冲击荷载下早龄期混凝土力学和损伤特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:混凝土作为应用最广泛的建筑材料之一,在基础工程建设中发挥着重要的作用。随着实验设备和实验手段的改进,人们对混凝土展开了全方位的研究:从宏观到微观,从静载荷到动载荷,从稳定龄期到早龄期,从添加剂到钢纤维等等,在不断完善对混凝土认识,并促进了混凝土力学特性的改善。然而混凝土从制成到其稳定发挥作用-般需要28天,随着社会的进步,高效建设已是现代建筑理念的核心,在建设过程中,混凝土在养护期间不可避免会受到外界间断性甚至是持续性的影响。。在一些大断面开挖工程中,尤其是隧道和矿山巷道工程施工过程中,钻爆掘进法仍然是最主要的施工手段。因此,当隧道或巷道存在多个工作面同时进行钻爆掘进时,对整个隧道或巷道断面(包括围岩、初期喷混凝土层和二次衬砌结构)来说,实际上要受到多次爆破的动力扰动作用。且在工程中,为了加快施工进度,经常在喷射混凝土之后不久就立即进行爆破开挖,初期支护结构在距离爆源较近的情况下,爆破施工会使结构体产生累积损伤,影响混凝土支护结构的长期强度,使之达不到预期的支护效果。
     纵观以往混凝土力学研究,主要集中在稳定龄期后混凝土力学研究,对于早期混凝土力学研究较少,且局限于静载条件。爆破等工序的扰动作用不可避免的对早龄期混凝土结构造成损伤,这不仅对工程设计提出了新的要求,例如不同的爆破药量对不同龄期支护结构造成不同的损伤值,那么设计过程中就应将这一因素考虑进去,确保遭遇外界扰动后混凝土支护结构依旧能满足工程要求,同时在施工中,对爆破等工序应如何采取措施来防护支护结构也提出了相应的指导,达到科学服务于工程的目的。本文正是基于工程和科研的需要,针对上述情况下混凝土的力学性能展开研究,主要研究内容如下:
     (1)早龄期混凝土静载和动载下单轴压缩试验表明:静态和动态混凝土的强度与龄期呈对数关系增长;混凝土是一种应变率敏感性材料,在应变率20-75s-1范围内,动态强度提高因子为1.19-2.53,且动态混凝土强度与应变率呈指数关系增长,其应变率指数随着龄期的增长而迅速降低,直至接近脆性材料应变率指数;静态和动态峰值应变随龄期的增长整体上呈减小的趋势,其中动态峰值应变随应变率的提高而增大,但其增长幅度随着龄期增长而变小;动载下混凝土能耗与入射能和应变率都呈线性关系,且变化模式相近,均为在龄期7天以前,混凝土单位体积吸收能对外界冲击敏感性不高,但随着龄期的增长快速提高;而在龄期7天以后,随着龄期的变化,单位体积吸收能受外界冲击影响不大。
     (2)50-75%临界入射能多次冲击条件下,早龄期混凝土经过2-4次冲击基本上都发生了不同程度的破坏:龄期7天以前,混凝土具有一定的粘弹性,峰值应变随着冲击次数的增加而减小,抗压强度和弹性模量随着冲击次数的增加而提高,且多次冲击中,冲击入射能越小,提高作用越明显;随着龄期的增长,混凝土逐渐显现准脆性材料的特性,峰值应变随着冲击次数的增加整体变化不明显,强度和弹性模量随着冲击次数和冲击入射能的增加虽然有一定的提高,但整体变化不大;多次冲击破坏时混凝土的累积吸收能随着冲击次数的增加而增加,随着龄期的增长,每次冲击的吸收能也随之增长,与单次冲击破坏所需的能量相比,早龄期混凝土破坏累积吸收能受冲击次数影响不大。
     (3)冲击条件下混凝土的破坏模式实质上均为拉伸破坏,破坏模式整体受龄期影响较小,其中多次冲击下混凝土的破坏形态随龄期的变化整体上是由存在大块到大块度碎裂再到存在大块的一个过程,与龄期7天以“碎”而不裂的大块不同,龄期28天混凝土大块布满裂纹,整体上已经碎裂。
     (4)早期冲击养护模式下,混凝土的力学特性主要受到冲击作用和养护作用共同影响。龄期7天以前,当外界入射能不超过各龄期临界入射能的75%时,冲击养护后,混凝土表现出受冲击压实的作用。其中在早期单龄期冲击条件下,在各自50%临界入射能冲击后养护达到稳定龄期后破坏所需的能量影响并不大,而当冲击入射能达到或是超过临界入射能达到75%时,早期冲击作用对试样达到稳定龄期后抵抗外界入射能力具有明显的降低作用;龄期7天以后,随着混凝土脆性特性逐渐显现,冲击压实作用和养护作用减弱;在50%临界入射能冲击条件下早期单龄期冲击对混凝土力学特性影响不大,达到或超过75%后会明显弱化试样达到稳定龄期后抵抗外界入射能力。而早期多龄期冲击条件下,龄期7天以后的冲击过程中容易产生裂纹,导致混凝土各方面力学性能有所下降,且随着冲击入射能的增大下降越明显。除了在龄期3天以前破坏时两者的单位体积吸收能相近外,随着龄期的变化,单位体积吸收能与龄期呈不同模式变化;多龄期冲击破坏累积单位体积吸收能远远大于单次冲击破坏单位体积吸收能,但在多龄期持续冲击后,混凝土在后期冲击破坏时单位体积吸收能远小于单次冲击破坏的单位体积吸收能,下降了近50%。
     (5)根据早期混凝土力学特性随龄期存在由有粘弹性向脆性转变这一特性,将龄期变量引入Weibull分布统计损伤模型中,结合基于Kelvin模型改进的岩石时效损伤模型,提出了能反映混凝土材料力学性能随龄期变化的本构模型,并通过模型曲线和实测曲线的对比对模型进行了验证。结果表明该模型能较好的反映出混凝土在冲击荷载作用下其力学特性随龄期变化的规律。
     (6)采用基于龄期的损伤本构模型对不同冲击条件下早龄期混凝土的损伤特性进行了计算分析,再次验证了该模型能较好的反映出早龄期混凝土在不同条件下的损伤特性,且符合试验中混凝土不同龄期表现出的力学特性,并指出在研究材料的力学特性时,与单一的宏观力学特性相比,结合材料宏观力学特性和内部变量更能反映出材料在外界荷载下真实的力学特性。
Abstract:As one of the most commonly used building materials, concrete plays an important role in the construction of infrastructure projects.With the improvement of laboratory equipment and experimental method,the researchers launched a comprehensive study of the concrete:from macro to micro,from static load to dynamic load,from the stable early age to age, from an additive to steel fibers, etc, in constantly improve the understanding of concrete,while also largely contributed to improve the mechanical properties of concrete.While the mechanical properties of concrete would basically meet design requirement after28days curing, which is in contradiction with the modern construction methods that was dedicated to shortening the construction period.And during curing, concrete would be inevitably affected by intermittent or even lasting outside loading. In some large section excavation projects,especially in tunnels and mine workings project, drilling and blasting method is still the usual way to excavate tunnel.Therefore,when the tunnel section is divided into multiple sections were carried out using the drilling and blasting method,the entire tunnel section(including surrounding rock, the initial layer of shotcrete and the Secondary lining structure) is,in fact, subject to repeated blasting disturbances.In order to accelerate the construction progress,blasting operation is often conducted following the spraying concrete operation in a very short time interval,while the repeated blasting impact loading will probably cause damage to the concrete that is newly formed or has not reached to stable age near the excavation face,affecting the strength of early age concrete,decreasing the effectiveness of concrete support structure.
