三个含SCAN结构域的锌指蛋白基因ZNF191、ZNF396和ZNF397研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一些编码SCAN结构域的锌指基因在人类基因组中常成簇分布,例如17p12-13的ZNF18, ZNF29, ZNF62和zfp3四个基因。ZNF191是一个早先克隆的含SCAN结构域的锌指基因,并定位于18q12。在此,我们识别了人类两个新型含SCAN结构域基因ZNF396和ZNF397,它们与ZNF191和 ZNF271基因一起成簇地分布于18q12的32850-33000k区域。我们鉴定了SCAN-(C2H2)X基因会在其羧基端截除锌指结构域。这种独特的变异剪接形式使ZNF191、ZNF396 和ZNF397基因分别产生两种不同的蛋白质。编码有锌指结构域的三种异构型分别命名为ZNF191-fu, ZNF396-fu和ZNF397-fu (full zinc finger),同时,不编码锌指结构域的三种异构型被命名ZNF191-nf, ZNF396-nf and ZNF397-nf (no zinc finger)。含成年人16种组织的northern印迹膜分别用同位素标记的ZNF191-nf, ZNF396-nf或ZNF397-nf cDNA进行杂交,发现ZNF191的 2.0-kb, 3.7-kb和7.5-kb三种剪接本在睾丸组织中同时表达,ZNF396的1.5-kb, 2.5-kb和3.9-kb三种剪接本在肝脏组织中同时高表达,ZNF397的1.7-kb, 2.5-kb, 7.0-kb和9.0-kb四种剪接本在睾丸组织中同时高表达。它们的组织表达谱差异很大。ZNF191-fu在氨基端第46-141位为SCAN结构域,而羧基端有四个串联重复的锌指结构。编码335个氨基酸的ZNF396-fu,在氨基端第46-141位为SCAN结构域,而羧基端在aa251-273, aa279-301和aa307-329位为三个串联重复的锌指结构。编码534个氨基酸的ZNF397-fu,在氨基端第44-139位为SCAN结构域,而羧基端在aa285-307, aa313-335, aa341-363, aa369-391, aa397-419, aa425-447, aa453-475, aa481-503和aa509-531位为九个串联重复的锌指结构。ZNF191-nf,ZNF396-nf和ZNF397-nf分别编码193, 210和198个氨基酸,仅含有SCAN结构域。ZNF191-fu, ZNF191-nf, ZNF396-fu, ZNF396-nf, ZNF397-fu和ZNF397-nf六种异构型蛋白质分别可自身形成二聚化,ZNF191-fu可与ZNF191-nf异构型蛋白质异源性结合,ZNF396-fu可与ZNF396-nf异构型蛋白质异源性结合,ZNF397-fu可与ZNF397-nf异构型蛋白质异源性结合。进而,ZNF397-fu能与含SCAN结构域的ZNF397-fu第aa3-250位片段结合,ZNF397-fu不能与无SCAN结构域的ZNF397-fu第aa224-534位片段结合。ZNF191-nf, ZNF396-nf和 ZNF397-nf异构型蛋白质在瞬时表达的细胞中,定位为整个细胞之中。但是ZNF191-fu, ZNF396-fu和ZNF397-fu异构型蛋白质特异地分布在细胞核之中,与DAPI染色显示的细胞核一致。若ZNF191-fu和ZNF191-nf两质粒同时转染细胞,ZNF191-fu仍是特异地分布于细胞核中,而ZNF191-nf不再散布于整个细胞,在细胞核中分布大大增多。通过缺失实验,含SCAN结构域的ZNF397-fu第aa3-250
    
    位肽段弥散分布于整个细胞,与ZNF397-nf的定位相似;无SCAN结构域的ZNF397-fu第aa224-534位片段定位在细胞核,与ZNF397-fu的定位相似。因此推导ZNF397-fu 的核定位信号序列在其锌指结构区域,即氨基酸第251至534位范围。这三个基因的六种异构型蛋白质,除ZNF397-fu之外均能抑制报告基因的转录。然而,ZNF191-fu和ZNF397-nf两种异构型的转录抑制作用更强。若被截除九个锌指重复结构,ZNF397-fu成为一个转录激活因子。通过系列缺失实验,表明ZNF191-fu的各个亚结构域对于其抑制转录所贡献的作用不尽相同。最后,将ZNF191-fu的中间第139-247位片段与GST表位融合,所表达的融合蛋白免疫兔子,该抗体经亲和层析纯化后可灵敏地检测转染表达的和某些组织内源的ZNF191蛋白质分子。
Many zinc finger genes encoding the SCAN domains are clustered in human genome, e.g. 17p12-13 (ZNF18, ZNF29, ZNF62 and zfp3). One of the SCAN domain genes, ZNF191 has been cloned and mapped to 18q12 . We have identified two novel human SCAN domain genes ZNF396 and ZNF397, which are clustered in the chromosome 18q12: 32850-33000k regions with ZNF191 and ZNF271 genes. It is firstly characterized for the SCAN-(C2H2)X genes to truncate the zinc finger domains at the carboxyl terminus. The unique alternative splicing makes ZNF191, ZNF396 and ZNF397 genes encode two distinct proteins respectively. Three isoforms encoding zinc finger regions are designated as ZNF191-fu, ZNF396-fu and ZNF397-fu (full zinc finger) while the other isoforms truncating zinc finger regions are designated as ZNF191-nf, ZNF396-nf and ZNF397-nf (no zinc finger). Tissue