杂环—色氨酸类席夫碱配合物的合成、表征与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酸席夫碱其金属配合物被证实具有抗癌、抑菌、与DNA作用等生物活性及优良的载氧、催化性能,已成为生物无机化学与材料学领域的研究热点之一。泛素-蛋白酶体通路,作为真核细胞蛋白质降解的重要途径,控制着许多负责细胞周期和肿瘤生长的蛋白的降解。特异性的阻断该通路,会影响到细胞内众多关键蛋白的调控,进而影响到多个细胞内过程,最终导致细胞凋亡。蛋白酶体也因此成为了一个理想的抗肿瘤药物设计与开发的新靶点。近年来,席夫碱金属配合物的抗肿瘤活性已得到了人们的重视,但是对于含吲哚环的色氨酸类席夫碱金属配合物作为蛋白酶体抑制剂诱导肿瘤细胞凋亡的研究却是少有报道。因此,设计和合成新型的氨基酸类席夫碱金属配合物,研究其化学结构、生物活性及作用机制,特别是对肿瘤细胞内蛋白酶体的抑制作用及作用机理,对于抗肿瘤药物的开发具有重要的指导意义。
     本文选择4种不同结构的杂环羰基化合物,使其与色氨酸缩合并与金属离子反应,得到了25种未见报道的席夫碱金属配合物,并培养了11个配合物的单晶。采用元素分析、红外光谱分析、紫外光谱分析、核磁共振氢谱分析、热重分析等分析测试方法对其结构进行了表征,推断出金属配合物可能的化学结构;采用X-射线单晶衍射分析对金属配合物的单晶进行结构测试和解析;对部分配合物与DNA的作用方式进行了研究;以蛋白酶体为靶点,研究了杂环-色氨酸类席夫碱镉配合物对肿瘤细胞内蛋白酶体活性的抑制作用及对肿瘤细胞的诱导凋亡作用。主要进行了以下几方面工作:
     (1)合成并培养了2-乙酰基吡啶缩L-色氨酸席夫碱系列5个金属配合物单晶,其组成分别为M(C18H16N3O2)2·2CH3OH (M=Mg(II), Ni(II), Cu(II), Cd(II))、Zn(C18H16N3O2)2·2CH3CH2OH。单晶结构分析表明,上述五种配合物晶体均属四方晶系,空间群P43212。每一个金属原子都与两分子的2-乙酰基吡啶缩L-色氨酸配体相结合,并分别与每分子配体中吡啶上氮原子、羧基上羟基氧原子以及席夫碱>C=N-结构上氮原子配位,最终构成了一个4N+2O的六齿中性八面体配合物。此外,每分子金属配合物中都包含两个溶剂分子,其是晶体结构的一部分,但处于游离状态而不参与配位。以镁配合物Mg(C18H16N3O2)2·2CH3OH为代表,其晶胞参数(对I>2(I)的衍射点)。通过N-H…O分子间氢键作用,配合物最终形成了一个二维的面状结构。
     (2)合成了2-乙酰基吡嗪缩L-色氨酸席夫碱系列5种金属配合物,并培养了配合物Ni(C17H15N4O2)2·2CH3OH的单晶。单晶结构分析表明,该配合物晶体属四方晶系,空间群P43212,晶胞参数a=b=11.8069(10),c=28.961(2),最终偏差因子R1=0.0548,wR2=0.1466(对I>2(I)的衍射点)。每一个镍原子都与两分子的2-乙酰基吡嗪缩L-色氨酸配体相结合,并分别与每分子配体中吡嗪环上氮原子、羧基上羟基氧原子以及席夫碱C=N结构上氮原子配位,形成了一个扭曲的八面体结构。在外界,每分子镍金属配合物中均包含两个游离状态的溶剂甲醇分子。镍配合物均通过N-H…O分子间氢键的作用形成一维链状结构,链之间通过同样的N-H…O分子间氢键形成了二维网状结构。
     该系列其余4种配合物的化学组成分别为:M(C17H15N4O2)2·2CH3OH (M=Mn(II), Cu(II), Cd(II))、Zn(C17H15N4O2)2·4CH3OH。
     (3)合成了5-甲基呋喃-2-甲醛缩L-色氨酸席夫碱系列5种金属配合物,配合物的化学组成为:M(C17H15N2O3)2·2CH3OH (M=Mn(II), Ni(II), Cu(II), Cd(II))、Zn(C17H15N2O3)2·4CH3OH。
     (4)合成了5-溴噻吩-2-甲醛缩L-色氨酸席夫碱系列5种金属配合物,配合物的化学组成为:M(C16H12N2O2SBr)2·2CH3OH (M=Mn(II), Ni(II), Cu(II), Zn(II),Cd(II))。
     (5)合成并培养了2-乙酰基吡嗪缩D-色氨酸席夫碱镍金属配合物单晶,其组成为Ni (C17H15N4O2)2·2CH3OH。单晶结构分析表明,该配合物属单斜晶系,空间群C2/c,晶胞参数a=17.4878(17),b=11.3696(12),c=18.6213(18),最终偏差因子R1=0.0356,wR2=0.0866(对I>2(I)的衍射点)。每一个镍原子都与两分子的2-乙酰基吡嗪缩D-色氨酸配体相结合,并分别与每分子配体中吡嗪环上氮原子、羧基上羟基氧原子以及席夫碱C=N结构上氮原子配位,形成了一个扭曲的八面体结构。在外界,每分子镍金属配合物中均包含两个游离状态的溶剂甲醇分子。
     (6)合成并培养了2-乙酰基吡啶缩D-色氨酸席夫碱系列4个金属配合物单晶,其组成分别为M(C18H16N3O2)2·2CH3OH (M=Mg(II), Ni(II), Cd(II))、Zn(C18H16N3O2)2·4CH3OH。单晶结构分析表明,上述四种金属配合物均属四方晶系,空间群P41212。每一个金属原子都与两分子的2-乙酰基吡啶缩D-色氨酸配体相结合,并分别与每分子配体中吡啶上氮原子、羧基上羟基氧原子以及席夫碱>C=N-亚胺基结构上氮原子配位,最终均形成一个扭曲的六齿八面体配合物。
     (7)以2-乙酰基吡啶缩L-色氨酸席夫碱镁金属配合物Mg(C18H16N3O2)2·2CH3OH的晶体结构为基础,运用Gaussian03量子化学程序包,采用密度泛函理论B3LYP方法,在6-31+G*水平上对分子进行结构优化。计算了分子稳定构型的总能量、前线分子轨道能量、原子自然电荷分布、静电势等。计算结果表明,理论值与实验值基本相符,证明了计算模型的稳定性。
