晚期前列腺癌中的雄激素受体突变体的功能改变及差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌(PC)是雄激素依赖的肿瘤,雄激素可促进PC的增殖,而内分泌治疗即去势和应用雄激素拮抗剂可抑制肿瘤生长并诱导癌细胞凋亡,因此,该疗法一直是PC的重要治疗手段之一。但在临床工作中早已发现,一部分患者在内分泌治疗前或治疗一段时间后其肿瘤细胞出现了对内分泌治疗的不敏感或抵抗,其机制迄今尚未完全阐明。由于雄激素与PC的发生、发展和临床治疗关系密切,而雄激素受体(AR)是介导雄激素作用的关键大分子,因此,PC与AR关系的研究一直是前列腺癌研究的热点之一。一般认为,PC细胞为适应内分泌治疗后体内出现的极低的雄激素环境,可通过多种机制,使AR的信号转导增强(1)AR基因扩增,蛋白表达增加;(2)AR基因突变,造成AR转录激活功能增强,与配体结合的特异性改变等;(3)辅助因子表达的异常;(4)配体非依赖性激活。
     本文对我们以前应用PCR-SSCP分析,从50余例前列腺癌组织标本中,发现的4例AR基因突变(G142V、D221H、E872Q和M881I)进行了体外功能分析。
     首先,我们应用pALTER体外致突变系统成功地对这些突变位点进行了人工致突变,构建了这些突变的表达载体,然后应用Western blot分析,对转染入无内源性AR表达的COS-7细胞中的表达载体的表达进行了分析,结果表明,表达载体能有效表达AR,其大小与野生型AR一致。而应用完整细胞的放射配体结合分析法,对转染入COS-7细胞中的AR进行了Scatchard分析,结果表明,与野生型AR相比,这些
    
     博士学位论文 陈腑
     突变与人N合成的雄激素R1881结合的亲和力及最大结合容量均无明显。
     改变。在此基础上,我们对受体的转录激活功能进行了研究。
     以无内源性AR表达的**l细胞;为模型,我们首先应用**T对受
    -体的转录激活功能进行了研究。结果表明,与野生型AR相比,DHT
     在 Zxlo-“mol/L时,即对位于 TAD的两突变体* 和 D22lH即具有
     明显的车录激活增强作用(P<O.05),Zx ic“’moL几时则有显著的激活作
     用(P<o刀1***T对另外两个突变体的转录激活作用无明显的异常。
     应用雄激素桔抗剂CPA、Flutamide及雌激素、孕激素、RU486、Dex
     对AR突变体进行转录激活功能研究表明,与野生型AR相比,CPA、
     雌激素和孕激素对E872Q的转录激活功能异常增强(P<o刀1)。而其余
     三种突变体则无明显异常。这表明E872Q与2:PA、雌激素和孕激素结
     合发主了特异性改变。而RU486和I儿x对四种突变体的转录功能均无
     明显异常。
     作为配体依赖性的转录调节因于,AR发挥其正常的转录调节作用,
     有赖于辅助因子的参与。我什1应用共激活因子 1IF上、CBP及 P300和
     共抑制因子NCOR、SMRTMRT及p53对AR突变体转录激活功能的影响进
     行了研究。与野生型AR相比,TD上和CBP对突变发生于LBD的两
    _突变体*872和*8861具有明显异常的转录激活·增强作用(P<0刀1),而
     对发兰于TAD的两个突变体的转录则无明显的异常作用。而P300对四
     种突变体的作用,则与野生型AR基本相似,无明显的异常。
     对共抑制因子所进行的研究则表明,SMRT和 P53能完全进行 DHT
     以及CPA对野生型AR和AR突变体的转录激活作用。而NCOR作用
     存在一些差异:能完全阻断 CPA对所有受体的转录激活作用;仅能部
    _分抑制**T对野生型AR及*142、IR21H的转录激活作用,完全阻断
     DHT对E872和M8861的转录激活作用。以上研究提示,AIt的转录激
     3
    
     博士学位论文 陈光椿
     活作用的强弱,不仅与共激活因子表达强弱有关,也与共抑制因子表达
     强弱有关;二者表达比例的高低,对受体的转示:活性尤为重要。这也可
     能正是受体的转录激活存在细胞特异性的机制之一。
     AR的配体非依赖性转录激活功能在前列腺癌的发展过程中,也具
    -有重要的作用。尽管机制尚不清楚。我们应用PKC激动剂PMA对AR
     进行的研究表明,*M A对野生型AR和AR突变体均有基本相同的配
     体依赖性转录激活作用,并且还与]n{T一起,对野生型AR及AR突
     变体的转录激活起协同的作用。尽管 c*un是I。MA信号转导途径中的
     下游蛋白,我们对c*un在AR季录激活中的作用研究 表明,c-Jun育完
     全阻断 AR的转录激活作用,表明 c*un并不参与 l。MA对 Aft的的配体
     非依赖性激活作用。
     G CHO为模型,研究了 AR7含 pZI启动子的报告基因 pZI-LUC
     的转录激活作用,结果表明,与野生型*R相比,*R突变体对报告基
Prostatic carcinoma (PC) is the most commonly diagnosed malignancy in men in the United States and is second only to lung cancer in cancer-related deaths. However, in recent years, with the change of life style, there is also obvious augment of morbidity in our country.