Northern blots (MTN I and MTN II) from 16 adult human tissues are respectively hybridized with isotope-labeled ZNF191-nf, ZNF396-nf or ZNF397-nf cDNA. Three isoforms of ZNF191 transcript, 2.0-kb, 3.7-kb and 7.5-kb, are expressed in testis. Three isoforms of ZNF396 transcript, 1.5-kb, 2.5-kb and 3.9-kb, are highly expressed in liver. Four isoforms of ZNF397 transcript, 1.7-kb, 2.5-kb, 7.0-kb and 9.0-kb, are expressed in a variety of tissues, but expression levels vary dramatically. ZNF191-fu consists of a SCAN domain at N-terminus and four tandem C2H2 zinc finger repeats at C-terminus. ZNF396-fu encoding 335 amino acids consists of a SCAN domain (aa46-141) at N-terminus and three consecutive C2H2 zinc finger repeats at C-terminus (aa251-273, aa279-301, aa307-329). ZNF397-fu encoding 534 amino acids consists of a SCAN domain (aa44-139) at N-terminus and nine consecutive C2H2 zinc finger repeats at C-terminus (aa285-307, aa313-335, aa341-363, aa369-391, aa397-419, aa425-447, aa453-475, aa481-503, aa509-531). ZNF191-nf, ZNF396-nf and ZNF397-nf encode 193, 210 and 198 amino acids with a SCAN domain only respectively. ZNF191-fu, ZNF191-nf, ZNF396-fu, ZNF396-nf, ZNF397-fu or ZNF397-nf can homo-associate, ZNF191-fu can hetero-associates with ZNF191-nf,so does ZNF396-fu with ZNF396-nf, or ZNF397-fu with ZNF397-nf. Moreover, ZNF397-fu can associate with SCAN-domain-containing polypeptide of
    
    ZNF397-fu (aa3-250) but not with non-SCAN-domain polypeptide of ZNF397-fu (aa224-534). ZNF191-nf, ZNF396-nf and ZNF397-nf polypeptides diffuse in the whole cell, but ZNF191-fu, ZNF396-fu and ZNF397-fu polypeptides target specifically to the nuclei, consistent with the DAPI-staining nuclei. If ZNF191-fu and ZNF191-nf are co-transfected into the cells, ZNF191-nf tends to localize to the nuclei while ZNF191-fu still targets to the nuclei. In the deletion experiment, the SCAN-domain-containing polypeptide of ZNF397-fu (aa3-250) has the same sub-cellular localization pattern in cells as that of ZNF397-nf, and non-SCAN-domain polypeptide of ZNF397 (aa224-534) targets to the nuclei just like that of ZNF397-fu. It is inferred that the nuclear localization signal of ZNF397-fu might be within zinc finger regions (aa251-534). All six isoforms except for ZNF397-fu are shown to repress the transcription of reporter gene, but ZNF191-fu and ZNF397-nf have the stronger repression activity. Without its nine zinc finger repeats, ZNF397-fu is a transcriptional activation factor. Through the series deletion, the different sub-domains of ZNF191-fu contribute to the distinct effects on the transcription repression. At last, the central fragment of ZNF191-fu (aa139-247) fused with the GST tag is used to immunize rabbit, and the purified polyclonal antibody can detect both transfected and endogeneous ZNF191 proteins.