     (8)利用紫外吸收光谱、荧光发射光谱及粘度测定等方法,研究了2-乙酰基吡啶缩L-色氨酸席夫碱镁金属配合物Mg(C18H16N3O2)2·2CH3OH及2-乙酰基吡嗪缩L-色氨酸席夫碱镍金属配合物Ni(C17H15N4O2)2·2CH3OH与小牛胸腺DNA之间的相互作用。实验表明,上述两种金属配合物是通过静电结合而与CT-DNA发生作用。其它的结合方式,例如氢键结合,亦可能同时存在于体系中。研究表明,配合物中配体共面性差,配合物与DNA发生静电结合的可能性大。
     (9)以蛋白酶体为靶点,研究了杂环-色氨酸类席夫碱镉配合物的抗肿瘤活性及作用机制。
     以人乳腺癌MDA-MB-231细胞为作用对象,利用MTT法对前文合成的25种色氨酸类席夫碱金属配合物进行了抗肿瘤活性初筛。实验结果显示,与同系列铜、锌金属配合物相比,2-乙酰基吡啶缩L-色氨酸席夫碱镉金属配合物Cd1、2-乙酰基吡嗪缩L-色氨酸席夫碱镉金属配合物Cd2以及5-甲基呋喃-2-甲醛缩L-色氨酸席夫碱镉金属配合物Cd3对人乳腺癌MDA-MB-231细胞增殖的抑制效果更佳。结合蛋白酶体活性测试、蛋白质免疫印迹及细胞形态学研究等方法证明了金属配合物Cd1、Cd2、Cd3均可以通过抑制人乳腺癌MDA-MB-231细胞细胞内类糜蛋白酶体活性来诱导其发生细胞凋亡。
     5-溴噻吩-2-甲醛缩L-色氨酸席夫碱镉金属配合物Cd4在噻吩环位上连有的溴原子增大了配合物的空间位阻,致使其不能自由穿过人乳腺癌MDA-MB-231细胞的细胞膜进入细胞体内,无法有效抑制细胞内类糜蛋白酶体活性,进而导致Cd4对人乳腺癌MDA-MB-231细胞的凋亡诱导效果不明显。
     金属配合物Cd1、Cd2、Cd3、Cd4均能不同程度的抑制人前列腺癌LN-CaP细胞及人多发性骨髓瘤ANBL6-V10R细胞的细胞增殖,且这种抑制作用随药物浓度的增大而逐渐增强。以金属配合物Cd4为代表,研究表明,Cd4可以通过抑制细胞内类糜蛋白酶体活性来诱导人前列腺癌LN-CaP细胞及人多发性骨髓瘤ANBL6-V10R细胞发生凋亡。
     Bortezomib与Cd4的联合作用能够更好地抑制人多发性骨髓瘤ANBL6-V10R细胞细胞内类糜蛋白酶体活性,进而高效诱导其发生细胞凋亡。
It has been proved that amino acid Schiff bases and amino acid Schiff basecomplexes have good biological activities (such as anticancer, antibacterial andinteractions with DNA), oxygen-carrying properties and catalytic performances,which has been a hot topic in the field of biological inorganic chemistry and materialsscience. As an important way for the protein degradation of eukaryotic cells,Ubiquitin-proteasome pathway (UPP) plays a critical role in the degradation of theproteins involve in the cell cycle control and tumor growth. Specified block thispathway will affect the regulation of many key proteins in cells, and then affect manyimportant cellular processes, eventually leading to cell apoptosis. Hence, theproteasome becomes an ideal target for the design and development of new anticancerdrugs. In recent years, the anticancer activities of Schiff base metal complexesreceived much attention. However, the study of tryptophan Schiff base metalcomplexes as proteasome inhibitors induce apoptosis in cancer cells is rarely reported.Therefore, it has an important guiding significance for the development of antitumordrugs to design and synthesize some novel amino acid Schiff base metal complexes,and study chemical structures, biological activity and mechanism, especially theinhibitory effect and mechanism on tumor cells by targeting cellular proteasome.
     