葛根素磷脂复合物的制备技术及体内外特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对葛根素溶解度低、口服生物利用度低下的特点,本文以共沉淀法制备了葛根素磷脂复合物,拟增加其口服吸收。首先对其制备条件进行了优化,并在此基础上较为系统和深入地研究了其物理、化学和生物学特性,对其形成机理进行分析探索。另外,还探索性地采用超临界流体沉淀技术制备了葛根素磷脂复合物,并对四种制备葛根素磷脂复合物的方法进行了理化特性的比较研究。具体内容包括以下5个部分:
     一、葛根素的溶解度测定以及磷脂的成分鉴别、含量测定研究
     研究结果表明:葛根素属于微溶性药物。采用薄层鉴别的方法以不同极性展开剂展开,确定磷脂中所含的主要成分。以HPLC方法使用C_8柱对磷脂中磷脂酰胆碱(PC)的含量进行了测定,含量为62.6%。
     二、葛根素磷脂复合物的共沉淀法制备及其工艺优化
     (1) 在优化葛根素磷脂复合物制备条件的系统研究中,首先确定建立了能合理、准确评价葛根素磷脂复合物制备条件的标准即葛根素的结合率,并用其考察反应溶剂、葛根素与磷脂的投料比、反应物浓度、反应时间及反应温度等因素对结合率的影响,采用正交设计试验进行反应条件的优化,经统计分析和验证试验得到以乙醇为溶剂、简单易行的最佳反应条件。
     (2) 建立简便准确的紫外分光光度法对葛根素磷脂复合物中葛根素的含量进行测定。
     三、共沉淀法制备的葛根素磷脂复合物的理化性质及结构鉴定、形成机理研究
     (1) 用扫描电镜(SEM)观察了葛根素磷脂复合物的微观形态,结果表明形成磷脂复合物后,原葛根素晶体的薄片样叠加结构消失,表现为粒子分散更为均匀、表面被类磷脂样物质包裹的结构。X-射线衍射分析结果显示葛根素磷脂复合物表现出无定形特征,葛根素自身的晶体衍射峰完全消失,同时复合物的溶解性能等发生了变化。差热扫描分析(DSC)则显示葛根素的特征吸热峰消失。考察复合物在不同pH值水溶液及不同pH水-正丁醇系统中的表观油/水分配系数,实验结果表明葛根素磷脂复合物改善了葛根素在不同pH值水溶液中的溶解度,在水、0.1mol/L HCI、pH6.8 PBS中分别提高了1.91,1.56和1.84倍,表观油水分配系数也分别提高了1.11,1.25和1.30倍。
     (2) 对葛根素磷脂复合物的初步稳定性考察结果表明应在干燥、避光的环境下对复合物进行保存。
     (3) 采用红外光谱(IR)、核磁共振光谱(NMR)等对葛根素磷脂复合物进行了结构
In present study, puerarin phospholipids complex (PPC) was prepared by co-precipitation to improve oral absorption of puerarin according to its low solubility and low oral bioavailability. The research focused on the formation mechanism of PPC and its physicochemical and biological characteristics on the basis of optimizing the preparation conditions. The PPC was also prepared by supercritical fluid precipitation (SFP) technique and the physicochemical characteristics of PPC prepared by four different methods were compared. Five main sections were included in this paper:
    1、The determination of the solubility of puerarin (Pur) , the component identification and phosphatidylcholine(PC) content determination of phospholipids:
    The results showed that Pur is slightly soluble in water. The component in phospholipids is identified by TLC in three developing solution with different polarity. A HPLC method was developed to determine the content of PC in phospholipids by using C_8 column and the content was 62.6%.
    2、 The optimization of the reaction conditions and the preparation of PPC by co-precipitation:
    (1) New attempts were made to the research of the reaction conditions of PPC, and a reasonable criterion of accurate evaluation was established, by which such actors as solvent, temperature, the ratio of puerarin to phospholipids and the concentration of reactants were examined. The orthographic design was used in the optimization of reaction conditions and the best using absolute ethyl alcohol as solvent with a simple reaction condition was obtained through statistical analysis and proof test.
    (2) A UV method was established to determine the content of Pur in PPC accurately and simply.