     Previous studies have focused a lot on the mechanical properties, strain-stress curve,mechanical properties prediction model of early age concrete subjected to static loading.However, there is little information in the literature on the mechanical properties under dynamic loading conditions.As early age concrete would be inevitably affected by disturbance of blasting processes, it is not only required new requirements for the engineering design,such as different doses causing different damage of different ages concrete supporting structure,and this factor should be taken into account in engineering design to ensure that concrete supporting structure is still effective after subjected to external disturbances, which can also to improve the utilization of the material, but also proposed appropriate guidance to take measures to protect the supporting structure from blasting in the construction of the process,and ultimately achieve the purpose of scientific services in engineering. Therefor, base on the engineering and scientific requires,this paper investigated the mechanical properties of early age under the cases mentioned above.The main contents are as follows:
     (1)The static and dynamic uniaxial compression tests show that concrete is sensitive to strain rate,the dynamic increase factor(DIF) increases from1.19to2.53at strain rate range of20~70s-1,and the static and dynamic strength of concrete have a positive logarithmic relationship with age.The growth trend of early age concrete dynamic strength with strain rate can be presented with an index function,while the strain rate index decreases with the growth of age,and at age of28days,it is close to the strain rate index of brittle materials.The static and dynamic critical strain(strain corresponding to maximum stress) of concrete decrease with the growth of age,and the dynamic strain grows with the increases of strain rate, while the growh magnitude decreaces with age.Under dynamic load,the unit volume absorbed energy of early age concrete has a positive linear relationship with incdent energy and strain rate.And before age of7days, the unit volume absorbed energy shows low sensitive to the impact loading, but it is improved with the growth of age; while there is no obvious change with the growh of impact loading after age of7days.
     (2) Early age concrete was fragmentation with large degrees after impact2-4times under the impact level of50~75%critical incident energy (EIC). Before age of7days,as the concrete shows viscoelasticity, and compaction after proper multiple impact which can be presented that the critical stain decreases with impact times, dynamic strength and elastic modulus increase with impact times,the smaller impact incident energy,the bigger growth magnitude.However, with the growh of age, the concrete begins to reveal the characteristics of quasi-brittle materials, the critical strain,dynamic strength and elastic modulus have no obvious change with the increase of impact times and impact incident energy.The cumulative unit volume absorbed energy of concrete subjected multiple impact increases with impact times,and the unit volume absorbed energy of each impact also increases with the growth of age.While compare with single impact, the influence of impact times on the cumulative damage absorbed energy is not obvious.
