汽车磁流变半主动悬架控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济飞速发展、高速公路网全面建设以及生活水平极大提高,汽车逐渐融入到人们工作生活之中,成为不可或缺的交通工具,人们对汽车的行驶平顺性和安全性提出更高的要求。悬架是影响汽车性能的关键部件,采用能够根据路面情况和车辆运行状态进行实时控制的智能悬架是提高汽车的平顺性和安全性的一条重要途径。磁流变半主动悬架利用磁流变技术实现了阻尼实时控制,具有优良的可控性、很宽的动态范围、较高的响应速度,很低的功耗,相对简单的结构,成为目前智能悬架领域的研究热点,受到全球汽车制造商的青睐。本文应用理论分析、数值仿真和道路试验的方法,对磁流变阻尼器的动态特性、汽车磁流变半主动悬架的动力学特性、半主动悬架控制策略以及控制系统设计与实现进行了研究。具体工作包括以下几方面:
    (1)阐述了智能悬架研究的重要意义,回顾了智能悬架研究历史和进展,综述了磁流变液、磁流变阻尼器和汽车磁流变半主动悬架的研究现状和存在的问题,针对汽车磁流变半主动悬架目前存在的问题提出了本文将要开展的主要工作。
    (2)应用流体力学理论,根据Newton流体或Bingham流体的本构方程,利用环形通道模型和平板模型推导出磁流变阻尼器的流变学方程和阻尼力计算公式,分析了阻尼器的示功特性和速度特性;按照国家标准和微型汽车的技术要求,利用MTS电液伺服测试系统对本文采用的磁流变阻尼器进行了示功特性、速度特性和温度特性进行了测试;比较了理论阻尼力与试验测试得出的阻尼力变化规律,分析了产生误差的主要原因。
    (3)阐述了汽车悬架系统的性能评价的方法和指标,建立了随机路面的不平度输入模型和1/4车辆悬架动力学模型,推导出了簧载质量振动加速度、悬架动挠度和轮胎动载荷相对于路面输入的传递函数,并通过数值仿真研究了不同行驶速度和不同等级路面下长安微型面包车的悬架频域响应以及悬架参数对悬架传递特性的影响,以及脉冲输入下被动悬架的时域响应。
    (4)建立了磁流变半主动悬架模型,阐述了天棚阻尼控制策略、模糊控制策略原理方法,提出了一种利用小波分解车身振动加速度信号,判断当前振动频率组成,从而确定阻尼力大小的控制策略--小波频域控制策略,设计了用于汽车半主动悬架的天棚阻尼控制器、以簧载质量绝对速度和簧载质量与非簧载质量相对速度为输入量的模糊控制器以及以簧载质量垂直振动加速度为输入量的小波频域控制器,并利用Matlab软件及相应的工具箱建立了磁流变半主动悬架仿真系统,
    
    通过数值仿真分析了采用以上控制策略后磁流变半主动悬架在不同行驶速度和不同等级路面下的悬架频域响应,以及脉冲输入下半主动悬架的时域响应,最后根据控制效果对三种控制策略进行了比较和评价。
     (5)设计和实现了磁流变半主动悬架控制系统,包括基于DSP的控制器、抗混滤波器、硬件积分器、电流驱动器以及控制软件等关键部件和技术,并且对试验用车—“长安之星”微型面包车进行了半主动控制改装。根据汽车平顺性随机输入试验要求,平顺性测试和数据分析系统由B&K公司的平顺性座垫、电荷放大器、数据采集箱和笔记本计算机及分析软件组成,选择重庆市长滨路作为试验道路,分别在30km/h、40 km/h、50 km/h的行驶速度下测试了驾驶员座位处的加速度信号。半主动悬架的测试结果与相同条件下被动悬架的测试结果进行了加速度功率谱和加速度均方根值的比较,然后根据测试结果对模糊控制策略和小波频域控制策略进行了比较和评价。
    最后总结了全文的研究工作,介绍了论文的特色与创新之处,指出了近期有待深入研究的问题。
With the rapid development of national economy, the overall construction of expressway network and the great improvement of people's living standard, automobiles have gradually come into people's life and work, and become an indispensable means of transportation. Meanwhile, people have made greater demands on the comfort and security of automobiles. The suspension system is a critical component that can influence the automotive performance. The intelligent suspension system has real-time control according to the road surface conditions and the state of automobile's motion. Its adoption is an important approach to improving automotive comfort and security. Magnetorheological (MR) semi-active suspension applies MR technology to carry out the real-time control of its damp. Due to its good controllability, wide dynamic range, rapid response speed, low operating power requirement and comparatively simple structure, MR semi-active suspension has become one of the central research subjects in intelligent suspension field, and has also received considerable attention of global automobile manufactures. In this paper, the methods of theoretical analysis, numerical simulation and road testing are applied to study the dynamical characteristics of MR damper and semi-active suspension, the control strategies and the control system's design and realization of semi-active suspension. The main contributions of the dissertation include the following:
    1. The paper expounds the significance of the intelligent suspension research, reviews its history and development, summarizes the present situation and existing problems of MR fluids, MR dampers and MR semi-active suspension, and puts forward the main work aimed at the present problems of automotive MR semi-active suspension.