    Androgens are essential for the development, growth, and maintenance of the prostate. They exert their effects via the intracellular androgen receptor (AP.), which is a ligand-dependent transcription activator. As is the case with normal prostate development, primary prostatic cancers are largely dependent on androgens for growth and survival. Most patients respond favorably to androgen ablation and antiandrogen therapy, which has become a standard treatment of metastatic disease. However, virtually all patients will relapse with clinically defined androgen-independent cancer. This phenomenon raises the question of how cancer cells survive and grow in the low androgen environment? Two of the routes cells can take to adapt are (1) bypassing and (2) sensitizing the AR pathway. The vast numbers of AR abnormalities observed in prostate tumors from patients
    
    
    treated with hormonal therapy suggest that many cells sensitize or change the AR pathway. To continue to activate this pathway in a low androgen environment, cells can (I) mutate the AR to become promiscuously activated by different steroids, (2) amplify the AR, (3) activate the AR in a ligand-independent manner by growth factors and cytokines, or (4) amplify coactivators. Alternatively, prostate cancer cells that have lost AR expression must have bypassed the AR pathway. Activation of oncogenes and autocrine growth factor stimulation are two mechanisms that likely contribute to becoming completely androgen-independent. From all the studies on AR function in prostate cancer, it is clear that the AR plays an important role in cancer development and progression. Moreover, the AR pathv/ay remains important in most cells from patients with clinically defined androgen-independent prostate cancer.
    AR like other nuclear receptors displays a modular structure with three main conserved regions: an amino-terminal region harboring an autonomous activation function (AF-1), a centrally located E'NA-binding domain (DBD), and a carboxyl-termirial region containing the ligand-binding domain (LBD) The AR is normally associated with heat shock proteins and in this state cannot bind to androgen-responsive elements). Upon ligand binding, the receptor acquires a new conformational state. Androgen binding induces dissociation from heat shock proteins, hyperphosphorylation, conformational changes, and dimerization of the receptor. This allows binding of the AR to specific DNA sequences called androgen-responsive elements located within the promoters of androgen-responsive genes. In conjunction with cofactor proteins and other transcriptional factors, the AR is then able to up- or down-regulate the transcription of genes, such as C(3), Sip, probasin, PSA, p21 and hKLK2, et.al.
    The first AR mutation in prostate cancer was described in LNCaP cells several years ago. This mutant receptor binds estrogenic and progestagenic steroids and antiandrogens hydroxyflutamide and nilutamide with high affinity. These substances activate the mutant AR more efficiently than the wild-type one. All mutant ARs detected in
    
    prostate cancer that are functionally characterized are "promiscuous" receptors; they can be activated by other steroid hormones arid by nonsteroidal antiandrogens. Subsequently, amino acid substitutions were reported in organ-confined as well as rnetastatic tumors Of the several AR mutants in prostate cancer that have been characterized thus far, the majority are functional and can mediate androgen-induced transactivation, in contrast to loss of function germ-line AR mutations that cause androgen insensitivity.
    Previous years, in our laboratory, we have identified four missense mutations (G142V, D221H, E872Q, and M886I) in AR from nearly fifty PC samples by PCR-SSCP analysis. However, the effect of these mutati
引文
1.Emiel R et al. Molecular Genetics and Epidemiology of Prostate Carcinoma Endocrine Reviews. 1999;20(1): 22-45
    2.Cory AS et al. Molecular genetics of prostate cancer.2000; 14(19):2410-243.