     (3)The failure modes of concrete under impact load are tensile failure,and there is little effect of age on the failure mode of concrete under impact conditions.Under multiple impact condition, the faluire shape of concrete vration with age is from existing large pieces to fragmention with large degree,and then to existing large pieces.However, compare with failure modes that existing large pieces without cracking before age of7days, the large pieces at age of28days covered with cracks, and which has been broken as a whole.
     (4)The mechanical properties of early age concrete are con-determined by the role of impact and curing under the impact-curing mode, and the role of impact on concrete presents compaction and produce cracks.Before age of7days, the concrete specimens are compact after impact of75%corresponding's EIC, and the effect of early age impact on the dynamic mechanical properties of specimens at stable age is little when the specimens previously subjected to impact at age of1,3and7days respectively under the impact level of50%corresponding's EIC,.While under the impact level of75%corresponding'EIC,there is an evidential effect on the mechanical properties of specimens at stable age. However, as concrete begins to show the characteristics of quasi-brittle materials, there is little change of mechanical properties when the specimens previously subjected to impact after age of7dyas under the impact level by no more than75%corresponding's EIC.And specimens are prone to crack under multiple age impact condition after age of7days, which woud lead to the mechanics performance of concrete degradation, and the bigger incident energy, the more degradation. In terms of absorbed energy, except age of3days, the unit volume absorded energy under single age impact condition is similar to multiple age impact condition. The cumulative damage unit volume absorbed energy under multiple age impact condition is far greater than the cumulative damage unit volume absorbed energy under single age impact condition, and magnitude increase with the growth of age.However, the absorbed energy ability of stable age concrete previously subjected multiple age impact is also far smaller than that under single age impact condition, dropped by nearly50%.
     (5)Based on statistical damage theory and Weibull distribution, combining the analysis of the change laws of stress-strain curves and viscosity coefficient of concrete with age, a damage constitutive model that can reflect the variation in dynamic mechanical properties with age was proposed. And the new-built constitutive model was verified by comparing stress-strain curves obtained from the new model with experimental stress-strain curves, indicating that there was a good agreement with two groups of stress-strain curves.
     (6)The analyses of early concrete damage mechanical under different impact conditions are conducted based on the new-built constitutive damage model.And the model is once again proven that can reflect the damage characteristics of early age concrete under different conditions, which agree with mechanical properties of different age concrete performence in the tests. What is more, in the study of the mechanical properties of materials, compare with single macroscopic mechanical properties, the combining macroscopic mechanical properties and internal variables can better reflect real mechanical properties of material under external load.
引文
[1]. Lew H S, Reichard T W. Mechanical Properties of Concrete at Early Ages[J]. Journal of the American Concrete Institute,1978,75(10):533-542.
    [2].沈毅.早龄期混凝土若干性能的研究[D].浙江大学,2004
    [3].金南国金贤玉郑砚国等.早龄期混凝土断裂性能和微观结构的试验研究[J].浙江大学学报2005,39(9):1374-1377.
    [4].林辰.早龄期混凝土断裂性能和微观结构的试验研究[D].浙江大学,2005.
    [5].田野,金南国,金贤玉.混凝土特征拉应变随龄期发展规律研究[J].浙江大学学报,2008,42(6):1076-1079.
    [6]. Petersson P E. Fracture energy of concrete:Practical performance and experimental results[J]. Cement and Concrete Research,1980,10(1):91-101.
    [7]. Wittmann F H, Roelfstra P E, Mihashi H, et al. Influence of age of loading, water-cement ratio and rate of loading on fracture energy of concrete[J]. Materials and Structures,1987,20:103-110.
    [8]. Lennart O, David L, Henrik S. Early-age stress-crack opening relationships for high performance concrete[J]. Cement and Concrete Composites,2004,26 (5):563-572.
    [9]. Brameshuber W, Hilsdorf H K. Development of strength and deformability of very young concrete [J]. Fracture of concrete and rock.1987,409-421
    [10]. Schutter G D, Taerwe L. Fracture energy of concrete at early ages[J]. Materials and Structures,1997,30:67-71
    [11]. Gettu R, Garcia-Alvarez V O, Aguado A. Effect of aging on the fracture characteristics and brittleness of a high-strength concrete [J]. Cement and Concrete Research,1998,28(3):349-55
    [12].黄煜镔,钱觉时.龄期和养护方式对高强混凝土力学性能的影响[J].硅酸盐通报,2007,26(3):427-430.
    [13].栾曙光陈昌平徐秀娟.混凝土断裂韧度、特征长度随强度、龄期变化规律[J].工业建筑,2003,33(1):46-48.