    The rheology equations of MR damper and the computation formula of damping force are derived from hydrodynamics theory, based on Newton fluid model or Bingham fluid model,flowing in annular duct or in parallel duct. And the force-displacement and force-velocity characteristics are also analyzed in this paper. In accordance with national standard and the technical demands for mini-automobiles, the MTS electric- liquid servo testing system is used to test the force-displacement 、force-velocity and force-temperature characteristics of the MR damper adopted in the paper. The change rules of theoretical damp
    
    2. force with that of tested damp force are compared, and also the main cause of the error is analyzed.
    3. The method and indicators used to evaluate the performance of the automotive suspension system are discussed. The road profile input model of random road surface and the dynamic model of quarter-car suspension is established. The transfer functions of sprung mass acceleration、suspension deflection and tire load relative to road disturbances are derived. With the numerical simulation, the suspension response in frequency domain of the mini-microbus at different speeds and on roads of different levels, and the influence of suspension parameter on the suspension transfer characteristic, as well as the time domain response of passive suspension for the impulse input are studied in the paper.
    4. The MR semi-active suspension model is established. The theoretical method of sky-hook control strategy and fuzzy control strategy is expounded. A new control strategy-the wavelet frequency control strategy is put forward. This strategy decomposes automotive vibration acceleration signal utilizing wavelet transform to judge the composition of present vibration frequency, thus to determine the magnitude of damping force. The sky-hook controller for vehicle semi-active suspension, and the fuzzy controller with the input of sprung mass absolute speed and the comparative speed between sprung mass and unsprung mass,wavelet frequency controller with the input of sprung mass vertical vibration acceleration are designed. MR semi-active suspension simulation system is established by using Matlab software and its corresponding toolboxes. After adopting the abo
引文
[1] EL Madany,M.M,Stochastic Optimal Control of Highway Tractors with Active Suspensions, Vehicle System Dynamics,Vol.17 ,1988, pp193-210
    [2] Elbeheiry, EL. M. et al., Advanced Ground Vehicle Suspension System---A Classified Bibliography, Vehicle System Dynamics, Vol.24, 1995, P.231~256
    [3] Nagai, M., Shioneri, T., and Hayass, M., Analysis of Vibration Suppression Control System of Semi-Active Secondry Suspension, SICE, 1989, P.929~932
    [4]Goodall,R M and Kortam,W.Active control in ground transportation -a review of the state-of-the art and future potential. VSD,1983,12:225~257
    [5] Nagai, M., Recent Researches on Active Suspension for Ground Vehicle, JSME, Int. J. Series C , 1993, Vol.36(2), P.167~170
    [6] Hrovat, D., Application of Optimal Control to Advanced Automotive Suspension Design, Trans. ASME, J. Dyn. Sys. Meas. Cont, Vol.115 1993, P.328~342