    3、The research on the physicochemical characteristics, the structure confirmation and formation mechanism of PPC prepared by co-precipitation :
    (1) The microcosmic form of the PPC was observed by scanning electronic microscope (SEM), the results showed that the cascading flakes structure of the original Pur changed to structure entrapping by phospholipids-like materials with more uniform size. X-ray diffraction showed that the complex exhibited an amorphous characteristic and the crystal diffraction peaks
引文
[1] 周北凡.90年代我国心血管病发病及危险因素的特点—对防治策略的启示.医学研究通讯,1999,28(4):6-7
    [2] 国家“九五”科技攻关课题协作组.我国中年人群心血管病的主要危险因素流行现状及从80年代初至90年代末的变化趋势.中华心血管病杂志,2001,2:74-79
    [3] 中华内科杂志编委会心血管病学编写组.我国心血管疾病10年回顾.中华内科杂志,1999,38(9):599-603
    [4] 中华内科杂志编委会心血管病学编写组.我国心血管疾病10年同顾.中华内科杂志,1999,38(9):599-603
    [5] 朱庆磊,吕欣然.葛根素的药理学和临床应用研究进展.中草药,1997,28(11):693-696
    [6] 黄海英.异黄酮成分的药理作用.基层中药杂志,2002,16(1):47-48
    [7] 中国医学科学院药物研究所编著.中草药现代研究.北京医科大学中国协和医科大学联合出版社,1994.6
    [8] 王海燕,彭亚丽.葛根素药理研究进展.山东医药工业,2001,20(4):36-37
    [9] 田智勇,于培明,李振国.中药葛根研究新进展.中华医药杂志,2004,4(10):20-21
    [10] Zhai G X,Lou H X,Bi D Z.Interaction of puerarin with phospholipid in solid dispersion.J Chin Pharm Sci,2003,12(1):36-40.
    [11] 高尔,刘振威,高义军.磷脂对葛根素体外吸收和药效学的影响.中国生化药物杂志,1999,20(6):286-289
    [12] 马云淑,赵浩如,林以宁.葛根素及其磷脂复合物的体外透皮实验研究.中国中药杂志,2000,25(5):274-276
    [13] 孟庆国,高尔,王汝琴.葛根素磷脂复合物的制备及核磁共振和薄层层析研究.潍坊医学院学报,2001,23(1):4-5
    [14] 由力红,邹英华,景秋芳,胡良才.葛根素复合缓释骨架片理化性质的研究.沈阳药科大学学报,2002,19(3):168-172
    [15] 周毅生,贾永艳,申小清,朱新成,高松,武爱玲.葛根素磷脂固体分散体的制备及体外研究.中国药学杂志,2003,38(1):42-44
    [16] 王成,刘玉玲,谷士杰.葛根素的溶解性及其络合助溶研究.中国药学杂志,1993,28(5):294-296.
    [17] 王琴,卢集森.葛根素的临床应用新进展.广州医药,2001,32(4):2-4
    [18] Gabetta B, Bomberdelli E, Pifferl G. Complexes of flavanolignanes with phospholipids, preparation thereof and associated pharmaceutical compositions. European Patent Application 0,209,038. 1987-01-21.
    [19] 吴建梅,陈大为,孙波,李三鸣.天然活性成分磷脂复合物药学研究概述.中国药学杂志,1998,33(1):9—11
    [20] 翟光喜,娄红祥,邹立家,毕殿洲.药物磷脂复合物的研究进展.中国药学杂志,2001,36(12):800—803
    [21] 江永南,余子培,杨泽民,陈济民.淫羊藿黄酮磷脂复合物的制备及其剂型研究.中国中药杂志,2001,26(2):105-108
    [1] 由力红,邹英华,景秋芳,胡良才.葛根素复合缓释骨架片理化性质的研究.沈阳药科大学学报,2002,19(3):168-172
    [2] Gabetta B, Bomberdelli E, Pifferl G. Complexes of flavanolignanes with phospholipids, preparation thereof and associated pharmaceutical compositions. European Patent Application 0,209,038. 1987-01-21.
    [3] Bobmerdelli E, Bianchetti G. Pharmaceutical and cosmetic compositions containing complexes of flavanotignans with phospholi;pids. European Patent Application 0,300,282.1989-01-25.
    [4] 汪勇,王兴国,胡学烟.磷脂含量及组成的分析检测方法.中国油脂,2002,27(4):64-67.
