetric image encryption scheme based on 3D chaotic cat maps. Chao, Solitions and Fractals, 21:749-761.
    [12] Chen R J, Lai J L. 2007. Image security system using recursive cellular automata substitution. Pattern Recognition, 40:1621-1631.
    [13] Chen T-H, Tsai D-S. 2006. Owner–customer right protection mechanism using awatermarking scheme and awatermarking protocol. Pattern Recognition, 39 :1530–1541.
    [14] Cheng Q, Wang Y-G, Thomas S H. 2004. Performance analysis and error exponents of asymmetric watermarking systems. Signal Processing, 84:1429–1445.
    [15] Chervenak A L, Palavalli N, Bharathi S, et al. 2004. Performance and Scalability of a Replica Location Service. In: Proc. the International IEEE Symposium on High Performance Distributed Computing (HPDC-13), Hawaii, USA. 2004. IEEE Press, 182-191.
    [16] Chi C H, Lin Y, Geng J, et al. 2001. Automatic proxy-based watermarking for WWW. Computer communications, 24:144-154.
    [17] Choi H, Lee K, Kim T. 2004. Transformed-key asymmetric watermarking system. IEEE Signal Processing Letters, 11(2): 251-254.
    [18] Christopoulos C, Askelof J, Larsson M. 2000. Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard. IEEE Signal Processing letters, 7(9):247-249.
    [19] Coifman R R, WickerHauser M V. 1992. Entropy-based algorithms for best basis selection. IEEE Trans. Inform Theroy, 38:713-718.
    [20] Coifman R. 1990. Adapted Multiresolution Analysis, Computation, Signal Processing and Operator Theory. In: Yale Univ. New Heaven, Lecture Notes, International Congress of Math.
    [21] Collins T, Atkins P. 2001. Error-tolerant SPIHT image compression. IEEE Proceedings-Vision, Image and Signal Processing, 148(3):182-186.
    [22] Cotronei M, Lazzaro D, Montefusco L B, at el. 2000. Image compression through embedded multiwavelet transform coding. IEEE Trans.on Image Processing, 9(2):184-189.
    [23] Cox I J, Miller M L., Bloom J A. 2002. Digital Watermarking. 北京:电子工业出版社.
    [24] Craver S, Katzenbeisser S. 2001. Copyright protection protocols based on asymmetric watermark: the ticket concept. In: Proceedings of the Sixth Conference on Communication and Multimedia Security, German, 159-170.
    [25] Czajkowski K, Foster I, Kesselman C. 2001. Resource Co-Allocation in Computational Grids. In: Proc. the 8th IEEE International Symposium on High Performance Distributed Computing (HPDC-8), Redondo Beach, California, USA. 2001. IEEE Press, 219-228.
    [26] Daemen J, Knudsen L, Rijmen V. 1997. The block cipher square, fast software encryption. Proceedings of the 4th International Wo rk shop, Sp ringer Verlag, 469- 472.
    [27] Bogumi D. 2006. An asymmetric image watermarking scheme resistant against geometrical distortions. Signal Processing: Image Communication, 21:59–66.
    [28] Do M N, Vetteli M. 2002. Wavelet based texture retrieval using generalized Gaussian density and Kullback eibler distance. IEEE Trans. on image processing, 11(2):146-158.
    [29] Eggers J J, Su J K, Girod B. 2000. Asymmetric watermarking schemes. In: Sicherheit in Mediendaten, GMD Jahrestagung, Springer Verlag, 2000.
    [30] Eggers J J, Su J K, Girod B. 2000. Public key watermarking by eigenvectors of linear transforms. In: Proceedings of European Signal Processing Conference, Tampere, 2000.
    [31] Ercelebi E, Suba? A. 2005. Robust multi bit and high quality audio watermarking using pseudo-random sequences. Computers and Electrical Engineering, 31:525-536.
    [32] Fabien A P Petitcolas, Ross J. Anderson, Markus G. Kuhn. 1999. Information Hiding—A Survey. Proceedings of the IEEE, special issue on protection of multimedia content, 87(7): 1062-1078.
    [33] Fekete G R. 1990. Managing Spherical Data with Sphere Quadtrees. In: The First 1990 IEEE Conference on Visualization, San Francisco, California, 1990.
    [34] Fornaro C, Sanna A. 2000. Public key watermarking for authentication of CSG models. Computer-Aided Design, 32:727–735.