    [7] Tomizuka M. Advanced control methods for automotive applications. VSD,1995,24:449~468
    [8] Lieh, J., The Effect of Bandwidth of Semi-Active Damper on Vehicle Ride, Trans. ASME, J. Dyn. Sys. Meas. Cont, Vol.115 1993, P.571~575
    [9] Margolis, D. L., The Response of Active and Semi-active Suspension to Realistic Feedback Signals, Vehicle System Dyna mics, Vol.11, 1982, P.267~282
    [10] 林榆馨,电子控制悬架的应用,上海汽车,1996, 4, P.18~29
    [11] Kawakami, H. et al., Development of Integrated System between Active Control Suspension, Active 4WS, TRC and ABC, SAE paper No: 920271, 1992
    [12] Grosby, M. J. and Karnopp, D. C., The Active Damper ------A New Concept for Shock and Vibration Control, The Shock and Vibration Bull, Vol.43, part.4, 1973, P.119~133
    [13] Bender, E. K., Some Fundamental Limitations of Active and Passive Vehicle Suspension System, SAE paper, No. 680750, 1968
    [14] Krasnicki, E. J., The Experimental Performance of an on-off Active Damper, The Shock and Vibration Bull, Vol.53, part.11, 1980, P.125~131
    [15] Thompson, A. G., Design of Active Suspension, Proc. Inst. Mech. Eng. Vol.185, 1970, P.553~563
    [16] Heddrick, J. K. et al., Active Suspension for Ground Support Vehicle ------A State of the Art Review, ASME, AMD, Vol.15, 1975, P.21~40
    [17] 章一鸣等,一种新型车辆悬挂系统的探讨------阻尼最优控制的半主动悬挂系统,汽车工
    
    程,Vol.10(4), 1988, P.15~20
    [18] 曾志华,一种阻尼可调的减振器,汽车技术,1990, No:4, P.10~15
    [19] 刘宏伟,陈燕虹和林逸,汽车主动悬架系统状态反馈控制技术研究,汽车技术,2000, No:8, P.2~4
    [20] 舒红宇等,汽车主动悬架的理论分析与模型试验,汽车工程,Vol.13(3), 1991, P.129~135
    [21] 门永新,汽车悬架控制与可控减振器特性研究,博士学位论文,1997, 吉林工业大学,P1~11
    [22] 刘新量,张建武和陈兆能,汽车主动悬架的自校正控制,汽车工程,Vol.20(3), 1998, P.166~177
    [23] Ivers, D. E. and Miller, L. R., Experimental and Comparison of Passive, Semi-Active On/off and Semi-Active Continuous Suspension, SAE Paper, No:89484, 1989
    [24] Bank, P., Passive Versus Active and Semi-Active Suspension from Theory to Application in North American Industry, SAE Paper, No:922140, 1992
    [25] Karnopp, D. C., Electronically Controllable Vehicle Suspension, Vehicle System Dynamics, Vol.22, 1991, P.207~217
    [26]Hrovat, D., Margolis, D. L., and Hubbard, M., An Approach Toward the Optimal Semi-Active Suspension, Journal of Dynamic System, Measurement and Control, Vol.110, 1988, P.288~296
    [27] Sharp, R. S., et al, Road Vehicle Suspension Design ------A Review, Vehicle System Dynamics, Vol.16, 1987, P.167~192
    [28] Goodall, R. M., et al, Active Controls in Ground Transportation------A Review of the State of the Art and Future Potential, Vehicle System Dynamics, Vol.12, 1983, P.225~257
    [29] Sang Yong and Wook Hyun Kwon, Genetic-based Fuzzy Control for Half-car Active Suspension Systems, International Journal of Systems Science, Vol.29(7), 1998, P.699~710
    [30] C. Kim and P. I. Ro, A Sliding Mode Controller for Vehicle Active Suspension Systems with Non-linearities, Proc. Instn. Mech. Engrs. Vol.212, Part:D, 1997, P.79~92
    [31] Yong-san Yoon and Hyuk Kim, Feedforword Neuro-Controlled Active Suspension Using Frequency and Time Mixed Shape Performance Index, Int. J. of Vehicle Design, Vol.17(2), 1996, P.63~81
    [32] T. Yoshimura, A Semi-Active Suspension of Passenger Cars Using Fuzzy Reasoning and the Filed Testing, Int. J. of Vehicle Design, Vol.19(2), 1998, P.150~165