    [14]. Kovler K. Testing system for determining the mechanical behaviour of early age concrete under restrained and free uniaxial shrinkage [J].Materials and Structures, 1994,27(6):324-330.
    [15]. Khan A A, Cook W D, Mitchell D. Early age compressive stress-strain properties in low-, medium, and high-strength concretes [J].American Concrete Institute Material Journal,1995,92(6):617-624.
    [16]. Kim J K, Han S H, Song Y C. Effect of temperature and aging on the mechanical properties of concrete Part:I Experimental results [J]. Cement and Concrete Research,2002,32(7):1087-1094.
    [17]. Han S H, Kim J K. Effect of temperature and age on the relationship between dynamic and static elastic modulus of concrete [J]. Cement and Concrete Research, 2004,34(7)1219-1227.
    [18].田野,金南国,金贤玉.混凝土特征拉应变随龄期发展规律研究[J].浙江大学学报,2008,42(6):1076-1079.
    [19].杨杨许四法叶德艳等.早龄期高强混凝土拉伸徐变特性[J].硅酸盐学报,2009,37(7):1124-1129.
    [20].李晓芬.早龄期商品混凝土力学性能的试验研究[D].郑州大学,2005.
    [21].刘宏伟,谢丽,吴胜兴.混凝土早龄期弹性模量无损检测初探[J].混凝土,2008,6:36-38.
    [22].唐晓丽,秦宇航,屈文俊.混凝土低龄期抗压与粘结强度时变规律试验研究[J].建筑结构学报,2009,30(4):145-150.
    [23].侯景鹏,黄玉林,袁勇.高性能混凝土早龄期力学性能试验研究[J].混凝土,2010.10:63-72.
    [24]. Niu Yanzhou, Tu Chuanlin, Liang R Y, et al. Modeling of Thermo mechanical Damage of Early-Age Concrete [J]. Journal of Structural Engineering, 1995,121(4):717-726.
    [25]. Kahouadji A, Clastres P, Debicki G. Early-age compressive strength prediction of concrete-application on a construction site [J].Construction and Building Materials, 1997, 11(7-8):431-436.
    [26]. Nagy A. Determination of E-modulus of young concrete with nondestructive method[J] Journal of materials in civil engineering,1997,9(1):15-20.
    [27]. Kim J K, Han S H, Park S K. Effect of temperature and aging on the mechanical properties of concrete Part:II Prediction model [J]. Cement and Concrete Research, 2002,32(7):1095-1100.
    [28]. Sukumar B, Nagamani K, Raghavan R S. Evaluation of strength at early ages of self-compacting concrete with high volume fly ash[J]. Construction and Building Materials,2008,22(7):1394-1401.
    [29].沈建.早龄期混凝土软化关系的数值分析[D].浙江大学,2007.
    [30].顾文发.C40商品混凝土早龄期力学性能试验研究[D].北京交通大学,2012.
    [31]. Jin X, Li Z. Investigation on mechanical properties of young concrete[J]. Materials and Construction,2000,33(10):627-633.
    [32]. Yi S T, Kim J K, Oh T K. Effect of strength and age on the stress-strain curves of concrete specimens[J]. Cement and Concrete Research,2003,33 (8):1235-1244.
    [33].吴浪.混凝土早期力学性能试验研究[D].南昌大学,2007
    [34]. Khokhar M.I.A, Roziere E, Turcry P, Grondin F, Loukili A. Mix design of concrete with high content of mineral additions:Optimisation to improve early age strength[J]. Cement and Concrete Composites,2010,32(5):377-385.
    [35]. Beushausena H, Alexandera M, Ballim Y. Early-age properties, strength development and heat of hydration of concrete containing various South African slags at different replacement ratios[J]. Construction and Building Materials,2012, 29:533-540.
    [36]. Kaszynska M. Early age properties of high-strength/high-performance concrete[J]. Cement and Concrete Composites,2002,24(2):253-261.
    [37]. Zreiki J, Bouchelaghem F, Chaouche M. Early-age behaviour of concrete in massive structures, experimentation and modeling[J]. Nuclear Engineering and Design,2010,240(10):2643-2654.
    [38].金贤玉,田野,金南国.混凝土早龄期性能与裂缝控制[J].建筑结构学报,2010,31(6):204-212.
    [39].金南国,金贤玉,钱在兹.早龄期混凝土静力与动力损伤特性的试验研究[J].浙江大学学报,1997,31(3):372-379.
    [40].金贤玉,沈毅,李宗津,等.混凝土早龄期受力对后期性能的影响[J].混凝土,2003,7:35-37.
    [41]. Abrmas D A. Effect of rate of application of load on compressive strength of concrete[J]. Jounarl of ASTM International,1917,17(2):364-377.
    [42]. Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates[J].Materials and Structures 1991,24,425-450
    [43]. Bischoff P, Perry S. Impact Behavior of Plain Concrete Loaded in Uniaxial Compression[J]. Journal of Engineering Mechanics,1995,121(6):685-693.