    3.Suzuki H, et al. Role of androgen receptor in prostate cancer. Asian J Androl. 1999; 1(3): 81-5.
    4.Peterziel et al. Mutant androgen receptor in prostatic tumors distinguish between amino-acid-sequence requirements for transactivition and ligand binding. Int J Cancer. 1995;68:544-550
    5.Culig et al. Mutant androgen receptor detected in an advanced stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol. 1993;7(12):1541-1550
    6.Tilley WD et al. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin. Cancer Res. 1996;2:227-285
    7.Van der Kwast T.H et al. Androgen receptors in endocrine therapy resistant human prostate cancer. Inst J Cancer. 1991;48:189-193
    8.陈卫国等。非雄激素依赖前列腺癌形成机制探讨。国外医学泌尿系统分册。1997:17(5):198-201
    9.KelIy, WK et al. Prostate specific antigen decline after antiandrogen withdrawl: the flutamide withdrawal syndrome. J Urol. 1993; 149:607-609.
    10.Scher HI et al. Flutamide withdrawal sydrome: its impact on clinical trial in hormone-refractory prostate cancer. J Clin Oncol. 1993; 11:1566-1572
    11.Chang C et al. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors. Proc Natl Acad Sci USA. 1988;85:7211-7215.
    12.Keller ET, et al. THE ANDROGEN RECEPTOR: A MEDIATOR OF DIVERSE PESPONSES. 1996; Frontiers in Bioscience 1:d59-71.
    13.Hiipakka RA, et al. Molecular Mechanism of Androgen Action Trends in Endocrinology and Metabolism 1998, 9:317-324
    14.Brinkmann AO et al. The human androgen receptor: structure/function relationship in normal and pathological situations. J Steroid Biochem Molec Biol. 1992; 41(3-8): 361-368
    15.Tyagi RK, et al. Dynamics of Intracellular Movement and Nucleocytoplasmic Recycling of the Ligand-Activated Androgen Receptor in Living Cells. Molecular Endocrinology. 2000; 14(8): 1162-1174
    16.Heinlein,CA et al. Androgen Receplor (AR) Coregulators: An Overview Endocrine Reviews 2002;23(2): 175-200
    17.Aarnisalo P et al. CREB binding protein in androgen receptor-mediated signaling. Proc Natl Acad Sci USA. 1998;95:2122-2127.
    18.Voegel JJ, et. TIF2, a 160 kDA transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J, 1996 15, 3667-3675.
    19.Miyamoto, H., Yeh, S., Wilding, G. & Chang, C. (1997). Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proc Natl Acad Sci USA, 95, 7379-7384.
    
    
    20. Masai et al. Immunohistochemical study of androgen receptor in benigh hyperplastic and cancerous human prostates. Prostate. 1990; 17:293-300
    21. Hobisch, A., et al. Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res, 1995; 55, 3068-72.
    22. Rwizeveld de winter JA.et al. Androgen receptor heterogeneity in human prostatic carcinomas visulalized by immumohistochemistry. J Urol.1990;161: 329-332
    23. Brolin J et al. Immunohistochemistuy and biochemistry in detection of androgen, progesterone and oestrogen receptors in benign and malignant human prostatic tissue. Prostate. 1992;20:281-295
    24. Sadar MD, et al. Prostate cancer: molecular biology of early progression to androgen independence Endocrine-Related Cancer (1999) 6 487-502
    25. Z Culig, et al. Androgen receptor-an update of mechanisms of action in prostate cancer. Urol Res, 28(4): 211-9.
    26. Grossmann me, et al. Androgen Receptor Signaling in Androgen-Refractory Prostate. Cancer Journal of the National Cancer Institute, 2001;93(22) 1687-1697.
    27. Bentel J M, Androgen receptors in prostate cancer J. Endocrinol. 1996 151, 1-11
    28. Russell PJ et al. Growth factor involvement in progression of prostate cancer Clinical. Chemistry. 1998;44:705-723.
    29. Linja MJ, et al. Amplification and Overexpression of Androgen Receptor Gene in Hormone-Refractory Prostate Cancer,. Cancer Res. 2001; 61: 3550-3555.
    30. Bubendorf L et al. Survey of Gene Amplifications during Prostate Cancer Progression by High-Throughput Fluorescence in Situ Hybridization on Tissue Microarrays Cancer Research. 1999;59, 803-806,
    31. Veldscholte et al. A mutation in the ligand binding dornain of the androgen receptor of human LNCap cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophs Res Commun. 1990; 173:534-540
    32. Taplin, ME, t al. Mutation of the androgen receptor gene in metastatic androgenindependent prostate cancer. New Engl J Med. 1995;332:1393-1398.