    [35] Foster I. 2002a. The Grid: A New Infrastructure for 21st Century Science. Physics Today, 55(2):42-47.
    [36] Foster I. 2002b. What is the Grid? A Three Point Checklist. http://www-fp.mcs.anl.gov/~foster/Articles/WhatIs TheGrid.pdf,
    [37] Foster I, Kesselman C, Nick J, et al. 2002. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. In: Open Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002.
    [38] Foster I, Kesselman C. 1997. Globus: A Metacomputing Infrastructure Toolkit. Supercomputer Applications, 11(2):115-128
    [39] Foster I, Kesselman C. 1998. The Globus Project: A Status Report. In: Proc.IPPS/SPDP '98 Heterogeneous Computing Workshop, Orlando, Florida, USA. 1998. IEEE Press, 4-18.
    [40] Foster I, Lman C, Tuecke S. 2001. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International Journal Supercomputer Applications, 15(3):200-222
    [41] Frederic D, Sviatoslav V, Thierry P. 2002. A method for the estimation and recovering from general affine transforms in digital watermarking applications. In: SPIE photonics West, Electronic Imaging 2002, Security and Watermarking of Multimedia.
    [42] Furon T, Duhamel P. 1999. An asymmetric public detection watermarking technique. In: Workshop on Information Hiding, Dresden.
    [43] Goodchild M F, Yang S. 1992. A Hierarchical Data Structure for Global Geographic Information Systems. Computer Graphics,Vision and Image Processing, 54(1):31-44
    [44] Guan Z H, Huang F J, Guan W J. 2005. Chaos-based Image Encryption Algorithm. Physics Letters A, 346(1-3):153-157.
    [45] Gui G-F, Jiang L-G, He C. 2006. A new asymmetric watermarking scheme based on a real fraction DCT-I transform. Zhangjiang Univ Science A, 7(3):285-288.
    [46] Gyaourova a, Kamath C, Fodor I K. 2002. Undeciamted Wavelet Transforms for Image De-nosing. Lawrence Livermore Laboratory, UCRL-LD-150931, 2002.
    [47] Hartung F, Girod B. 1997. Fast public-key watermarking of compressed video. In: Proceedings of the IEEE International Conference on Image Processing, Santa Barbara, 528-531.
    [48] http://watermarking.unige.ch/Technology/wmg_stirmark_results.html
    [49] http://watermarking.unige.ch/wmg_technology.html
    [50] http://www.petitcolas.net/fabien/watermarking/stirmark/.
    [51] Daubechies I. 2004. 李建平, 杨万年译. Ten Lectures on Wavelets. 北京:国防工业出版社.
    [52] ISO/IEC 15444-1: Information technology--JPEG2000 image coding system.-Part1: Core coding system, 2000.
    [53] Jin C. 2006. Affine invariant watermarking algorithm using feature matching. Digital Signal Processing, 16 :247–254.
    [54] Joan Daemen, Vincent Rijndael. AES: Proposal Rijndael. http://csrc.nist.gov/encyption/aes/rijndael/Rijndael.pdf.
    [55] Kalker T, Depovere G, Haitsma J, et al. 1999. A video watermarking system for broadcast monitoring. Security and Watermarking Multimedia Contents. San Jose, CA, SPIE 3657, 103-112.
    [56] Kessler G C. An overview of Cryptograghy. http://mia.ece.uic.edu/%7Epapers/WWW/cryptography/ crypto.html.
    [57] Lee C, Kesselman C, Stepanek J, et al. 1998. The Quality of Service Component for the Globus Metacomputing System. In: Edward W. Knightly ed. Proc. The Sixth IEEE/IFIP International Workshop on Quality of Service (IWQoS '98), Napa, CA. 1998. IEEE Press, 140-142.
    [58] Lian C J, Chen K F, Chen H H, et al. 2001. Lifting based Discrete Wavelet Transform Architecture for JPEG2000. In: Circuit and Systems, the 2001 IEEE International Symposium, 2:445-448.
    [59] Liu C X, Liu T, Liu L. 2004. A new chaotic attractor. Chaos, Solitions and Fractals, 22(5):1031-1038.
    [60] Liu J L, Lou D C, Chang M C, et al. 2006. Arobust watermarking scheme using self-reference image. Computer Standards & Interfaces, 28:356-367.