引文
1. Miller J, McLachlan AD, Klug A. Repetive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 1985, 4:1609-1614.
    2. Lee MS, Gippert GP, Soman KV, Case DA, Wright PE. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 1989, 245:635-637
    3. Choo Y, Klug A. A role in DNA binding for the linker sequences of the first three zinc fingers of TFIIIA. Nucleic Acids Res 1993, 21:3341-3346.
    Laity JH, Dyson HJ, Wright PE. DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in
    
    4. Cys2-His2 zinc fingers. J Mol boil 2000, 295:719-727
    5. V.J. Bardwell, R. Treisman, The POZ domain: a conserved protein-protein interaction motif, Genes Dev. 8(1994) 1664-1677.
    6. E.J. Bellefroid, J.C. Marine, T. Ried, P.J. Lecocq, M. Riviere, C. Amemiya, D.A. Poncelet, P.G. Coulie, P. de Jong, C. Szpirer, Clustered organization of homolgous KRAB zinc-finger genes with enhanced expression in human T cells, EMBO J. 12(1993) 1363-1374.
    7. A.J. Williams, S.C. Blacklow, T. Collins, The zinc finger-associated SCAN box is a conserved oligomerization domain, Mol Cell Biol. 19(1999) 8526-8535.
    8. T. Collins, J.R. Stone, A.J. Williams, All in the family: the BTB/POZ, KRAB, and SCAN domains, Mol Cell Biol. 21(2001) 3609-15.
    9. P. Dhordain, O. Albagli, S. Ansieau, M.H. Koken, C. Deweindt, S. Quief, D. Lantoine, A. Leutz, J.P. Kerckaert, D. Leprince, The BTB/POZ domain targets the LAZ3/BCL6 oncoprotein to nuclear dots and mediates homomerisation in vivo, Oncogene 11(1995) 2689-97.
    10. X. Li, J.M. Lopez-Guisa, N. Ninan, E.J. Weiner, F.J. Rauscher 3rd, R. Marmorstein, Overexpression, purification, characterization, and crystallization of the BTB/POZ domain from the PLZF oncoprotein, J Biol Chem. 272(1997) 27324-9.
    11. J.M. Davies, N. Hawe, J. Kabarowski, Q.H. Huang, J. Zhu, N.J. Brand, D. Leprince, P. Dhordain, M. Cook, G. Morriss-Kay, A. Zelent, Novel BTB/POZ domain zinc-finger protein, LRF, is a potential target of the LAZ-3/BCL-6 oncogene, Oncogene 18(1999) 365-7.
    12. A. Read, A. Gould, N. Brand, M. Cook, P. Strutt, J. Li, J. Licht, S. Waxman, R. Krumlauf, A. Zelent, Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors, Blood 83(1995) 4544-4552.
    13. F.Grignani, S. DeMatteis, C. Nervi, L. Tomassoni, V. Gelmetti, M. Cioce, M. Fanelli, M. Ruthardt, F. F. Ferrara, I. Zamir, C. Seiser, F. Grignani, M. A. Lazar, S. Minucci, P. G. Pelicci, Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukemia, Nature 391(1998) 815-818.
    S.H. Hong, G. David, C.W. Wong, A. Dejean, and M.L. Privalsky, SMRT
    
    14. corepressor protein interacts with PLZF and with the PML-retinoic acid receptor alpha (PARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia, Proc. Natl. Acad. Sci. USA 95(1997) 9028-9033.
    15. G. David, L. Alland, S.H. Hong, C.W. Wong, R.A. DePinho, A. Dejean, Histone deacetylase associated with mSin3A mediates represion by the acute promyelocytic leukemia-associated PLZF protein, Oncogene 16(1998) 2549-2556.
    16. R.J. Lin, L. Nagy, S. Inoue, W. Shao, W.H. Miler, R.M. Evans, Role of the histone deacetylase complex in acute promyelocytic leukemia, Nature 391(1998) 811-814.
    17. Z. Chen, N.J. Brand, A. Chen, S.J. Chen, J.H. Tong, Z.Y. Wang, S. Waxman, A. Zelent, Fusion between a novel krüppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia, EMBO J. 12(1993) 1161-7.
    18. S. Dong, J. Zhu, A. Reid, P. Strutt, F. Guidez, H.J. Zhong, Z.Y. Wang, J. Licht, S. Waxman, C. Chomienne, Amino-terminal protein-protein interaction motif (POZ-domain) is responsible for activities of the promyelocytic leukemia zinc finger-retinoic acid receptor-alpha fusion protein, Proc. Natl. Acad. Sci. USA 93(1996):3624-3629.