In this paper, four carbonyl heterocyclic compounds with multiple structureshave been used to react with tryptophan and then coordinate with metal ions,preparing25different heterocycle-tryptophan Schiff base metal complexes, including11single crystals. The structures of these metal complexes were characterized byelemental analysis, IR spectrum, UV spectrum,1H NMR, and TG-DTG analysis, etc.Furthermore, the crystal structures were detected by X-ray crystal diffraction. Theinteraction mode between two complexes and calf thymus DNA has been tested, too. Moreover, the inhibition of proteasomal chymotrypsin-like activity and induction ofapoptosis in various types of tumor cells by heterocycle-tryptophan Schiff base metalcomplexes have also been studied by targeting the cellular proteasome. The mainresearches of this paper are as follows:
     (1) Five metal complex crystals with Schiff base2-acetylpyridine-L-tryptophanwere obtained, which were composed of M(C18H16N3O2)2·2CH3OH (M=Mg(II),Ni(II), Cu(II), Cd(II)), Zn(C18H16N3O2)2·2CH3CH2OH. The crystallographic structuralanalysis reveals that all five crystals crystallize in the tetragonal crystal system, spacegroup P43212. Each metal atom coordinates with two Schiff base ligands. It iscoordinated by six atoms, namely, two nitrogen atoms from C=N, two nitrogen atomsfrom pyridine rings and two carboxylic oxygen atoms in different ligands, forming atype of the4N+2O neutrality complex. In addition, there are two solvent moleculesin the crystalline lattice which are not bound to the metal ions. Take the complexMg(C18H16N3O2)2·2CH3OH for example. The cell parameters are as follows: a=b=11.6532(14), c=29.025(3),===90, V=3941.5(8)3, F(000)=1480,
     calcd=1.181g/cm3, the final R1=0.0670and wR2=0.1763(I>2(I)). As a result ofthe alternate arrangement of chains through inter-chained N-H…O hydrogen bondinginteractions, a2-D fabricated layer.
     (2) Five metal complexes with Schiff base ligand2-acetylpyrazine-L-tryptophanwere synthesized. The single crystal of Ni(C17H15N4O2)2·2CH3OH was also obtained.The crystallographic structural analysis reveals that the crystal crystallizes in thetetragonal crystal system, space group P43212with cell parameters a=b=11.8069(10)
     , c=28.961(2),===90, V=4037.2(6)3, F(000)=1544,calcd=1.213g/cm3, the final R1=0.0548and wR2=0.1466(I>2(I)). Each nickel atomcoordinates with two Schiff base ligands. It is coordinated by six atoms, namely, twonitrogen atoms from C=N, two nitrogen atoms from pyrazine rings and twocarboxylic oxygen atoms in different ligands, forming a neutral4N+2O complex. Inaddition, there are two free solvent methanol molecules in the crystalline lattice. Eachligand bridges two Ni(II) centers through N–H…O intermolecular hydrogen bonds,leading to a one-dimensional coordination polymer. Two adjacent chains are bridged by one type of hydrogen bond, involving N–H…O interactions. As a result of thealternate arrangement of chains through inter-chained hydrogen bonding interactions,a2-D layer is formed.