    [33] 孙求理,张洪欣,主动悬架的发展和技术现状,世界汽车,1996, 5, P.4~6G. W. Housner, et al., Structural Control: Past, Present and Future, Journal of Engineering Mechanics, Vol.123(9), 1997, p.897~971
    [34] B. Richter, 主动底盘系统的发展趋势(上),汽车工程,1992, 1, P.4~6
    
    
    [35] http://www.sachs.de/
    [36] A. Moran and M. Nagai, Optimal Preview Control of Rear Suspension Using Nonlinear Neural Networks, Vehicle System Dynamics, Vol.22, 1993, P.321~334
    [37] R. G. M. Huisman, F. E. Veldpaus, et al, Preview Estimation and Control for (semi-)Active Suspensions, Vehicle System Dynamics, Vol.22, 1993, P.335~346
    [38] Qin Li, T. Yoshimura and J. Hino, Active Suspension with Preview of Large-sized Buses Using Fuzzy Reasoning, Int. J. of Vehicle Design, Vol.19(2), 1998, P.187~198
    [39] Sunwoo M, Cheok Ka C. Investigation of adaptive control approaches for vehicle active suspension systems.In: Proceedings of the American Control Conference, 1 991 .1 542~1 547
    [40] Vallurupalli S, Osman MOM, Dukkipatti R V. Adaptive control of an active uspension. Transportation Systems-1992 ASME, Dynamical Systems and Control Division, 1992, 4 4:89~96
    [41] M. Kurimoto and T. Yoshimura, Active Suspension of Passenger Cars Using Sliding Mode Controller, Int. J. of Vehicle Design, Vol.19(4), 1998, P.402~414
    [42] Briggs D.M., Cheok KaC. Game-playing fuzzy logic controller for semi-active suspensions. I International Proceedings American Control Conference IEEE, 1 993, ( 93) :301~305
    [43] Ro Paul I, Kim C, Kim H. Active suspension system using fuzzy logic control. International Proceedings America Control Conference IEEE, 1 993, ( 93) :2252~2253
    [44] Yester JL, Mcfall R H. Fuzzy logic controller for active suspension. International Proceedings Society of Automotive Engineers SAE Paper92 C0 30 , 2 59~2 70
    [45] 张庙康,胡海,车辆悬架振动控制系统研究的进展, 振动测试与诊断,Vol.17 No.1,p.7~15
    [46] Moran A, Nagai M. Optimal active control of nonlinear vehicle suspensions using neural networks. JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, 1994,37(4):707~718
    [47] http://www.mrfluid.com
    [48] 第二届全国电磁流变学术会议论文集,西北工业大学,1998,9
    [49] Li W. H., Chen, G. and Yeo, S. H., Viscoelastic Properties of MR Fluids, Smrt. Mater. And Struct. Vol:8(3), 1999, P.460~468
    [50] Winslow, W.M., U. S. Patent, No:2417850, 1947
    [51] Rabinow, J., The Magnetic Fluid Clutch, ATEE Trans. Vol.67, 1948, P.1308~1315
    [52] Eige, J. J., et al., Feasibility of Vibration and Shock Exciter Using Electric Field Modulation of Hydraulic Power, WADD Technical Report, No; 61~185(Ohilo: Wright-patterson Air Force Base), 1961
    [53] Standrud, H. T., Electric-field Valves Inside Cylinder Vibrator, Hydraulics Pneumatics, Vol.9,
    
    1966, P.139~143
    [54] Coulter, J. P., et al., Application of Electrorheological Materials in Vibration Control, Proc. 2nd Int. Conf. On ER Fluid, (Raleigh, Nc), 1989
    [55] Shulman, Z. P. et al., Structure Physical Properties and Dynamics of Magnetorheological Suspensions, Int. J. Mutiphase Flow, Vol.12(6), 1986, p.935~955
    [56] Shulman, Z. P. et al., Devices for the Diagnosis of Transfer Processes in Magnetorheological Suspensions, Heat Transfer, Vol.19(5), 1987