    [44]. Tedesco J W, Ross C A. Strain-rate-dependent constitutive equations for concrete[J]. Journal of Pressure Vessel Technology,1998,120(4):398-405.
    [45].胡时胜,王道荣,刘剑飞.混凝土材料动态力学性能的实验研究[J].工程力学,2001,18(5):115-118.
    [46].胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系[J].爆炸与冲击,2002,22(3):242-246.
    [47].宁建国,刘海峰,商霖.强冲击荷载作用下混凝土材料动态力学特性及本构模型[J].中国科学(G辑:物理学力学天文学),2008,38(6):759-772.
    [48]. Zheng D, Li Q B, Wang L B. A microscopic approach to rate effect on compressive strength of concrete [J].Engineering Fracture Mechanics,2005,72(15):2316-2327.
    [49].焦楚杰,孙伟,高培正,等.钢纤维混凝土抗冲击试验研究[J].中山大学学报,2005,44(6):41-44.
    [50]. Wang Z L, Liu Y S, Shen R F. Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials,2008,22(5):811-819.
    [51]. Tai Y S. Uniaxial compression tests at various loading rates for reactive powder concrete[J]. Theoretical and Applied Fracture Mechanics,2009,52(1):14-21.
    [52]. Wang Shasha, Zhang Minhong, Quek S T. Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading[J]. Construction and Building Materials,2012,31:1-11.
    [53]. Wu Shengxing, Chen Xudong, Zhou Jikai. Influence of strain rate and water content on mechanical behavior of dam concrete[J]. Construction and Building Materials,2012,36:448-457.
    [54]. Zhang XX, Ruiz G, Yu RC, Poveda E. Rate effect on the mechanical properties of eight types of high-strength concrete and comparison with FIB MC2010[J]. Construction and Building Materials,2012,30:301-308.
    [55]. Shang Shiming, Song Yupu. Dynamic biaxial tensile-compressive strength and failure criterion of plain concrete[J]. Construction and Building Materials,2013, 40:322-329.
    [56]. Grote DL, Park SW, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I. experimental characterization[J]. International Journal of Impact Engineering,2001,25(9):869-886.
    [57]. Park SW, Xia Q, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:II. numerical simulation[J]. International Journal of Impact Engineering, 2001,25(9):887-910.
    [58]. Georgin J F, Reynouard J M. Modeling of structures subjected to impact: concrete behavior under high strain rate[J]. Cement and Concrete Composites,2003, 25(1):131-143.
    [59]. Krauthammer T, Elfahal M M, Lim J, et al. Size effect for high-strength concrete cylinders subjected to axial impact[J]. International Journal of Impact Engineering,2003,28(9):1001-1016.
    [60]. BraeeW F, Joncs A H. Comparison of uniaxial deformation in shock and static loading of three rocks[J]. Journal of Geophysical Research,1971,76(20):4913-4921.
    [61]. Janach W. The role of bulking in brittle failure of rocks under rapid compression[J]. International Journal of Rock Mechanical and Mining Science,1976, 13(6):177-186.
    [62]. Rossi P. Influence of cracking in the presence of free water on the mechanical behaviour of concrete [J].Magazine of concrete research,1991,43(154):53-57.
    [63]. Nemat-Nasser S, Deng H. Strain-rate effect on brittle failure in compression[J]. Acta Metallurgica et Materialia,1994,42(3):1013-1024.
    [64]. Ross C A, Tedesco J W, Kuennen S T. Effects of strain rate on concrete strength[J]. American Concrete Institute Materials Journal,1995,92(1):37-47.
    [65]. Ross C A, Joseph D M, Tedesco J P, et al. Hughes Moisture and strain rate effects on concrete strength[J]. ACI Materials Journal,1996,93(3):293-300
    [66]. Tedesco J W, Powell J C, Ross C A, Hughes, M L. A strain-rate-dependent concrete material model for ADINA[J]. Computers and Structures,1997, 64(5-6):1053-1067.
    [67]. Donze F V, Magnier S A, Daudeville L, et al. Numerical study of compressive behavior of concrete at high strain rates[J]. Journal of Engineering Mechanics,1999, 125(10):1154-1163.
    [68]. Li QM, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures,2003,40(2):343-360.
    [69].巫绪涛.钢纤维高强混凝土动态力学性质的研究[D].合肥:中国科学技术大学,2006.
    [70]. Forquin P, Gary G, Gatuingt F. A testing technique for concrete under confinement at high rates of strain[J]. International Journal of Impact Engineering, 2008,35(6):425-446.
    [71]. Forquin P, Safa K, Gary G. Influence of free water on the quasi-static and dynamic strength of concrete in confined compression tests[J]. Cement and Concrete Research,2010,40(2):321-333.
    [72].高原.混凝土动力强度与静力强度的关系探讨[D].清华大学,2008.