     The chemical compositions of the remaining four metal complexes are as follows:M(C17H15N4O2)2·2CH3OH (M=Mn(II), Cu(II), Cd(II)), Zn(C17H15N4O2)2·4CH3OH.
     (3) Five metal complexes with Schiff base ligand5-methylfurfural-L-tryptophanwere synthesized. The chemical compositions of these metal complexes are as follows:M(C17H15N2O3)2·2CH3OH (M=Mn(II), Ni(II), Cu(II), Cd(II)),Zn(C17H15N2O3)2·4CH3OH.
     (4) Five metal complexes with Schiff base5-bromo-2-thiophenecarbaldehyde-L-tryptophan were synthesized. The chemical compositions of these metal complexesare as follows: M(C16H12N2O2SBr)2·2CH3OH (M=Mn(II), Ni(II), Cu(II), Zn(II),Cd(II)).
     (5) The crystal of2-acetylpyridine-D-tryptophan nickel complexNi(C17H15N4O2)2·2CH3OH was obtained. The crystallographic structural analysisreveals that the crystal crystallizes in the monoclinic crystal system, space group C2/cwith cell parameters a=17.4878(17), b=11.3696(12), c=18.6213(18),==90,=106.0470(10), V=3558.2(6)3, F(000)=1544,calcd=1.377g/cm3, thefinal R1=0.0356,wR2=0.0866(I>2(I)).
     (6) Four metal complex crystals with Schiff base2-acetylpyridine-D-tryptophanwere obtained, which were composed of M(C18H16N3O2)2·2CH3OH (M=Mg(II),Ni(II), Cd(II)), Zn(C18H16N3O2)2·4CH3OH. The crystallographic structural analysisreveals that all four crystals crystallize in the tetragonal crystal system, space groupP41212. Each metal atom coordinates with two Schiff base ligands. It is coordinatedby six atoms, namely, two nitrogen atoms from C=N, two nitrogen atoms frompyridine rings and two carboxylic oxygen atoms in different2-acetylpyridine-D-tryptophan ligands, forming a type of the4N+2O neutralitycomplex.
     (7) The energies and components of molecular orbital, natural chargesdistribution and electrostatic potential of Mg(C18H16N3O2)2·2CH3OH were calculated by the density functional theory with the gradient corrected B3LYP method usingGaussian03program package based on the crystal structure. All the data obtainedfrom quantum chemistry calculation are consistent with those from determination,indicating that the calculation model is stabilized.
     (8) The interactions between complexes Mg(C18H16N3O2)2·2CH3OH,Ni(C17H15N4O2)2·2CH3OH and calf thymus DNA were studied by UV absorptionspectra, fluorescence emission spectra and viscometric method. The nature of thebinding seems to be mainly an electrostatic interaction between DNA and the complex.However, other binding modes, such as hydrogen bonding, may also be present in thissystem. It has been demonstrated that when ligand is less coplanar, it is morefavorable to interact with DNA in the way of electrostatic binding.
     (9) Anticancer activities and mechanism of heterocycle-tryptophan Schiff basecadimum complexes as the proteasome inhibitor were studied. The antiproliferaionactivities of25tryptophan Schiff base complexes were studied by MTT method inhuman breast cancer MDA-MB-231cells. It shows that2-acetylpyridine-L-tryptophan cadimium complex Cd1,2-acetylpyrazine-L-tryptophan cadimiumcomplex Cd2and5-methylfurfural-L-tryptophan cadimium complex Cd3are moreeffective than the other metal complexes with same series in the inhibition of cellproliferation of human breast cancer MDA-MB-231cells. According to theproteasomal chymotrypsin-like activity assay, western blotting analysis and cellularapoptotic morphology assay, we proved that inhibition of proteasomal activity(especially, CT-like activity) by these three complexes, can strongly induce apoptosisin cultured breast cancer MDA-MB-231cells.