    [57] Kordonsky, W. I., Elements and Devices Based on Magnetorheological Effect, J. of Intel. Meter. Stru. Vol.4, 1993, P.65~69
    [58] Kordonsky, W. I., Magnetorheological Effect As a Base of New devices and Technologies, J. of Magnetism and Magnetic Materials, Vol.122, 1993, P.395`398
    [59] Kordonsky, W. I., Magnetorheological Fluids and Their Applications, Materials Technology, Vol.8(11), 1993, P.240~242
    [60] Kordonsky, W. I., Magnetorheological Valve and Devices Incorporating Magnetorheological Elements, U.S. Patent, No:5353839, 1994
    [61] Mark, R. Jolly, et al., Propeties and Applications of Commercial Magnetorheological Fluids, SPIE, Vol.3327, 1998, P.262~275
    [62] Weiss, K. D. et al., High Strength Magneto- and Electro-rheogical Fluids, Society of Automotive Engineers, SAE paper, No:932541, 1993
    [63] http://www.delphiauto.com
    [64] Carlson, J. D., Catanzarite, D. M., St. Clair,K. A., Commercial Magnetorheological Fluid Devices, Proc. 5th Int. Conf. On ER Fluid, MR fluid and Assoc. Tech., July 1995(W.A. Bullough, Ed. World Scientific, Singapore) P.20~28
    [65] Carlson, J. D., et al., Magnetorheological Fluid Damper, U. S. Patent, No:5277281, 1994
    [66] Carlson, J. D., et al., Magnetorheological Materials Based on Alloy Particles, U. S. Patent, No:5382373, 1995
    [67]黄尚廉,智能材料系统与结构,世界科技研究与发展,1996,3,p.61~63
    [68] Ralf Bolter, et al., Design Rules for MR Fluid Actuators in Different Working Modes, SPIE, Vol.3045, 1997, P.148~159
    [69] Thomas, M. Marksmeier, Eric L. Wang and Faramarz Gordaninejad, An Electro-rheological Grease Shock Absorber, SPIE, Vol.3327, 1998, p.242~250
    [70] Anthony, E. A., Et al., Dynamics Transduction Characterization of Magnetostrictive Actuators, Smart Mater. Struct., Vol.5(1), 1996, P.115~120
    [71] Ashour, D. et al., Manufacturing and Characterization of Magnetorheological Fluids, SPIE,
    
    Vol.3040, 1997, P.174~184
    [72] Ashour, D. et al., Magnetorheological Fluids: Materials, Characterization and Devices, Proc. of the 6th International Conference on Adaptive Structures, Edited by Rogers, C. A. 1995, P.23~34
    [73] Kordonsky, W. I., et al., Additional Magnetic Dispersed Phase Improve the Properties, Proc. of the 5th International Conference on ER and MR Fluids, Edited by Tao, R. 1995, P.613~619
    [74] Ginder, J. M., et al., Shear Stress in Magnetorheological Fluids: Role of Magnetic Saturation, Applied Physics Letters, Vol.65, 1994, P.3410~3418
    [75] Ginder, J. M., et al., Rheology of Magnetorheological Fluids: Models and Measurements, Proc. of the 5th International Conference on ER and MR Fluids, Edited by Tao, R. 1995, P.504~515
    [76] Jolly, M. R., et al., A Model of the Behavior of Magnetorheological Materials, Smart Mater. Strut. Vol3(5), 1996, P.607~614
    [77] Rosensweig, R. E., Ferrohydrodynamics, Cambridge: Cambridge University Press, 1985
    [78] Spencer Jr., B. F., Dyke, S., J., et al., Phenomenological Model of a Magnetorheological Dampers , ASCE Journal of Engineering Mechanics, Vol.123(3), 1997, P.230~238
    [79] 潘胜,磁流变液的屈服应力与温度效应,功能材料,Vol.28(2), 1997, P.264~266
    [80] 李秀错 无机/有机复合颗粒的电流变和磁流变效应研究,机械科学与技术,Vol.17(增刊),1998, P.142~144