    [5] 郭京,徐桂云,常理文.大豆磷脂组成的薄层色谱分析.分析化学,1998,26(1),81-84.
    [6] 孙秀燕,张艳新,苏德森.药用豆磷脂的HPLC法测定.沈阳药科大学学报,1991,8(3):164-166.
    [7] Bernhard W, Linck M, Creutzbury H. HPLC analysis of phospholipids from different source with combined fluordscence and ultraviolet detection. Anal Biochem, 1994, 220(1): 172-176.
    [8] Abidi S L, Mount TL, Remnick KA, et al. Reversed-phase HPLC of phospholipids with fluordscence detection. J Chromatogra, 1993, 639(2): 175-179
    [9] 鲍凤,张克,文德成.大豆磷脂组成的研究Ⅰ磷脂组成的薄层色谱分析.生物化学与生物物理学报,1981,13(4):373-375.
    [10] 孙秀燕,张艳新,苏德森.药用豆磷脂的荧光薄层色谱法测定.沈阳药科大学学报,1991,8(4):245-247.
    [11] 韩轶,周扬,赵永芳.卵磷脂的提纯、鉴定及应用.氨基酸和生物资源,2001,23(2):28-31.
    [12] 何海波,张维农,达世禄,冯钰锜.天然磷脂的色谱法分离、纯化研究进展.分析科学学报,2004,20(1):97-102.
    [13] 卢学清,洪筱坤,王智华,沈平娘,朱莲华.HPLC法测定熊胆中磷脂类化合物PC、PI和PE的含量.中成药,1999,21(7):372-375.
    [1] 吴建梅,陈大为,刘艳丽.黄芩苷磷脂复合物制备工艺的研究.中国中药杂志,2001,26(3):166-169
    [2] Takeshi N, Makoto S, Toshiyuki H, et al. Studies of cyclodextrin complexes. Ⅰ. Complex between cyclodextrin and bencyclane in aqueous solution. Chem Pharm Bull, 1984, 32(2): 383-385.
    [3] 刘方,苏德森,李三鸣.蛋黄卵磷脂-布洛芬复合物的研究.沈阳药科大学学报,2000,17(6):398-401.
    [4] 翟光喜,娄红祥,毕殿州,邹立家,李爱国.槲皮素磷脂固体分散体的研制.山东大学学报(医学版),2002,40(4):364-366.
    [5] 江永南,余子培,杨泽民,陈济民.淫羊藿黄酮磷脂复合物的制备及其剂型研究.中国中药杂志,2001,26(2):105-108.
    [6] Bomberdelli E, Bianchetti C. Pharmaceutical and cosmetic compositions containing complexes of flavanolignans with phospholipids. European Patent Application, 0,300, 282. 1989, 01-25.
    [1] Li W, Shao YY, Huang GD, Hu LX(2001) The purifying and TG-DTA-DTG thermal analysis of the lecithin.Sci Tech Food Ind 22(3):9-11
    [2] 王强华,冯玉英,杨松舲,陈凌孚.卵磷脂的红外光谱和紫外光谱研究.南京师大学报,1994,17(2):51-53.
    [3] 韩轶,周扬,赵永芳.卵磷脂的提纯、鉴定及应用.氨基酸和生物资源,2001,23(2):28-31.
    [4] 陈德吕.中药化学对照品工作手册.北京:中国医药科技出版社,2000.2.
    [5] 施邑屏,黎燕斌,孔玲玲,冯青,李祖义.~(31)P核磁共振光谱及薄层色谱分析针剂大豆卵磷脂.分析化学,1991,19(7):733-736.
    [6] Gabetta B, Bombardelli E, Pifferl G. Complexes of flavanolignanes with phospholipids, preparation thereof and associated pharmaceutical compositions. European Patent Application 0,209,038. 1987-01-21.
    [7] Bombardelli E, Bianchetti G. Pharmaceutical and cosmetic compositions containing complexes of flavanoligans With phospholipid. European Patent Application 0,300,282. 1989-01-25.
    [8] Bombardelli E, Spelta M. Aging skin: protective effect ofdilymarin-phytosomes. Fitoterapia, 1991, 62(2): 115-118.
    [9] Hancock, B.C., Zografi, G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci, 1997, 86(1): 1-12.
    [10] 吴建梅,陈大为.黄芩甙磷脂复合物理化性质研究.中国药学杂志,2001,36(3):173-177.