     5-Bromo-2-thiophenecarbaldehyde-L-tryptophan cadimium comples Cd4, whichhas a-Br atom in the thiophene ring, cannot actually enter cancer cells. Although itcould inhibit CT-like activity of the cell-free proteasome in vitro, it cannot inhibitcellular proteasome activity, as a result, Cd4cannot induce apoptosis in culturedMDA-MB-231cells.
     Cadimium complexes Cd1, Cd2, Cd3and Cd4could inhibit cancer cellproliferation of LN-CaP human prostate cancer cells and ANBL6-V10R human multiple myeloma cancer cells in a concentration-dependent manner. Take Cd4as anexample, it shows that Cd4is a potent inhibitor of proteasomal chymotrypsin-likeactivity, further capable of inducing apoptosis of LN-CaP human prostate cancer cellsand ANBL6-V10R human multiple myeloma cancer cells in a cancer cell-specificmanner.
     The combination of Cd4and Bortezomib could highly inhibit the activity ofproteasome and then induce apotosis of ANBL6-V10R human multiple myelomacancer cells compared with Cd4or Bortezomib alone.
引文
[1] Yao Z J, Jin G X. Transition metal complexes based on carboranyl ligands containing N, P,and S donors: Synthesis, reactivity and applications[J]. Coordination Chemistry Reviews,2013,257(17-18):2522-2535.
    [2] Fliedel C, Braunstein P. Recent advances in S-functionalized N-heterocyclic carbene ligands:From the synthesis of azolium salts and metal complexes to applications[J]. Journal ofOrganometallic Chemistry,2014,751:286-300.
    [3] Kiss T. From coordination chemistry to biological chemistry of aluminium[J]. Journal ofInorganic Biochemistry,2013,128:156.
    [4] Korotkikh N I, Saberov V S, Glinyanaya N V, et al. Catalysis of Organic Reactions byCarbenes and Carbene Complexes[J]. Chemistry of Heterocyclic Compounds,2013,49(1):19-38.
    [5] Bienemann O, Hoffmann A, Herres-Pawlis S.(Guanidine) copper complexes: structuralvariety and application in bioinorganic chemistry and catalysis[J]. Reviews in InorganicChemistry,2011,31(1):83-108.
    [6] Sharples J W, Collison D. Coordination compounds and the magnetocaloric effect[J].Polyhedron,2013,54:91-103.
    [7] Du M, Bu X H. Coordination Polymers towards Advanced Functions[J]. Progress inChemistry,2009,21(11):2458-2464.
    [8] Rasool R, Hasnain S, Nishat N. Metal-based Schiff base polymers: preparation, spectral,thermal and their in vitro biological investigation[J]. Designed Monomers and Polymers,2014,17(3):217-226.
    [9] Ali T E, Ibrahim M A, El-Gendy Z M, et al.4,6-Diacetylresorcinol in HeterocyclicSynthesis, Part I: Synthesis and Biological Evaluation of Some New Linearly and AngularlySubstituted Pyrano [3,2-g] Chromenes via Vilsmeier--Haack Formylation of4,6-Diacetylresorcinol, Its Schiff Bases, and Hydrazones[J]. Synthetic Communications,2013,43(24):3329-3341.
    [10] Qin W, Long S, Panunzio M, et al. Schiff bases: a short survey on an evergreen chemistrytool[J]. Molecules,2013,18(10):12264-12289.
    [11] Selvamurugan S, Ramachandran R, Viswanathamurthi P. Ruthenium(II) carbonylcomplexes containing S-methylisothiosemicarbazone based tetradentate ligand: synthesis,characterization and biological applications[J]. Biometals,2013,26(5):741-753.
    [12] Al-Mogren M M, Alaghaz A N, Ebrahem E A. Synthesis, spectroscopic, molecular orbitalcalculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transitionmetal complexes with N-benzylidene-N'-salicylidene-1,1-diaminopropane[J]. Spectrochim Acta AMol Biomol Spectrosc,2013,114:695-707.
    [13] Schiff H. Mittheilungen aus dem Universit tslaboratorium in Pisa: eine neue Reiheorganischer Basen[J]. Justus Liebigs Annalen der Chemie,1864,131(1):118-119.
    [14] Singh V P, Singh S, Singh D P, et al. Synthesis, spectroscopic (electronic, IR, NMR andESR) and theoretical studies of transition metal complexes with some unsymmetrical Schiffbases[J]. Journal of Molecular Structure,2014,1058:71-78.