    [61] Mallat S G. 1989. A theory for Multiresolution Signal Decomposition: The Wavelet Representation. In: IEEE Trans. PAMI-11(T), 674-693.
    [62] Mallat S. 1989. A theory formultiresolution signal decomposition: The wavelet representation. IEEE Trans Pattern AnalMach Intel, 11:674-693.
    [63] Maniccam S S, Bourbakis N G. 2004. Image and video encryption using SCAN patterns. Pattern Recognition, 37(4):725-737.
    [64] Martin del Rey A. 2004. A novel cryptosystem for binary images. Studies in Informatics and Control, 13(1):5-14.
    [65] Eyadat M. 2003. Comparative performance evaluation of practical digital watermarking embedding schemes. USA: California State University at Long Beach.
    [66] Peng S-H, Han Z, Shen C-X. 2005. Security protocol and scheme for inter-realm information accessing. Journal of Computer Research and Development, 42(9):1587-1593.
    [67] Picard J, Robert A. 2001. Neural networks functions for public key watermarking, LNCS2137. 142-156.
    [68] Rajasekar A. 2002. SDSC Storage Resource Broker. http://www.npaci.edu/DICE/SRB/, 2002.
    [69] Roger R E, Arnold J F. 1994. Reversiable Image Compression Bounded by Noise. IEEE Trans. Geoscience and Remote Sensing, 32(1):19-24.
    [70] Ruanaidh J K O, Pun T. 2002. Rotation, Scale and Translation Invariant Spread Spectrum Digital Image Watermark. Signal Processing, 86(4):303-315.
    [71] Kouda R, Takarada S. 2007. Web-GIS authentication and notarization for secured geo-information. In: 12th Conference of Int. Association for Mathematical Geology, China, 271-274.
    [72] Sahr K, White D. 1998. Geodesic Discrete Global Grid Systems. Cartography and Geographic InformationScience, 30(2):121-134
    [73] Schneier B. 1996. Applied cryptography-protocols, algorithms, and source code in C. New York, John Wiley & Sons, Second Ed.
    [74] Schopf J M, Nitzberg B. 2002. Grids: Top Ten Questions. Scientific Programming, special issue on Grid Computing, 10(2):103-111.
    [75] Baudry S, Nguyen P, Maitre H. 2003. Optimal decoding for watermarks subject to geometrical attacks. Signal Processing (Image Communication), 18(4):297-307.
    [76] Shapiro J M. 1993. Embedded Image Coding Using Zerotree of Wavwlet Coefficients. IEEE Trans on Signal Processing, 41(12):3445-3461.
    [77] Singh G, Bharathi S, Chervenak A, et al. 2003. A Metadata Catalog Service for Data Intensive Applications. In: Proc. Supercomputing 2003 (SC2003), Arizona, USA. Nov. 2003. ACM Press, 33-49.
    [78] Solva E A, Chanbarim. 1996. On the performance of phase wavelet transforms in low bit-rate image coding. IEEE Trans. Image Proc, 5(5):689-703.
    [79] Stefan K, Fabien A P. 2000. Information hiding techniques for steganography and digital watermarking. Artech House, 2000.
    [80] Stevens M. 2002. Service-Oriented Architecture Introduction, Part 1. http://softwaredev.earth-eweb.com/ microsoft/article/010720_101041_100.html.
    [81] TanakeN, Farvardin N. 1992. Sub-band image coding using entropy-coded quantization over noise channels. IEEE J. on Selected Areas in Commnu. 10(5):926-943.
    [82] Van Schyndel R G, Tirkel A Z, Salbe I D. 1999. Key independent watermark detection. In: Proceedings of the IEEE International Conference on Multimedia Computing and Systems, Florence, 580-585.
    [83] Voloshynovski S, Herrigel A, Baumgarther N, et al. 2000. A Stochastic Approach to Content Adaptive Digital Image Watermarking. In: Intenationnal Workshop on Information Hiding, LNCS1768, SpringerBerlag, Berlin, Germany, 212-236.
    [84] Weissman J B, Lee B D. 2001. The Service Grid: Supporting Scalable Heterogeneous 118 Services in Wide-Area Networks. In: Proc. 2001 Symposium on Applications and the Internet (SAINT 2001), San Diego, CA. 2001. IEEE Press, 95-102.
    [85] William Stallings. 2006. Cryptography and Network Security Principles and Practices, 4th edition. 孟庆树, 王丽娜等译. 电子工业出版社, 18-63.