    [11] 刘辉,陆璐,汤韧,王晓卫,张莉.奥沙普秦-氢化磷脂复合物的研究及体外透皮实验.中国药学杂志,2002,37(8):595-598.
    [12] 魏刚,徐辉,马英,李三鸣.pH值对马来酸噻吗洛尔角膜透过性的影响.药学学报,2001,36(9):707-709.
    [13] 平其能.现代药剂学.北京:中国医药科技出版社:485
    [14] Grit M, Crommelin D J. Hydrolysis of saturated soybean phospatidylcholine in aqueous liposome dispersions.J Pharm Sci, 1993, 82(4): 362-365.
    [15] Crommenlin D J. Influence of lipid composition and ionic strength on the physical stability of liposomes. J Pharm Sci, 1984, 73: 1359.
    [16] Luo MS. The complex of the electric charge transfer and its applications in the pharmaceutical field. Chin Pharm, 1994, 5(4): 36-39.
    [17] L.J.贝拉米著.黄维恒,聂崇实.复杂分子的红外光谱.科学出版社,1975,77-90,212.
    [18] 吴建梅,张汝华,陈大为.黄芩甙磷脂复合物的形成机理及其化学与生物学特性的研究.沈阳药科大学博士论文,1999.
    [1] Krukonis VJ. Supercritical fluid nucleation of difficlt-to-comminute solids. AichE Annual Meeting, San Francisco, CA. 1984.
    [2] 陈兴权,赵天生,于慧杰,郁威.利用超临界CO_2制备α-细辛醚及布洛芬微细颗粒.宁夏大学学报(自然科学版),2001,22(2):155-157.
    [3] 陈鸿雁,蔡建国,邓修,戴干策.灰黄霉素在超临界CO_2中的溶解与沉析.华南理工大学学报,2000,6(3):225-227.
    [4] 蒋思媛,赵亚平,于文利,黎英.超临界快速膨胀法制备植物甾醇超细微粒.精细化工,2004,21(2):129-132.
    [5] Alessi, P. Cortesi A, Kikic, Foster N R, Macnaughton S J, Colombo I. Particle production of steroid drugs using supercritical fluid processing. Ind. Eng. Chem. Res, 1996, 35: 4718-4726.
    [6] Nijle T Van, Brennan K, Mooter G Van den, Blaton N, Kinget R, Augustijns P. Improvement of the dissolution rate of artemisinin by means of supercritical fluids technology and solid dispersions. Inter J of Pharm, 2003, 254: 173-181.
    [7] Bettini R, Rossi A, Lavezzini E, Frigo E, Pasquali I and Giordano F. Thermal and morphological characterization of micronized acetylsalicylic acid powders prepared by rapid expansion of a supercritical solution. J of Therm Anal Calorim, 2003, 73: 487-497.
    [8] Pablo G D, Jean W T, Yeo Sang-Do, et al. Application of supercritical fluids for the production of sustained delivery devices. J Controlled Release, 1993, 24: 27-44.
    [9] Guney O, Akgerman A. Synthesis of controlled-release products in supercritical medium. AIChE, 2002, 48(4): 856-866.
    [10]Charoenchaitrakool M, Dehghani F, Foster N R. Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-p-cyclodextrin. Int J Pharm, 2002, 239: 103-112.
    [11]Junco S, Casimiro T, Ribeiro N, et al. Optimisation of supercritical carbon dioxide systems for complexation of naproxen: Beta-cyclodextrin. J Inclu Phenom and Macro Chem, 2002,44:69-73.
    [12]Junco S, Casimiro T, Ribeiro N, et al. A comparative study of naproxen-beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J Inclu Phenom Macro Chem ,2002, 44:117-121.
    [13]Pathak P, Meziani J M, Desai T, Sun Y P. Nanosizing drug particles in supercritical fluid processing. J. Am. Chem. Soc,2004, 126:10842-10843.
    
    [14]Turk M, Hils P, Helfgen B, Schaber K, Martin H J, Wahl M A. Micronization of pharmaceutical substances by the rapid expansion of supercritical solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J Superc Flui, 2002,22: 75-84.
    [15] Young T J, Johnston K P, Pace G W, Mishra A K. Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution. AAPS Pharm Sci Tech, 2003, 5(1): 1-15.