    [15] Tyagi M, Chandra S, Tyagi P. Mn(II) and Cu(II) complexes of a bidentate Schiff baseligand: Spectral, thermal, molecular modelling and mycological studies[J]. Spectrochimica ActaPart A: Molecular and Biomolecular Spectroscopy,2014,117:1-8.
    [16] Upadhyay A, Vaidya S, Venkatasai V S, et al. Synthesis and characterization of3d and4fmetal complexes of Schiff base ligands[J]. Polyhedron,2013,66:87.
    [17] Mobinikhaledi A, Zendehdel M, Safari P. Synthesis and characterization of some noveltransition metal Schiff base complexes encapsulated in zeolite Y: effective catalysts for theselective oxidation of benzyl alcohol[J]. Reaction Kinetics, Mechanisms and Catalysis,2013,110(2):497-514.
    [18] Hayvali Z, Koksal P. Syntheses and spectroscopic characterization of double-armedbenzo-15-crown-5derivatives and their sodium and potassium complexes[J]. Journal of InclusionPhenomena and Macrocyclic Chemistry,2013,76(3-4):369-378.
    [19] Du L C. Synthesis and Luminescent Properties of Magnesium Complex with Schiff-BaseLigands[J]. Advanced Materials Research,2011,322:333-336.
    [20] Lekha L, Raja K K, Rajagopal G, et al. Schiff base complexes of rare earth metal ions:Synthesis, characterization and catalytic activity for the oxidation of aniline and substitutedanilines[J]. Journal of Organometallic Chemistry,2014,753:72.
    [21] Fan L, Li T R, Wang B D, et al. A colorimetric and turn-on fluorescent chemosensor forAl(III) based on a chromone Schiff-base[J]. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2014,118:760-764.
    [22] Rao G K, Kumar A, Singh M P, et al. Influence of pendent alkyl chains on Heck andSonogashira C–C coupling catalyzed with palladium(II) complexes of selenated Schiff baseshaving liquid crystalline properties[J]. Journal of Organometallic Chemistry,2014,753:42-47.
    [23] Raman N, Ali S, Raja D. Designing, synthesis and spectral characterization of Schiff basetransition metal complexes: DNA cleavage and antimicrobial activity studies[J]. Journal of theSerbian Chemical Society,2008,73(11):1063-1071.
    [24] Yoshimura M, Suchanek W L, Byrappa K. Soft Solution Processing: A Strategy forOne-Step Processing of Advanced Inorganic Materials[J]. Mrs Bulletin,2000,25(9):17-25.
    [25] Tabassum S, Amir S, Arjmand F, et al. Mixed-ligand Cu(II)-vanillin Schiff base complexes;effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticanceractivity[J]. European Journal of Medicinal Chemistry,2013,60:216-232.
    [26] Nitha L P, Aswathy R, Mathews N E, et al. Synthesis, spectroscopic characterisation, DNAcleavage, superoxidase dismutase activity and antibacterial properties of some transition metalcomplexes of a novel bidentate Schiff base derived from isatin and2-aminopyrimidine[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2014,118:154-161.
    [27] Kumar S, Kumari M, Dutta P K, et al. Chitosan Biopolymer Schiff Base: Preparation,Characterization, Optical, and Antibacterial Activity[J]. International Journal of PolymericMaterials and Polymeric Biomaterials,2014,63(4):173-177.
    [28] Saini R P, Kumar V, Gupta A K, et al. Synthesis, characterization, and antibacterial activityof a novel heterocyclic Schiff’s base and its metal complexes of first transition series[J].Medicinal Chemistry Research,2014,23(2):690-698.
    [29] Konarikova K, Andrezalova L, Rapta P, et al. Effect of the Schiff base complexdiaqua-(N-salicylidene-l-glutamato)copper(II) monohydrate on human tumor cells[J]. EuropeanJournal of Pharmacology,2013,721(1-3):178-184.
    [30] Dhahagani K, Mathan K S, Chakkaravarthi G, et al. Synthesis and spectral characterizationof Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing4-(4-aminophenyl)morpholine derivatives: antimicrobial evaluation and anticancer studies[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2014,117:87-94.
    [31] Selvamurugan S, Viswanathamurthi P, Endo A, et al. Synthesis, spectral characterization,antioxidant, anticancer in vitro, and DNA cleavage studies of a series of ruthenium (II) complexesbearing Schiff base ligands[J]. Journal of Coordination Chemistry,2013,66(22):4052-4066.