    [73].梁小燕,王勇华,王正道.RPC材料冲击加载下的横向惯性和应变率效应[J].北京交通大学学报,2008,32(4):58-62.
    [74]. Zhou X Q, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures,2008, 45(17):4648-4661.
    [75]. Ha uβler-Combe U, Kitzig M. Modeling of concrete behavior under high strain rates with inertially retarded damage[J]. International Journal of Impact Engineering, 2009,36(9):1106-1115.
    [76]. Kim D J, Sirijaroonchai K, EI-Tawil S, et al. Numerical simulation of the Split Hopkinson Pressure Bar test technique for concrete under compression[J]. International Journal of Impact Engineering,2010,37(2):141-149.
    [77]. Cusatis G. Strain-rate effects on concrete behavior[J]. International Journal of Impact Engineering,2011,38(4):162-170.
    [78]. William E V, Ertugrul T, Larry M. Dynamic strength increase of plain concrete from high strain rate plasticity with shear dilation[J]. International Journal of Impact Engineering,2012,45:1-15.
    [79]. Mehmel A, Kern E. Elastische und plastische Stauchungen:Von Beton infolge Druckschwell-und Standbelastung[M]. Vertrieb durch Verlag von W. Ernst,1962.
    [80]. Bennett, E W Muir, S E. Some fatigue tests of high-strength concrete in axial compression[J]. Magazine Concrete Research,1967,19(59):113-117.
    [81]. Awad M E, Hilsdorf H K. Strength and Deformation Characteristics of Plain Concrete Subjected to High Repeated and Sustained Loads[M]. Civil Engineering Studies,1971.
    [82]. Sinha B P, Gerstle K H, Tulin L. Stress-strain relations for concrete under cyclic loading[J]. Journal of the American Concrete Institute,1964,61(2):195-211.
    [83]. Karsan ID, Jirsa J O. Behavior of concrete under compressive loadings[J]. Journal of the structural Division,1969,95(12):2543-2563.
    [84]. Yip W K. Statistical modeling of microcracking in concrete under compressive cyclic Loading[J]. Theoretical and applied fracture mechanics,1995,24(1):47-55.
    [85]. Byong Y B, Hsu C T T. Stress-strain behavior of concrete under cyclic loading[J].ACI Materials Journal,1998,95(2):178-193.
    [86]. Yankelevsky D Z. Reinhardt H W Response of plain concrete to cyclic tension[J]. ACI Materials Journal.1987,84(5):365-373.
    [87]. Buyukozturk O, Tseng T M. Concrete in biaxial cyclic compression[J]. Journal of Structural Engineering,1984,110(3):461-476.
    [88].林皋,周洪涛,黄承逵.循环加载历史对混凝土断裂特性影响的试验研究[J].水利学报,1994,5:25-31.
    [89]. Yip W K. Statistical modelling of microcracking in concrete under compressive cyclic loading[J]. Theoretical and Applied Fracture Mechanics,1995,24(l):47-55.
    [90]. Enrico B, Pietro B. Variations in the mechanical properties of concrete subjected to low cyclic loads[J].Cement and Concrete Research,1997,27(3):453-462.
    [91].胡时胜,张磊,武海军等.混凝土材料层裂强度的实验研究[J].工程力学,2004,21(4):128-132.
    [92].潘景龙,赵宝超,马晓儒,等.武器间接命中条件下FRP约束混凝土抗多次打击能力[J].复合材料学报,2004,21(5):128-133.
    [93].闫东明,林皋,王哲.变幅循环荷载作用下混凝土的单轴拉伸特性[J].水利学报,2005,36(5):1-6.
    [94].闫东明.混凝土动态力学性能试验与理论研究[D].大连理工2006.
    [95].石星,万玲,邓涛,等.循环载荷作用下混凝土的压缩特性研究[J]地下空间与工程学报,2008,4(2):281-284.
    [96].傅剑平,慕遂峰,白绍良.高应变状态下混凝土的非等应变幅重复受压性能试验研究[J].工程力学,2006,23(11):145-152.
    [97].赖建中,孙伟,戎志丹.活性粉末混凝土在多次冲击荷载下的力学行为[J].爆炸与冲击,2008,28(6):532-538.
    [98]. He Wei, Wu Y F, Liew K M. A fracture energy based constitutive model for the analysis of reinforced concrete structures under cyclic loading[J]. Computer Methods in Applied Mechanics and Engineering,2008,197(51-52):4745-4762.
    [99]. Grassl P, Rempling R. A damage-plasticity interface approach to the meso-scale modeling of concrete subjected to cyclic compressive loading[J]. Engineering Fracture Mechanics,2008,75(16):4804-4818.
    [100]. Sima J F, Roca P, Molins C. Cyclic constitutive model for concrete[J]. Engineering Structures,2008,30(3):695-706.
    [101].李胜林,刘殿书,杨俊,等.碳纤维包裹下混凝土的动态力学性能研究[J].公路交通科技,2010,27(4):22-27.