    [81] 周刚毅,一种测量磁流变液流变特性的系统研制,机械科学与技术,Vol.17(增刊),1998, P.101~102
    [82] 刘奇,张平,王东亚,黄元龙,磁流变体(MRF)材料的制备与性能研究,功能材料,Vol.32(3), 2001, p.257~259
    [83] 廖昌荣,汽车悬架系统磁流变阻尼器研究,重庆大学博士论文,2001,重庆大学,P21~34
    [84] Dyke, S., J., Spencer Jr., B. F., Sian, M. K. and Carlson, J. D., Experimental Verification of Semi-Active Structural Control Strategies Using Acceleration Feedback, Proc. the 3rd Int. Conf. On Motion and Vibr. Control, Chiba, Japan, Vol.3, 1996, P.291~296
    [85] Dyke, S., J., Spencer Jr., B. F., Sian, M. K. and Carlson, J. D., Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction, Smart Mater. Struct., Vol.5, 1996, P.565~575
    [86] Lemaire, E., et al., Influence of the Particle Size on the Rheological Fluids, J. of Rheology, Vol.39(5), 1995, P.1011~1020
    [87] Lou, Z. Ervin, R. D., Filisko,F.E., A Preliminary Parametric Study Of Electrorheological Damper, Trans. ASME, Journal of Fluid Engineering, Vol.116, 1994, p.570~577
    [88] William Kordonski, Don Golini, Paul Dumas, Magnetorheological Suspension-based on Finishing Technology, SPIE, Vol.3326, 1998, p.527~535
    
    
    [89] Kordonsky, W. I., Shulman, Z. P., et al., Physical Properties of Magnetiable Structurne- Reversible Media, Journal of Magnetism and Magnetic Materials, Vol.85, 1990, p.114~120
    [91] Demchuk, A., Heat Transfer in Narrow Gaps Filled with Magnetorheological Suspensions, Journal of Magnetic Materials, Vol.122(3), 1993, p.321~314
    [92] Chih-chen Chang, Neural Network Modeling of A Magnetorheological Damper, Journal of Intelligent Material Systems and Structurces, Vol.9(9), 1998, p.755~764
    [93] Kordonsky, W. I., GorodKin, S. R., Magnetorheological Fluid-based Seal, Proc. of the 5th International Conference on ER and MR Fluids, Edited by Tao, R. 1995, P.613~619
    [94] B. F. Spencer, Jr., Guangqing Yang, J. D. Carlson, "Smart" Damper for Seismic Protection of Structures: A Full-scale Study, Proc. of the Second World Conference on Structures, Kyoto, Japan, June 28~July 1, 1998
    [95] Lord Corporation Rheonetic Linear Damper, Rd-1001/Rd-1004, Product Information Sheet, Lord corp. Pub. 1997
    [96] Jason, E., Lindler, Glen, A. Dimock and Norman M. Wereley, Design of A Magnetorheological Automotive Shock Absorber, SPIE, Vol.3985, 2000, p.426~437
    [97] Seung-Bok Choi, Hwan-Soo Lee, Sung-Ryong Hong, et al., Control and Response Characteristics of A Magnetorheological Fluid Damper for Passenger Vehicle, SPIE, Vol.3985, 2000, p.438~443
    [98] http://www.avdl.me.vt.edu/
    [99] Carlson, J. D., New cost Effective Braking Damping and Vibration Control Devices Made with Magnetorheological Fluids, Materials Technology, Vol.13, 1998, p.96~99
    [100] Faramarz Gordaninejad and Shawn P. Kelso, Magentorheological Fluid Shock Absorbers for HMMWV, SPIE, Vol.3989, 2000, p.266~273
    [101] Kelso, S. P. and Gordaninejad, F., Magnetorheological Fluid Damper for Off-Highway, High-Payload Vehicles, SPIE Vol.3672, 1999, p.44~54
    [102] Kamath, G. M., et al., Analysis and Testing of A Mode-Scale Magnetorheological Fluid Lag Mode damper, 53rd Annual Forum of The American Helicopter Society, Virgina Beach, VA, 1997, p.1325~1335