    [86] Wu H C, Chang C C. 2005. A novel digital image watermarking scheme based on the vector quantization technique. Computers & Security, 24:460-471.
    [87] Wu Y T, Frank Y, Shi H. 2004. An adjusted-purpose digital watermarking technique. Pattern Recognition, 37:2349 – 2359.
    [88] Yu Z-W, Li Z-M, Zheng S, et al. 2007. Security mechanism for distributed GIS spatial data based on object-based storage. 测绘学报, 36(3):309-315.
    [89] Zhao J, Koch E. 1998. A generic digital watermarking model. Comput. & Graphics, 22(4):397 -403.
    [90] Zhao X-F, Wang W-N, Chen K-F. 2002. Reversibility, Deceptions, and Counteractions in Adaptive Digital Watermarking. Journal of Software, 13(9):1787-1809.
    [91] Zhu J, Ma J. 2004. A new authentication scheme with anonymity for wireless environments. In: IEEE Transactions on Consumer Electronics.
    [92] 艾海舟, 武勃等译. 2003. 图像处理、分析与及其视觉(第二版). 北京:人邮电出版社.
    [93] 柏森, 廖晓峰. 2004. 基于 Walsh 变换的图像置乱程度评价方法. 中山大学学报(自然科学版), 43(S2):58-61.
    [94] 蔡正林, 韩金华. 2006. GRID GIS 体系结构及应用实例. 微电脑应用, 22(4):13-23.
    [95] 陈军, 邬伦. 2003. 数字中国地理空间基础架构. 北京:科学出版社.
    [96] 戴跃伟. 2002. 信息隐藏技术的理论及应用的研究 [博士学位论文]. 南京:南京理工大学.
    [97] 丁玮, 闫伟齐, 齐东旭. 2001. 基于 Arnold 变换的数字图像置乱技术. 计算机辅助设计与图形学报, 13(4):338-341.
    [98] 都志辉, 陈渝, 刘鹏. 2002. 网格计算. 北京:清华大学出版社.
    [99] 付丽华, 李宏伟 张猛. 2005. 基于小波变换的复杂噪声背景中谐波恢复方法. 工程地球物理学报, 2(1):22-28.
    [100] 耿则勋. 2002. 小波变换理论及在遥感影像压缩中应用. 北京:测绘出版社.
    [101] 姜永发, 闾国年. 2005. 网格计算与 GRID GIS 体系结构与关键技术探讨. 测绘科学, 30(4):16-19.
    [102] 蒋良成. 1994. 基于小波变换的图像编码方法研究[博士学位论文]. 南京:东南大学.
    [103] 李德仁, 崔巍. 2006. 地理本体与空间信息多级网格, 测绘学报, 35(2):143-148.
    [104] 李德仁, 关泽群. 2000. 空间信息系统的集成与实现, 数字地球基础丛书. 武汉:武汉测绘科技大学出版社.
    [105] 李德仁, 邵振峰, 朱欣焰. 2004. 论空间信息多级网格及其典型应用. 武汉大学学报·信息科学版, 29(11):945-950.
    [106] 李德仁, 邵振峰. 2005. 空间信息多级网格及其功能. 地理空间信息, 3(4):1-5.
    [107] 李德仁, 朱欣焰, 龚健雅. 2003. 从数字地图到空间信息网格——空间信息多级网格理论思考. 武汉大学学报·信息科学版, 28(6):642-650.
    [108] 李德仁. 2005. 论广义空间信息网格和狭义空间信息网格. 遥感学报, 9(5):513-520
    [109] 李辉. 2006. 混沌数字通信. 北京:清华大学出版社.
    [110] 李顺东, 戴一奇. 2004. 基于隐息学的信息安全方案. 清华大学学报(自然科学版), 45(7):962-965.
    [111] 廖俊国, 洪帆, 朱更明, 等. 2006. 基于信任度的授权委托模型. 计算机学报, 29(8):1265-1270.
    [112] 林代茂, 胡岚, 郭云彪, 等. 2004. 广义信息隐藏技术的安全问题. 中山大学学报(自然科学版), 43 增刊(2):14-16.
    [113] 林代茂, 胡岚, 郭云彪, 等. 2005. 广义信息隐藏技术的机理与模型. 北京邮电大学学报, 28(1):1-5.