    [16]Matsuyama K, Mishima K, Hayashi K I, Ishikawa H, Matsuyama H, Harada T. Formation of microcapsules of medicines by the rapid expansion of a supercritical solution with a nonsolvent. J Appl Polym Sci, 2003, 89:742-752.
    [17]Kim J H, Paxton T E, Tomasko D L. Microencapsulation of naproxen using rapid expansion of supercritical solutions. Biotechnol. Prog, 1996, 12: 650-661
    [18]Wang T J, Tsutsumi A, Hasegawa H, Mineo T. Mechanism of particle coating granulation with RESS process in a fluided bed. Powder Tech, 2001,118: 229-235.
    [19]Wang Y, Wei D G, Dave R, Pfeffer R, Sauceau M, Letourneau J J, Fages J. Extraction and precipitation particles coating using supercritical CO_2. Powder Technology, 2002,127: 32-44.
    [20]Thies C, I. Santos R D, Richard J, Vandevelde V, Rolland H, Benoit J P. A supercritical fluid-based coating technology 1: Process considerations. J. Microencapsulation, 2003, 20(1): 87-96.
    [21]Sencar-Bozic P, Srcic S, Knez Z, Kerc J. Improvement of nifedipine dissolution characteristics using supercritical CO_2 Int J Pharm, 1997, 148: 123-130.
    [22]Kerc J, Srcic S, Knez Z, Sencar-Bozic P. Micronization of drugs using supercritical carbon dioxide. Int J Pharms, 1999,182:33-39.
    [23] Rodrigues M, Peirico N, Matos H, Azevedo E, Lobato M R, Almeida A J. Microcomposites theophylline/hydrogenated palm oil from a PGSS process for controlled drug delivery systems. J. of Superc Flu, 2004, 29:175-184.
    [24] Gallagher P M, Coffey M P, Krukonis V J, et al. ACS SYM SER, 1989, 406: 334-354。
    [25] 赵华威,梁玉.气体抗溶剂结品技术的初步研究.黑龙江医药,2003,16(5):452-454.
    [26] 蔡建国,周展云.超临界流体GAS重结晶过程的过饱和度与产品的颗粒形态.高校化学工程学报,1996,10(3):323-327.
    [27] Yeo S D, Kim M S, Lee J C. Recrystallization of sulfathiazole and chlorpropamide using the supercritical fluid antisolvent process. J. of Supercritical Fluid 2003,25:143-154
    [28] Moneghini M, Kikic I, Voinovich D, Perissutti B, Alessi P, Cortesi A, Princivalle F, Solinas D. Study of solid state of carbamazepine after processing with gas anti-solvent technique. Eur J Pharm and Biopharm 2003,56:281-289
    [29] Muller M, Meier U, Kessler A, Mazzotti M. Experimental study of the effect of progress parameters in.the recrystallization of organic compound using compressed carbon dioxide as antisolvent. Ind. Eng. Chem. Res, 2000, 39: 2260-2268.
    [30] 蒋春跃,谢芳宁,潘勤敏,吴家龙.聚乙二醇SAS微粒化的研究.高校化学工程学报,2001,15(6):596-599.
    [31] Reverchon E, Porta G. D, Rosa I D, Subra P, Letourneu D. Supercritical antisolvent micronization of some biopolymers. J Supercritical Fluids, 2000, 18: 239-245.
    [32] Reverchon E, Porta G D. Production of antibiotic micro- and nano-particles by supercritical antisolvent precipitation. Powder Technology, 1999, 106:23-29
    [33] Benedetti L, Bertucco A, Pallado P. Production of micronic particles of biocompatible polymer using supercritical carbon dioxide. Biotech and Bioeng, 1997, 53: 232-237.
    [34] Yeo S D, Lira G B, Debenedetti P G. Formation of microparticulate protein powder using supercritical fluid antisolvent. Biotec Bioeng, 1993, 41(3): 341-346.
    [35] Debenedetti P G, Lim G B, Prud's Homme R K. Preparation of protein microparticles by supercritical fluid precipitation. US Patent, 6063910, 2000-03-18.
    [36] 孙君杜,王平诸,张中义,鲁绯.靶向脂质体的超临界流体技术制作和表征.中国农业大学学报,2002,7(4):95-99.