    [32] Lin M S, Cao Y H, Pei H, et al. Titanium isopropoxide complexes supported by pyrrolylSchiff base ligands: syntheses, structures, and antitumor activity[J]. RSC Advances,2014,4(18):9255-9260.
    [33] Pradeep C P, Das S K. Coordination and supramolecular aspects of the metal complexes ofchiral N-salicyl--amino alcohol Schiff base ligands: Towards understanding the roles of weakinteractions in their catalytic reactions[J]. Coordination Chemistry Reviews,2013,257(11-12):1699-1715.
    [34] Abdi S H R, Kureshy R I, Khan N H, et al. Dimeric&Polymeric Chiral Schiff BaseComplexes and Supported BINOL Complexes as Potential Recyclable Catalysts in AsymmetricKinetic Resolution and C–C Bond Formation Reactions[J]. Catalysis Surveys from Asia,2009,13(2):104-131.
    [35] Gupta K C, Sutar A K. Catalytic activities of Schiff base transition metal complexes[J].Coordination Chemistry Reviews,2008,252(12-14):1420-1450.
    [36] Liu P, Jiang H F. Progress in asymmetric hydrogenation of prochiral Schiff base[J]. ChineseJournal of Organic Chemistry,2004,24(10):1317-1322.
    [37] Shahnaz N, Banik B, Das P. A highly efficient Schiff-base derived palladium catalyst for theSuzuki-Miyaura reactions of aryl chlorides[J]. Tetrahedron Letters,2013,54(22):2886.
    [38] Kato S, Kanai M, Matsunaga S. Catalytic asymmetric synthesis of spirooxindoles viaaddition of isothiocyanato oxindoles to aldehydes under dinuclear nickel Schiff base catalysis[J].Chemistry, an Asian journal,2013,8:1768-1771.
    [39] Kato Y, Furutachi M, Chen Z, et al. A homodinuclear Mn(III)2-Schiff base complex forcatalytic asymmetric1,4-additions of oxindoles to nitroalkenes[J]. Journal of the AmericanChemical Society,2009,131(26):9168-9169.
    [40] Kato S, Yoshino T, Shibasaki M, et al. Catalytic asymmetric synthesis of spirooxindoles bya mannich-type reaction of isothiocyanato oxindoles[J]. Angewandte Chemie International Edition,2012,51(28):7007-7010.
    [41] Manikandan R, Viswnathamurthi P. Coordination behavior of ligand based on NNS andNNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2012,97:864-870.
    [42] Wang L N, Qin W W, Liu W S. Two highly sensitive Schiff-base fluorescent indicators forthe detection of Zn2+[J]. Analytical Methods,2014,6(4):1167-1173.
    [43] Zhang Y G, Shi Z H, Yang L Z, et al. A facile fluorescent probe based on coumarin-derivedSchiff base for Al3+in aqueous media[J]. Inorganic Chemistry Communications,2014,39:86-89.
    [44] Song Z K, Dong B, Lei G J, et al. Novel selective fluorescent probes for sensing Zn2+ionsbased on a coumarin Schiff-base[J]. Tetrahedron Letters,2013,54(36):4945-4949.
    [45] Kele H, Kele M. Electrochemical investigation of a schiff base synthesized bycinnamaldehyde as corrosion inhibitor on mild steel in acidic medium[J]. Research on ChemicalIntermediates,2014,40(1):193-209.
    [46] Behpour M, Mohammadi N, Alian E. Electrochemical and Mass Loss Investigations of NewSchiff Base as Corrosion Inhibitor for Mild Steel[J]. Journal of Iron and Steel Research,International,2014,21(1):121-124.
    [47] Pethe G B, Yaul A R, Aswar A S. Synthesis, spectral, thermal, catalytic and biologicalstudies of some transition metal complexes with unsymmetrical Schiff base ligand[J]. Journal ofthe Indian Chemical Society,2012,89(6):725-734.
    [48] Yaul A R, Dhande V V, Yaul S R, et al. Transition metal complexes containing tridentatehydrazone Schiff bases: Synthesis, characterization and biological activity[J]. Journal of theIndian Chemical Society,2011,88(6):775-780.
    [49] Pardhi A V, Bansod A D, Yaul A R, et al. Synthesis, characterization, electricalconductivity, and catalytic studies of some coordination polymers of salen-type schiff base[J].Russian Journal of Coordination Chemistry,2010,36(4):298-304.
    [50] Wilson D, Djukic B, Lemaire M T. Synthesis of bromine-or aryl-substituted ditopic Schiffbase ligands and their bimetallic iron(II) complexes: electronic and magnetic properties[J].Transition Metal Chemistry,2014,39(1):17-24.