    [114] 刘秉正, 彭建华. 2004. 非线性动力学. 北京:高等教育出版社
    [115] 刘向东, 焉德军. 2005. 基于排序变换的混沌图像置乱算法. 中国图象图形学报, 10( 5): 657- 660.
    [116] 刘振华, 尹萍编著. 2002. 信息隐藏技术及其应用. 北京:科学出版社.
    [117] 卢振泰, 黎罗罗. 2005. 一种新的衡量图像置乱程度的方法. 中山大学学报(自然科学版), 44(S):126-129.
    [118] 彭华熹. 2006. 一种基于身份的多信任域认证模型. 计算机学报, 29(8):1271-1281.
    [119] 任建武. 2002. GRID GIS 关键技术研究 [博士学位论文]. 南京:南京师范大学.
    [120] 商艳红, 李南. 2004. 基于纹理特征的数字图像置乱效果分析. 武汉大学学报(理学版), 50( S1):213-216.
    [121] 邵振峰, 李德仁. 2005. 基于网格计算环境下的空间信息多级网格研究. 地理信息世界, 2:31-35.
    [122] 沈占锋, 骆剑承, 蔡少华, 等. 2003. 网格 GIS 的应用架构及关键技术. 地球信息科学, 4:57-62.
    [123] 盛利元, 曹莉凌, 孙克辉, 等. 2005. 基于 TD-ERCS 混沌系统的伪随机数发生器及其统计特性分析. 物理学报, 9:4031-4037.
    [124] 盛利元, 李更强, 李志伟. 2006. 基于切延迟的椭圆反射腔系统的单向 Hash 函数构造. 物理学报, 11:5700-5706.
    [125] 盛利元, 孙克辉, 李传兵. 2004. 基于切延迟的椭圆反射腔离散混沌系统及其性能研究. 物理学报, 9:2871-2876.
    [126] 盛利元, 闻姜, 曹莉凌等. 2007. TD-ERCS 混沌系统的差分分析. 物理学报, 56(01):78-83.
    [127] 孙庆辉, 骆剑承, 李宏伟等. 2004. 网格 GIS 及其关键技术. 测绘学院学报, 21(3):200-204.
    [128] 孙秋艳, 雷仲魁, 宁宣熙等. 2007. Canny 算子在图像置乱程度评价中的应用. 计算机工程与应用, 43( 9):40-44.
    [129] 唐勇, 单子力. 2007. 一种基于自相关函数的小波域数字水印算法. 燕山大学学报, 31(3):205-209.
    [130] 汪小帆, 戴跃伟, 茅耀斌. 2001. 信息隐藏技术方法与应用. 北京:机械工业出版社.
    [131] 王东生, 曹磊. 1995. 混沌、分形及其应用. 合肥:中国科技大学出版社.
    [132] 王家耀, 祝玉华, 吴明光. 2006. 论网格与网格地理信息系统. 测绘科学技术学报, 2:1-7.
    [133] 韦宝典, 刘东苏, 王新梅. 2002. AES 算法 Rijndael 的原理、实现和攻击. 通信技术, 12:94-96.
    [134] 吴文玲, 冯登国, 卿斯汉. 1999. 简评美国公布的 15 个 AES 候选算法. 软件学报, 10(3):225-230.
    [135] 吴文玲, 冯登国. 2006. 分组密码工作模式的研究现状. 计算机学报, 29(1):21-33.
    [136] 向德生, 熊岳山. 2005. 基于约瑟夫遍历的数字图像置乱算法. 计算机工程与应用, 41( 10):44-46.
    [137] 杨义先, 钮心忻, 任金强编著. 2002. 信息安全新技术. 北京:北京邮电大学出版社.
    [138] 姚庆栋, 毕厚杰, 王兆华等. 2004. 图像编码基础(第三版). 北京:清华大学出版社.
    [139] 于雷易. 2004. GIS 网格体系结构探讨. 武汉大学学报·信息科学版, 29(2):153-156.
    [140] 袁禄来, 曾国荪, 姜黎立, 等. 2006. 网格环境下基于信任模型的动态级调度. 计算机学报, 29(7):1217-1224.
    [141] 张旭东, 卢国栋, 冯健等. 2004. 图像编码基础和小波压缩技术. 北京:清华大学出版社.
    [142] 朱从旭, 李力, 陈志刚. 2007. 基于多维混沌系统结合的图像加密新算法. 计算机工程, 1:142-144.