    33. Van der Kwast T. H et al. Androgen receptors in endocrine therapy resistant human prostate cancer. Int J Cancer. 1991; 48:189-193
    34. Gregory CW, et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 2001; 61(11):4315-9
    35. Anzick, S.L., et al. AIB1, a steroid receptor coactivator is amplified in breast and ovarian cancer. Science, 1997; 277, 965-968.
    36. Jenster G, et al. Coactivators and corepressors as mediators of nuclear receptor function: An update. Molecular and Cellular Endocrinology. 1998; 143:1-2:1-7
    37. Culig Z, et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 199454, 5474-8.
    38. Hobisch A, et al..Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res, 1998 58, 4640-4645.
    
    
    39. Nazareth LV et al. Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem, 1996; 271, 19900-7.
    40. Sadar M D, et al. Androgen-independent Induction of Prostate-specific Antigen Gene Expression via Cross-talk between the Androgen Receptor and Protein Kinase A Signal Transduction Pathways J Biol Chem, 1999; 274 12, 7777-7783,
    41. Cenni B, et al. Ligand-independent Activation of Steroid Receptors: New Roles for Old Players. Trends in Endocrinology and Metabolism. 1999; 10:41-46.
    42. 王晓慧,谢靖,陈光椿等 前列腺癌患者雄激素受体N端AF1区突变的研究。中华泌尿外科杂志。2000;21(12):712-715.
    43. 王晓慧,卢建,于小玲等 45例人前列腺癌雄激素受体基因B~H外显子的突变研究。中国病理生理学杂志。2000;16(1):8-11.
    44. 何立敏,卢建.正常成年男性外阴部皮肤成纤维细胞雄激素受体的研究。男性学杂志。1993;7:2.
    45. Wang Q, et al. Ligand-and Coactivator-mediated Transactivation Function (AF2) of the Androgen Receptor Ligand-binding Domain Is Inhibited by the Cognate Hinge Region. J. Biol. Chem. 1. 276, 2001, 7493-7499.
    46. Gao TS, et al. Functional Activities of the A and B Forms of the Human Androgen Receptor in Response to Androgen Receptor Agonists and Antagonists. Molecular Endocrinology 12(15): 654-663
    47. Yeh SY. Differential Induction of the Androgen Receptor Transcriptional Activity by Selective Androgen Receptor Coactivators, Keio J Med. 1999, 48(2): 87-92
    48. Fr(?)nsdal K, et al. CREB Binding Protein Is a Coactivator for the Androgen Receptor and Mediates Cross-talk with AP-1. J. Biol. Chem., 1998; 273(48): 31853-31859.
    49. Robyr D, et al. Nuclear Hormone Receptor Coregulators In Action: Diversity For Shared Tasks. Molecular Endocrinology. 14(3): 329-347
    50. Gregory CV et al. Mechanism for Androgen Receptor-mediated Prostate Cancer Recurrence after Androgen Deprivation Therapy. Cancer Res. 2001;61:4315-4319.
    51. Fu MF, et al. p300 and p300/cAMP-response Element-binding Protein-associated Factor Acetylate the Androgen Receptor at Sites Governing Hormone-dependent Transactivation. J. Biol. Chem. 2000;275(27):20853-20860.
    52. Shenk Jl et al. p53 Represses Androgen-induced Transactivation of Prostatespecific Antigen by Disrupting hAR Amino-to Carboxyl-terminal Interaction J. Biol. Chem. 2001;276(42):38472-38479.
    53. Reinikainen P, et al. Effects of Mitogens on Androgen Receptor-Mediated Transactivation Enclocrinology. 1996; 137(10): 4351-4357.
    54. Bubulya A, et al. c-Jun Potentiates the Functional Interaction between the Amino and Carboxyl Termini of the Androgen Receptor. 2001; J. Biol. Chem.; 276(48): 44704-44711.
    55. Bubulya A, et al. c-Jun Can Mediate Androgen Receptor-induced Transactivation. J. Bio. Chem 1996; 271(40): 24583-24589.