    [37] 刘哲鹏,潘俊,陆伟跃,陈岚,张岩,李保国.超临界流体制备阿莫西林粘膜粘附微粒的研究.国际药物制剂专题研讨会论文集.87-97
    [38]Sundeep S, Emilio S. Physicochemical characterization of solid dispersion of carbamazepine formulated by supercritical carbon dioxide and conventional solvent evaporation method. J Pharm Sci, 91(9), 1948-1957.
    [39]Sundeep S, Emilio S. In vitro-In vivo evaluation of supercritical processed solid dispersion: permeability and viability assessment in Caco-2 Cells. J Pharm Sci, 2004, 93(12): 2985-2993.
    [40]Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm, 2004: 272: 1-10.
    [41]Moneghini M, Kikic 1, Voinovich D, Perissutti B, Filipovic-Grcic J. Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: Preparation, characterization, and in vitro dissolution. Int J Pharm, 2001, 222: 129-138.
    [42]Corrigan W I, Crean A M. Comparative physicochemical properties of hydrocortisone-PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying Int J Pharm, 2002, 245: 75-78.
    [43]York and Hanna. Particles engineering by supercritical technologies for powder inhalation drug delivery. Proc.of Respiratory Drug Delivery v, Pheonis: AZ. 231-239.
    [44]Palakodaty S, York R, Pritchard J. Supercritical fluids processing of materials from aqueous solution: The application of SED to lactose as a model substance. Pharm Res, 1998,15(12): 1835-1843.
    [45]Rehman M, Shekunov B Y, York P, Colthorpe P. Solubility and precipitation of nicotinic acid in supercritical carbon dioxide. J Pharm Sci, 2001,90(10): 1570-1582.
    [46]Rehman M, Shekunov B Y, York P, Lechuga-Ballesteros D, Miller D P, Tan T, Colthorpe P. Optimisation of powders for pulmonary delivery using supercritical fluid technology. Eur J Pharm Sci, 2004, 22: 1-17.
    [47]Kirdikowski A, Shekonov T, York P, et al. Polymorph control of sulfathiazole in supercritical CO_2. Pharm Res, 2001,18 (5): 682-688.
    [48]Bristow,S T S, Shekunov B Y., York P. Analysis of the supersaturation and precipitation process with supercritical CO_2. J Superc Flu, 2001(21): 257-271.
    [49]Ghaderi R, Artursson P, Carlfors J. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Pharm Res 1999, 16(5): 676-681.
    [50]Velaga S P, Ghaderi R, Carlfors J. Preparation and characterization of hydrocortisone particles using a supercritical fluids extraction process. Intl J Pharm, 2002, 231:155-166.
    [51]Ghaderi R, Artursson P, Carlfors J. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in dl-PLG microparticles using supercritical fluids. Eur J Pharm Sci, 2000,10:1-9.
    [52]Moshashaee S, Bisrat M, Forbes R T, Nyqvist H, York P. Suercritical fluid processing of proteins I: Lysozyme precipitation from organic solution Eur J Pharma Sci, 2000, 11: 239-245.
    [53]Edwards A D, Shekunov B Y, Kordikowski A, et al. J Pharm Sci., 2001, 90(8): 1115-1124.
    [54]Velaga S P, Berger R, Carlfors J. Supercritical fluids crystallization of budesonide and flunisolide. Pharm Res ,2002, 19(10): 1564-1571.
    [55] Juppo A M, Boissier C, Khoo C. Evaluation of solid dispersion particles prepared with SEDS. Int J Pharm, 2003, 250:385-40.
    [56]Sze Tu L, Dehghani F, Dillow AK, Tome L, Perrut M, Subra P. Proceedings of 5th Meeting on Supercritical Fluids. Nice, 1998. 176-179.
    
    [57]Martin T M., Bandi N, Shulz R, Roberts C B, Kompella U B. Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology. AAPS Pharm Sci Tech 2002,3(3): 1-11.
    
    [58]EIvassore N, Bertucco A, Caliceti P. Production of insulin-loaded poly(ethylene glycol)/poly(/-lactide)(PEG/PLA) nanoparticles by Gas antisolvent techniques. J Pharm Sci, 2001, 90(10):1628-1636.
    [59]Reverchon E, Marco I D, Caputo G, Porta G D. Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation. J Supercritical Fluids, 2003,26: 1-7.
    [60]Reverchon E, Marco I De, Porta G D. Rifampicin microparticles production by supercritical antisolvent precipitation. Int J Pharm, 2002, 243: 83-91.