    [103] Sameer Marathe, Farhan Gandhi and K.W. Wang, Helicopter Blade Response and Aeromechanical Stability with A Magnetorheological Fluid Based Lag Damper, SPIE, Vol.3329, 1998, p.390~401
    [104] G. M. Kamath, N. M. Wereley and Mark R. Jolly, Characterization of Semi-Active Magnetorheological Helicopter Lag Mode Dampers, SPIE, Vol.3329, 1998, p.356~377
    [105] Mark R. Jolly, Jonathan W. Bender and J. D. Carlson, Properties and applications of
    
    Commercial Magnetorheological Fluid, SPIE, Vol.3327, 1998, p.262~275
    [106] Ericksen, E. O. and Gordaninejad, F., A Magnetorheological Fluid Shock Absorber for Off-Road Motorcycle, Poc. Of Asia-Pacific Vibration Conf.'99, Ed by O. J. Huat and L. K. Meow, Vol.2, 1999, p.267~271
    [107] Ericksen, E. O. and Gordaninejad, F., A Magnetorheological Fluid Shock Absorber for Suspension of An Off-Road Motorcycle: A theoretical Study, SPIE, Vol.3991, 2000, p.273~282
    [108] Roger Stanway, Neil, D. Sims and Andrew R. Johnson, Modeling and Control Of Magnetorheological Vibration Isolator, SPIE, Vol. 3989, 2000, p.184~193
    [109] Andrew, N., Vavreck, Control of Adynamics Vibration Absorber with Magnetorheological Damping, SPIE, Vol.4073, 2000, p.252~263
    [110] C. Y. Lai and W. H. Laio, Vibration Control of A Suspension System via A Magnetorheological Fluid Damper, SPIE, Vol. 4073, 2000, p.240~251
    [111]翁建生,胡海岩,张庙康,磁流变阻尼器的实验建模,振动工程学报,2000,Vol.13,NO.4,p.616~620
    [112] Xiaojie Wang and Faramarz Gordaninjad, Study of Field-Controllable, Electro-and Magneto-Rheological Fluid Damper in flow mode using Herschel-Bulkley Theory, SPIE, Vol.3989, 2000, p.232~243
    [113] Dug-Young Lee and Norman M. Wereley, Analysis of Electro-and Magneto-Rheological Flow mode Damper Using Herschel-Bulkley Model, SPIE, Vol.3989, 2000, p.244~255
    [114] Li Zhou and Chih-chen Chang, Adaptive Fuzzy Control for a Structures ------MR Damper System, SPIE, Vol.3988, 2000, p.105~115
    [115] 廖昌荣、陈伟民、余淼、黄尚廉,基于混合工作模式的汽车磁流变减振器阻尼特性研究,机械工程学报,Vol.37(5), 2001
    [116] 廖昌荣、余淼、陈伟民、黄尚廉,汽车磁流变减振器设计原理及实验研究,中国机械工程,Vol.16(16),2002
    [117] Stanway, R. Sproston, J. L. and Ei-wahed, A. K., Application of Eelectro-Rheological Fluids in Vibration Control :A Survey, Smart Materials and Structures, Vol.5(4), 1996, p.464~482
    [118] Yalcintas M., Dai H., Magnetorheological and Electrorheological Matrial in Adaptive Structures and Their Performance Comparison, Smart Materials and Structures, Vol.8(4), 1999, p.560~573
    [119] Abdulazim, H. F., William W. C. and Pradeep P. Phule, Modeling of Magnetorheological fluid damper with Parallel Plate Behavior, SPIE, Vol.3327, 1998, p.276~283
    [120]余志生,汽车理论,北京,机械工业出版社,1996
    [121] 中国国家技术监督局,车辆振动输入路面平度表示方法,GB/T 7031-1986
    
    
    [122] 李士勇,模糊控制.神经控制和智能控制论,哈尔滨工业大学出版社,1998
    [123] [美]崔锦泰. 小波分析导论 程正兴译 西安交通大学出版社,1995
    [124] Mallat S. A theory for multresolution signal decomposition: the wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligience,1989,11:874~893
    [125] Mallat S. multifrequency channel dcomposition of images and wavelet model. IEEE Trans. On A coustics,Speech and Signal Processing ,1989,37:2091~2110
    [126] Texas INSTRUMENTS, TMS320C3X USER'S GUIDE,1997
    [127] 中国国家技术监督局,汽车平顺性随机输入行驶试验方法,GB/T 4970-1996