    
    
    56. Lu S et al. Androgen Regulation of the Cyclin-Dependent Kinase: Inhibitor p21 Gene through an Androgen Response Element in the Proximal Promoter Molecular, Endocrinology 1999 13(3): 376-384
    57. Lu S, et al. Androgen Induction of Cyclin-Dependent Kinase Inhibitor p21 Gene: Role of Androgen Receptor and Transcription Factor Spl Complex Molecular Endocrinology 14(5): 753-760.
    58. Buchanan G, et al. Collocation of Androgen Receptor Gene Mutations in Prostate Cancer. Clinical Cancer Research. 2001; 7:1273-1281.
    59. Jenster G, et al. Identification of Two Transcription Activation Units in the Nterminal Domain of the Human Androgen Receptor. 1995;270(13):7341-7346
    60. Takahashi H, et al. Prevalence of androgen receptor gene mutations in latent prostatic carcinomas from Japanese men. Cancer Res, 1995;55:1621-1624.
    61. 陈光椿,卢建,徐晓春,等.七例睾丸女性化患者雄激素受体基因突变的研究.第二军医大学学报.1996;17(3):300-304.
    62. Thompson J, et al. Disrupted Amino-and Carboxyl-Terminal Interactions of the Androgen Receptor Are Linked to Androgen Insensitivity Molecular Endocrinology 2001;15(6):923-935.
    63. Chamberlain NL,et al. Delineation of Two Distinct Type 1 Activation Functions in the Androgen Receptor Amino-terminal Domain. J. Bio. Chem. 1996;271(43): 26772-26778
    64. Poujol N, et al. Specific Recognition of Androgens by Their Nuclear Receptor. A STRUCTURE-FUNCTION STUDY. J. Biol. Chem. 2000275(31):24022-24031
    65. Matias PM, et al. Structural Evidence for Ligand Specificity in the Binding Domain of the Human Androgen Receptor IMPLICATIONS FOR PATHOGENIC GENE MUTATIONS. J. Biol. Chem. 2000;275(34):26164-26171.
    66. Slagsvold T Mutational Analysis of the Androgen Receptor AF-2 (Activation Function 2) Core Domain Reveals Functional and Mechanistic Differences of Conserved Residues Compared with Other Nuclear Receptors. Molecular Endocrinology 2000; 14(10): 1603-1617.
    67. Langley E, et al. Evidence for an Anti-parallel Orientation of the Ligandactivated Human Androgen Receptor Dimer..J. Biol. Chem, 1995; 270(50) 29983-29990.
    68. He B, et al..Androgen-induced NH2-and COOH-terminal Interaction Inhibits p160 Coactivator Recruitment by Activation Function 2J. Biol. Chem. 2001; 276,(14)5:42293-42301.
    69. Lee DK, et al. From Androgen Receptor to the General Transcription Factor TFIIH. IDENTIFICATION OF cdk ACTIVATING KINASE(CAK) AS AN ANDROGEN RECEPTOR NH2-TERMINAL ASSOCIATED COACTIVATOR. J Biol Chem, 2000.275(13) 9308-9313
    70. McEwan IJ, et al. Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF. Proc. Natl. Acad. Sci. USA. 1997; 94. 8485-8490.
    71. Ghadessy FJ, et al. Oligospermic infertility associated with an androgen receptor mutation that disrupts interdomain and coactivator (TIF2) interactions. Clin Invest, 1999;103(11): 1517-1525.
    
    
    72. Tan J A, et al. Dehydroepiandrosterone Activates Mutant Androgen Receptors Expressed in the Androgen-Dependent Human Prostate Cancer Xenograft CWR22 and LNCaP Cells. Mol. Endocri. 1997;11(4): 450-459.
    73. Han GZ, et al. Hormone Status Selects for Spontaneous Somatic Androgen Receptor Variants That Demonstrate Specific Ligand and Cofactor Dependent Activities in Autochthonous Prostate Cancer J. Biol. Chem. 2001;276(14):, 11204-11213.
    74. Roy AK et al. Androgen receptor: structural domains and functional dynamics after ligand-receptor interaction. Ann N Y Acad Sci 2001;949:44-57.
    75. Katzenellenbogen JA, et al. Tripartite steroid hormone receptor pharmacology: interaction with multiple effector sites as a basis for the cell-and promoterspecific action of these hormones. Mol Endocrinol. 1996; 10(2): 119-31
    76. M(?)ller JM, et al. FHL2, a novel tissue-specific coactivator of the androgen receptor. EMBO J. 2000;19:359-369.
    77. Aarnisalo P et al. CREB-binding protein in androgen receptor mediated signaling. Proc. Natl. Acad. Soc. 1998;95(5): 2122-2127.