    [61]Bleich J, Muller B W, Wcbmus W. Aerosol solvent eExtraction system-a new microparticle production technique. Int J Pharm, 1993,97: 111-117.
    
    [62]Breitenbacn A, Mohr D, Kissel T. Biodegradable semi-crystalline comb polyesters influence the microsphere production by means of a supercritical fluid extraction technique (ASES). J Control Rel, 2000, 63:53-68.
    [63] Magnan C, E Badens, Commenges N, Charbit G. Soy lecithin micronization by precipitation with a compressed fluid antisolvent-influence of process parameters. J Supercr Flu, 2000, 19:69-77.
    [64] Badens E, Magnan C, Charbit G. Microparticles of soy lecithin formed by supercritical process. Biotech Bioeng, 2001, 72 (2): 194-204.
    [65]Taki S, Badens E, Charbit G. Controlled release system formed by supercritical anti-solvent coprecipitation of a herbicide and a biodegradable polymer. J Superc Flu, 2001, 21: 61-70.
    [66]Reverchon E, Porta G D, Failivene M G.. Progress parameters and morphology in amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation. J Superc Flu,2000, 17: 239-248.
    [67]Reverchon E, Porta G D, Pallado P. Supercritical antisolvent precipitation of salbutamol microparticles. Powder Tech, 2001,114:17-22.
    [68]Wubbolts F E, Bruinsma O S L, Rosmalen G M. Dry-spraying of ascorbic acid or acetaminophen solutions with supercritical carbon dioxide. J Crys Growth, 1999,198/199,767-77.
    [69]Randolph T W, Randolph A D, Mebes M, Yeung S. Sub-micrometer-sized biodegradable particles of poly(L-Lactic Acid) via the Gas antisolvent spray precipitation process. Biotechnol Prog. 1993, 9: 429-435.
    [70]Wang Y, Dave R N, Pfeffer R. Polymer coating/encapsulation of nanoparticies using a supercritical anti-solvent process. J of Supercritical Fluids, 2004,28:85-99
    [71], Production of antibiotic nanoparticies using supercritical CO_2 as antisolvent with enhanced mass transfer. Ind. Eng. Chem. Res, 2001, 40: 3530-3539.
    [72]Chattopadhyay P, Gupta R B. Production of griseofulvin nanoparticies using supercritical CO_2 antisolvent with enhanced mass transfer. Int J Pharm, 2001, 228: 19-31.
    [73]Chattopadhyay P, Gupta R B. Supercritical CO_2 based production of magnetically responsive micro- and nanoparticies for drug targeting. Ind Eng Chem Res, 2002, 41: 6049-6058.
    [74]EIvassore N, Baggio M, Pallado P, Bertucco A. Producton of different morphologies of biocompatible polymeric materials by supercritical CO2 antisolvent technique. Biotechnol Bioeng, 2001, 73(6): 449-457.
    [75]Reverchon E, Porta G D. Terbutaline microparticles suitable for aerosol delivery produced by supercritical assisted atomization. Int J Pharm, 2003, 258: 1-9.
    [76]Reverchon E, Spada A. Erythromycin micro-particles produced by supercritical fluid atomization. Technology, 2004, 141: 100-10.
    [77]Elvira C, Fanovich A, Fernandez M, Fraile J, Roman J S, Domingo C. Evalutaion of drug delivery characteristics of microspheres of PMMA-PCL-cholesterol obtained by supercritical- CO_2 impregnation and by dissolution-evaporation techniques. J Control Rel, 2004,99: 231-240.
    [78]Moneghini M, Kikic I, Perissutti B, Franceschinis E, Cortesi A. Characterisation of nimesulide-betacyclodextrins systems prepared by supercritical fluid impregnation. Eur J Pharm Biopharm, 2004, 58: 637-644.
    [79]Hees T V, Piel G, Evrard B, Otte X, Thunus L ,Delattre L. Application of supercritical carbon dioxide for the preparation of a piroxicam-β-cyclodextrin inclusion compound. Pharm Res, 1999, 16(12): 1864-1870.
    [80] Hees T V, Barillaro V, Piel G, Bertholet P, Hassonville S H, Evrard B, Kelattre L. Application of supercritical carbon dioxide for the preparation of drug-cyclodextrin inclusion compounds. Journal of Inclusion Phanomena and Macrocyclic Chemistry, 2002, 44:271-274.