    [102]. Richard B, Ragueneau F, Cremona C, et al. Isotropic continuum damage mechanics for concrete under cyclic loading:Stiffness recovery, inelastic strains and frictional sliding[J]. Engineering Fracture Mechanics,2010,77(8):1203-1223.
    [103].谢玖杨,彭刚,胡海蛟,等.等幅循环加载历史后混凝土动态特性试验[J].人民黄河,2013,35(2):105-107.
    [104].胡海蛟,彭刚,谢玖杨,等.历经循环荷载历史混凝土动态受压试验研究[J].混凝土,2013,1:51-54.
    [105]. Desprez C, Mazars J, Kotronis P, et al. Damage model for FRP confined concrete columns under cyclic loading[J]. Engineering Structures,2013,48:519-531.
    [106]. Richard B, Ragueneau F. Continuum damage mechanics based model for quasi brittle materials subjected to cyclic loadings:Formulation, numerical implementation and applications[J]. Engineering Fracture Mechanics,2013, 98:383-406.
    [107]. Kachanov L M. Time of the rupture process under creep conditions[J]. Isv. Akad. Nauk. SSR. Otd Tekh Nauk.1958,8:26-31.
    [108]. Rabotnov Y N. on the equations of state for creep[J]. Progress in Applied Mechanics and Physics,1963,178(12):307-315.
    [109]. Janson J, Hult J. Fracture mechanics and damage mechanics, a combined approach[J] Journal of Applied Mechanics and Physics,1977,1(1):59-64.
    [110]. Dougill J W. On stable progressively fracturing solids[J]. Journal of Applied Mechanics and Physics,1976,27(4):423-437.
    [111]. Krajcinovic D. Damage mechanics[M]. Amsterdam:Elsevier,1997.
    [112]. Lemaitre J. How to use damage mechanics. Nuclear Engineering and Design, 1984,80(2):233-245.
    [113]. Krajcinovic D. Continuous damage mechanics[J]. Journal of Applied Mechanics,1984,37(11):1-6.
    [114].曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231.
    [115].李庆斌,张楚汉,王光纶.单轴状态下混凝土的动力损伤本构模型[J].水利学报,1994,21:55-59.
    [116].丁泰山,李万喜.爆破施工对新喷射混凝土的损伤影响分析[J].地下空间与工程学报,1994,2(5):834-838.
    [117].李朝阳,宋玉普,车轶.混凝土的单轴抗压疲劳损伤累积性能研究[J].土木工程学报,2002,35(2):38-40.
    [118].王道荣,胡时胜.冲击荷载下混凝土材料损伤演化规律的研究[J].岩石力学与工程学报,2003,22(2):223-226.
    [119].Parviz S, Mohamed E. Damage effects on concrete performance and microstructure[J]. Cement and Concrete Composites,2004,26(7):853-859.
    [120], Lu Y, Xu K. Modelling of dynamic behaviour of concrete materials under blast loading[J]. International Journal of Solids and Structures,2004,41(1):131-143.
    [121]. Cicekli U, Voyiadjis G Z, Abu Al-Rub R K. A plasticity and anisotropic damage model for plain concrete[J]. International Journal of Plasticity, 2007,23(10-11):1874-1900.
    [122].肖诗云,张剑.不同应变率下混凝土受压损伤试验研究[J].土木工程学报,2010,43(3):40-45.
    [123].李晓明.冲击荷载作用下混凝土路面的损伤演化[D].哈尔滨工业大学,2010.
    [124]. Markovich N, Kochavi E, Ben-Dor G. An improved calibration of the concrete damage model[J]. Finite Elements in Analysis and Design,2011,47(11):1280-1290.
    [125]. Erdem S, Dawson A R, Thom N H. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates[J]. Cement and Concrete Research,2012,42(2):291-305.
    [126]. Hopkinson B. Method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philos Trans Roy Soc.1914,213(31): 437-456.
    [127]. Kolsky H. Stress waves in solids[M]. Dover, New York; 1963
    [128]. Lindholm U A. Some experiments with the split Hopkinson pressure bar[J]. Mech.Phys.Solid,1964,12(5):317-385.
    [129].段祝平等.高应变率下金属动力学性能的实验与理论研究[J].力学进展,1981,11(1):1-15.
    [130].胡时胜,王礼立.一种用于材料高应变率试验装置[J].振动与冲击,1986,17(1):40-46.
    [131].赵西寰,李庆明.分离式Hopkinson扭杆技术及L4纯铝的动态剪切应力一应变曲线[J].力学学报,1986,18(4):324-327.
    [132].夏源明,杨报昌等.摆锤式杆型冲击拉伸试验装置和低温动态测试技术[J].实验力学,1989,4(1):57-66.
    [133]. Albertini C, Boone PM, Montagnani M. Development of the Hopkinson bar for testing large specimens in tension[J]. J. Phys. Colloques,1985,46:499-504.