    78. He B, et al. Activation Function 2 in the Human Androgen Receptor Ligand Binding Domain Mediates Interdomain Communication with the NH2-terminal Domain J Biol Chem. 274(52), 37219-37225, December 24, 1999
    79. Berrevoets CA, et al..Functional Interactions of the AF-2 Activation Domain Core Region of the Human Androgen Receptor with the Amino-Terminal Domain and with the Transcriptional Coactivator TIF2 (Transcriptional Intermediary Factor 2) Molecular Endocrinology 12(8): 1172-1183.
    80. Alen P, et al. The Androgen Receptor Amino-Terminal Domain Plays a Key Role in p160 Coactivator-Stimulated Gene Transcription. Molecular and Cellular Biology. 1999; 19(9):6085-6097, Vol.
    81. Olefsky JM. Nuclear Receptor Minireview Series. J. Biol. Chem. 2001;276(40) 36863-36864.
    82. McKenna NJ, et al. Nuclear Receptor Coregulators: Cellular and Molecular Biology. Endocrine Reviews. 1999;20(3): 321-344.
    83. He B, et al. Androgen-induced NH2-and COOH-terminal Interaction Inhibits p160 Coactivator Recruitment by Activation Function 2. J. Biol. Chem., 2001;. 276(45): 42293-42301.
    84. Fujimoto N, et al. Different expression of androgen receptor coactivators in human prostate. Urology. 2001; 58(2): 289-94.
    85. Menardi N, et al. Expression of androgen receptor coregulatory proteins in prostate cancer and stromal-cell culture models. Prostate, 2000; 45(2): 124-31.
    86. Lim J, et al. Human Androgen Receptor Mutation Disrupts Ternary Interactions between Ligand, Receptor Domains, and the Coactivator TIF2 (Transcription Intermediary Factor 2). Molecular Endocrinology. 14(8): 1187-1197.
    87. Li J W, et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J. 2000; 19(16): 4342-4350
    88. Dotzlaw H, et al. The Amino Terminus of the Human AR Is Target for Corepressor Action and Antihormone Agonism. Mol Endocrinol. 2002; 16(4): 661-73.
    
    
    89. Wolffe AP, et al. Co-repressor complexes and remodelling chromatin for repression. Biochem. Soc. Trans 2000; 28: 379-386.
    90. BURKE LJ et al. Co-repressors 2000 FASEB J. 2000; 14:1876-1888
    91. Agarwal ML, et al. The p53 Network. 1998; 273,(1):1-4.
    92. Darne C, et al. Phorbol ester causes ligand-independent activation of the androgen receptor European Journal of Biochemistry, 1998; 256:541-549
    93. Sato N, et al. Androgenic Induction of Prostate-specific Antigen Gene Is Repressed by Protein-Protein Interaction between the Androgen Receptor and AP-1/c-Jun in the Human Prostate Cancer Cell Line LNCaP J. Bio. Chem.1997; 272(28): 17485-17494
    94. BarettonGB, Proliferation-and apoptosis-associated factors in advanced prostatic carcinomas before and after androgen deprivation therapy: prognostic significance of p21/WAF1/CIP1 expression. Br. J. Cancer. 1999;80(3-4): 546-55.
    95. Kolar Z, et al. Relation of Bcl-2 expression to androgen receptor, p21WAF1/CIP1, and cyclin D1 status in prostate cancer. Mol Pathol. 2000 53(1):15-8.
    96. Agus DB, et al. Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst. 1999; 91(21): 1869-76.
    97. Fizazi K, The association of p21((WAF-1/CIP1)) with progression to androgenindependent prostate cancer. Clin Cancer Res. 2002; 8(3): 775-81
    98. Pr(?)fontaine GG, et al. Selective Binding of Steroid Hormone Receptors to Octamer Transcription Factors Determines Transcriptional Synergism at the Mouse Mammary Tumor Virus Promoter. J. Biol. Chem, 1999; 274(38): 26713-26719.
    99. Song LN, et al. Transactivation Specificity of Glucocorticoid Versus Progesterone Receptors: ROLE OF FUNCTIONALLY DIFFERENT INTERACTIONS OF TRANSCRIPTION FACTORS WITH AMINO-AND CARBOXYLTERMINAL RECEPTOR DOMAINS. J. Biol. Chem.2001. 276(27): 24806-24816