    [81] Bandi N, Wei W, Roberts C B, Kotra L P, Kompella U B. Preparation of budesonide-and indomethacin-hydroxypropyl-β-cyclodextrin(HPBCD) complexes using a single-step, organic-solvent-free supercritical fluid process. Eur J Pharm Sci, 2004, 23: 159-168.
    [82] Dixon D J, Johnston K P. Polymeric materials formed by precipitation with a compressed fluid antisolvent. AIChE J. in press
    [83] Sethia S, Squillante E. Physicochemical characterization of solid dispersion of carbamazepine formulated by supercritical carbon dioxide and conventional solvent evaporation method. J Pharm Sci, 91(9), 1948-1957.
    [1] 朱秀媛.葛根有效成分的代谢研究Ⅲ.葛根素的代谢及其药代动力学分析.药学学报,1979,14:339-341.
    [2] 金昔陆,朱秀媛.葛根素在大鼠、家兔、犬中的药物动力学.中国药理学报,1992,13(3):284-288.
    [3] 金昔陆,朱秀嫒,王文杰,程桂芳.血浆中葛根素的高效液相色谱测定法及其在狗体内的药代动力学.药学学报,1997,32(10):782-785.
    [4] 路玫,李妮,蒙大平,郭炎荣,陈远华.葛根素在糖尿病肾病患者中的药动学.中国医院药学杂志,2000,20(12):718-720.
    [5] 金昔陆,程桂芳,朱秀媛.葛根素在健康志愿者的药代动力学.中国临床药理学杂志,1991,7(2):115-118.
    [6] Bialecka, M. The effect of bioflavonoids and ILecithin on the course of experimental atherosclerosis in rabbits. Annu. Acad. Med. Stein, 1997, 43: 41-44.
    [7] Gatti, G; Peruua, E. Plasma concentrations of free and conjugated silybin after oral intake of a silybin-phosphatidylcholine complex in healthy volunteers. Int. Clin. Pharmacol. Ther, 1994, 32(11): 614-620.
    [8] Payne N I; Cosgrove, R F; Green, A P; Liu, L. In-vivo studies of amphotericin B liposomes derived from proliposomes: Effect of formulation on toxicity and tissue disposition of the drug in mice. J. Pharm. Pharmacol, 1987, 39(1): 24-28.
    [9] Kimura, S. Solubilization ofdolichoi with lipids. JP Patent 61,194, 024,Aug 28, 1986.
    [10] Bombardelli, E, Patri, G; Pozzi, R. Complexes of saponins and their aglyeons with phospholipids and pharmaceutical and cosmetic compositions containing them. US Patent 5,166,139, Nov 24,1992.
    [11] 江永南,莫红缨,陈济民.淫羊藿黄酮磷脂复合物大鼠体内药动学.中国医院药学杂志,2002,22(10):582-584.
    [12] Jianmei, W; Dawei, C; Ruhua. Z. Study on the bioavailability of PPC by using HPLC. Biomed. Chromatogr, 1999, 13: 493-495.
    [13] Khazaeinia, T; Jamili, F. A comparision of gastrointestinal permeability induced by diclofenac-phospholipid complex with diclofenac acid and its sodium salt. J. Pharm. Pharm. Sci, 2003, 6(3): 351-358.
    [14] Elkheshen, S A; Sammour, O A; A1-Shaboury, M H; A1-Quadeib, B T. Ehancement of dissolution and bioavailability of piroxicam via solid dispersion with phospholipid. B. Faculty. Pharm(Cario University), 2001, 39(1): 309-320.
    [15] 王莉,邢东明,卢弘,孙虹,何希辉,杜力军.CBN中有效成分葛根素在大鼠体内的排泄.中药药理与临床,2001,17(5):8-10.
    [16] Yasuda, T; Ohtsubo, S; Kano, J; Ohsawa, K. Faeal metabolites after oral administration of major components of puerariae radix in rats. Annu. Rep. Tohoku Coll. Pharm, 1995, 42: 191-193.
    [17] Yasuda, T; Kano, Y; Saito, K; Ohsawa, K. Urinary and bilary metabolites of puerarin in rats. Bio. Pharm. Bull, 1995, 18(2): 300-303.