    [134].唐志平,王礼立.SHPB,1986,6(4):320-327.
    [135].田兰桥,白以龙.材料动态力学性能实验的一个数据处理系统[J].爆炸与 中击,1988,6(1):79-83.
    [136].考尔斯基著,王仁等译.固体中的应力波.北京:科学出版社,1966.
    [137]. Richard S. Longitudinal impact of a semi-infinite circular elastic bar[J], Journal of Applied Mechanics,1957,24:59-64.
    [138]. Bertholf L.D, Karnes C.H. Two-dimensional analysis of the split-Hopkinson pressure bar system[J], Journal of the Mechanics and Physics of Solids,1975,23: 1-19.
    [139]. Zhao H, Gary G, Klepaczko JR. On the use of a viscoelastic split Hopkinson pressure bar[J]. International Journal of Impact Engineering,1997,19(4):319-330.
    [140]. LI X B, LOK T S, ZHAO J, et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(7):1055-1 060.
    [141]. LIU Deshun, LI Xibing, YANG Xiangbi. Approach for controlling oscillation in dynamic stress-strain measurement[J]. Transactions of Nonferrous Metals Society of China,1996,6(2):144-147.
    [142].李夕兵,古德生,赖海辉.冲击载荷下岩石动态应力应变全图测试的合理加载波形[J].爆炸与冲击,1993,13(2):125-130.
    [143].李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994.
    [144].李夕兵,刘德顺,古德生.消除岩石动态实验曲线振荡的有效途径[J].中南工业大学学报,1995,26(4):457-460.
    [145]. Davies E.D.H, Hunter S.C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar system [J], Journal of the Mechanics and Physics of Solids,1963,11(3):155-179.
    [146]. Lok T.S. Li X.B. and Liu D. et al. Testing and Response of Large Diameter Brittle Materials Subjected to high Strain rate[J]. Journal of Materials in Civil Engineering.2001,14(3):262-269
    [147].GB/T 50081--2002普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2002.
    [148]. LI Xibing, LOK T S, ZHAO J. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(7): 1055-1060.
    [149].巴赞特.岩土和混凝土力学(美)[M].重庆:重庆大学出版社,1991.
    [150].王世鸣,李夕兵,宫凤强,朱晶晶.静载和动载下不同龄期混凝土力学特性的试验研究[J].工程力学,2013,30(2):143-149.
    [151]. Abroad S H, Shah S E. Behavior of hoop confined concrete under high strain rates[J]. ACI,1985,82(5):634-647.
    [152].许金余,李为民,黄小明等.玄武岩纤维增强地质聚合物混凝土的动态本构模型[J].工程力学2010,4(27)111-116.
    [153]. Ju Yang, Liu Hongbin,Sheng Guohua,et al. Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts[J].Technological Sciences,2010,53(9):2435-2449.
    [154].焦楚杰,孙伟,高培正.混凝土SHPB试验的数值模拟[J].工程力学,2010,增刊(27)196-200.
    [155].余寿文,冯桥西.损伤力学[M].北京:清华大学出版社,1997.
    [156]. Krajcinovic D, Silva MAG. Statistical aspects of the continuous damage theory [J]. International Journal of Solids and Structures,1982,18(7):551-562.
    [157].李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[D].徐州:中国矿业大学,1995.
    [158].唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [159].徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791.
    [160]. Wong Tengfong, Wong Robina H C, Chau K T, et al. Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock[J]. Mechanics of Materials,2006,38(7):664-681.
    [161]. Wang Zhiliang, Liu Yongsheng, Shen R F. Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials,2008,22(5):811-819.
    [162].吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报,1996,15(1):55-61.
    [163].郑颖人,赵尚毅,张鲁渝,等.有限元强度折减法在土坡土坡和岩坡中的应用[C].中国岩石力学与工程学会第七次学术大会论文集.北京:中国科学技术出版社.2002:70-76.
    [164].单仁亮,薛友松,张倩.岩石动态破坏的时效损伤本构模型[J].岩石力学与工程学报,2003,22(11):1771-1776.
    [165].吴新璇.混凝土无损检测技术手册[M].北京:人民交通出版社,2004.
    [166].陈龙珠,沙玲,邓俊杰.混凝土波速受检测方法影响的研究[J].岩土工程学 报,2006,28(6):685-688.
    [167].曾杰,靳晓光,张永兴.隧道衬砌结构三轴压缩蠕变特性试验研究[J].岩土力学,2012,33(1):115-119.
    [168].熊华,扶名福,罗奇峰.混凝土分段曲线损伤模型[J].力学季刊,2004,25(3):342-348.
    [169].唐晓军.循环荷载作用下岩石损伤演化规律研究[硕士学位论文][D].重庆:重庆大学,2008.
    [170].胡柳青,李夕兵,赵伏军.冲击荷载作用下岩石破裂损伤的能耗规律[J].岩石力学与工程学报,2002,21(增2):2304-2308.