    19. R.F. Ryan, D.C. Schultz, K. Ayyanathan, P.B. Singh, J.R. Friedman, W.J. Fredericks, F.J. Rauscher, III, KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing, Mol Cell Biol. 19(1999) 4366-4378.
    20. H. Peng, G.E. Begg, S.L. Harper, J.R. Friedman, D.W. Speicher, and F.J. Rauscher, III, Biochemical analysis of the krüppel-associated box (KRAB) transcriptional repression domain, J. Biol. Chem. 275(2000) 18000-10.
    21. Williams AJ, Khachigian LM, Shows T, Collins T. Isolation and characterization of a novel zinc-finger protein with transcription repressor activity. J Biol Chem. 270(1995) 22143-52
    
    
    22. Stone JR, Maki JL, Blacklow SC, Collins T.The SCAN domain of ZNF174 is a dimer. J Biol Chem. 2002 Feb 15;277(7):5448-52
    23. Sander, T. A., A. L. Haas, M. J. Peterson, and J. F. Morris. 2000. Identifi-cation of a novel SCAN box-related protein that interacts with MZF1B. J.Biol. Chem. 275:12857-12867.
    24. Schumacher C, Wang H, Honer C, Ding W, Koehn J, Lawrence Q, Coulis CM, Wang LL, Ballinger D, Bowen BR, Wagner S. The SCAN domain mediates selective oligomerization. J Biol Chem. 2000 Jun 2;275(22):17173-9.
    25. 施少林,余龙,吴国俊,等。人类锌指蛋白基因ZNF191cDNA的分离与克隆.自然科学进展,1997,7(4):499-502
    26. 施少林,刘孟珉,余龙,等。用人/啮齿类体细胞杂种系及荧光原位杂交将人类新基因ZNF191定位于染色体18q12.1.实验生物学报,1998,31(1):25-28
    27. Han, Z. G., Q. H. Zhang, M. Ye, L. X. Kan, B. W. Gu, K. L. He, S. L. Shi, J. Zhou, G. Fu, M. Mao, S. J. Chen, L. Yu, and Z. Chen. 1999. Molecular cloning of six novel Krüppel-like zinc finger genes from hematopoetic cells and identification of a novel transregulator domain KRNB. J. Biol. Chem. 274:35741-35748.
    28. Albanese V, Biguet NF, Kiefer H, Bayard E, Mallet J, Meloni R. Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite. Hum Mol Genet. 2001,10:1785-92.
    29. 刘玉奇,余龙,余文浩,施少林,孙炳耘,吴国俊,黄仲贤,等。一个新锌指蛋白的表达和纯化——ZNF191蛋白及其锌指区ZNF191(243-368).中国科学,1999,10(5):475-480
    30. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ 3rd. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 1996 Aug 15;10(16):2067-78.
    31. Jheon AH, Ganss B, Cheifetz S, Sodek J. Characterization of a novel KRAB/C2H2 zinc finger transcription factor involved in bone development. J Biol Chem 2001 May 25;276(21):18282-9
    32. Castillo G, Brun RP, Rosenfield JK, Hauser S, Park CW, Troy AE, Wright ME, Spiegelman BM. An adipogenic cofactor bound by the differentiation domain of PPARgamma. EMBO J. 1999 Jul 1;18(13):3676-87.
    
    
    33. Dupuy D, Duperat VG, Arveiler B. SCAN domain-containing 2 gene (SCAND2) is a novel nuclear protein derived from the zinc finger family by exon shuffling. Gene. 2002 May 1;289(1-2):1-6.
    34. Dupuy D, Aubert I, Duperat VG, Petit J, Taine L, Stef M, Bloch B, Arveiler B. Mapping, characterization, and expression analysis of the SM-20 human homologue, c1orf12, and identification of a novel related gene, SCAND2. Genomics.
    35. Morris JF, Hromas R, Rauscher FJ 3rd Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core.Mol Cell Biol. 1994 Mar;14(3):1786-95.
    36. Peterson, M. J., and J. F. Morris. 2000. Human myeloid zinc finger gene MZF produces multiple transcripts and encodes a SCAN box protein. Gene 22:105-118.
    37. Casademunt, E., B. D. Carter, I. Benzel, J. M. Frade, G. Dechant, and Y. A. Barde. 1999. The zinc finger protein NRIF interacts with the neutrophin receptor p75NTR and participates in programmed cell death. EMBO J. 18: 6050-6061.