    [51] Yang L, Huang Q P, Zhang C L, et al. Two disc-like heptanuclear clusters based on Schiffbase: syntheses, structure and magnetic properties[J]. Supramolecular Chemistry,2014,26(2):81.
    [52] Wang Z X, Wu L F, Hou X K, et al. Assemblies of1D and2D Copper(II) ChiralCoordination Polymers by Salicylaldehyde Schiff Bases: Synthesis, Crystal Structures, andMagnetic Properties[J]. Zeitschrift für anorganische und allgemeine Chemie,2014,640(1):229-235.
    [53] Kumar S, Dhar D N, Saxena P N. Applications of metal complexes of Schiff bases-Areview[J]. Journal of Scientific&Industrial Research,2009,3(68):181-187.
    [54] Le Floc'h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potentialtherapeutic applications[J]. Amino Acids,2011,41(5):1195-1205.
    [55] Nair M S, Manickam S. Schiff base complex formation by cobalt (II) and nickel (II) with2-pyridine-carboxaldehyde and some bidentate amino acids[J]. Journal of the Indian ChemicalSociety,1999,76(10):472-474.
    [56] Sakiyan I, Gunduz N, Gunduz T. Synthesis and characterization of manganese (III)complexes of Schiff bases derived from amino acids and2-hydroxy-1-naphthaldehyde[J].Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry,2001,31(7):1175-1187.
    [57] Cakir S, Bicer E. Synthesis, spectroscopic and electrochemical characteristics of a novelSchiff-base from saccharin and tryptophan[J]. Journal of the Iranian Chemical Society,2010,7(2):394-404.
    [58] Nassr L A E. Kinetic investigation of aquation of some Fe(II) Schiff base amino acidcomplexes[J]. International Journal of Chemical Kinetics,2010,42(6):372-379.
    [59] Singh H L, Chauhan S S, Sachedva H. Synthesis and characterization of Pb (II) complexesof Schiff bases derived from3-methyl-4-fluoroacetophenone and amino acids[J]. Research OnChemical Intermediates,2010,36(9):1037-1047.
    [60] New S Y, Wu X, Bai S Q, et al. Lipid-bilayer-mimicking solid-state structures of Cu(ii) andNi(ii) with l-tryptophan and l-tyrosine Schiff base derivatives[J]. CrystEngComm,2011,13(12):4228-4235.
    [61] Zhang Y, Wang X M, Ding L S. Synthesis and DNA binding studies of Mg(II) complex ofSchiff base derived from vanillin and L-tryptophan[J]. Nucleosides, nucleotides&nucleic acids,2011,30(1):49-62.
    [62] Zhang Y, Wang X M, Ding L S. Interaction between tryptophan-vanillin Schiff base andherring sperm DNA[J]. Journal of the Serbian Chemical Society,2010,75(9):1191-1201.
    [63] Wang X M, Zhang Y, Zhao T T, et al. Synthesis and DNA interaction of a Sm (III) complexof a Schiff base derived from vanillin and L-tryptophan[J]. Bulletin of the Chemical Society ofEthiopia,2011,25(2):197-207.
    [64] Reddy P R, Shilpa A, Raju N, et al. Synthesis, structure, DNA binding and cleavageproperties of ternary amino acid Schiff base-phen/bipy Cu(II) complexes[J]. Journal of InorganicBiochemistry,2011,105(12):1603-1612.
    [65] Bian L, Li L Z, Zhang Q F, et al. Synthesis, crystal structures, DNA binding and cleavagestudies of two oxovanadium (IV) complexes of1,10-phenanthroline and Schiff bases derivedfrom tryptophan[J]. Transition Metal Chemistry,2012,37(8):783-790.
    [66] Moradi-Shoeili Z, Amini Z, Boghaei D M, et al. Synthesis, X-ray structure and ascorbicoxidation properties of ternary-amino acid Schiff base-bipy Cu (II) complexes as functionalmodels for ascorbic oxidase[J]. Polyhedron,2013,53:76-82.
    [67] Raman N, Sobha S, Selvaganapathy M. Probing the DNA-binding behavior of tryptophanincorporating mixed-ligand complexes[J]. Monatshefte für Chemie-Chemical Monthly,2012,143(11):1487-1495.
    [68] Tumbi K M, Nandekar P P, Shaikh N, et al. Molecular dynamics simulation studies forDNA sequence recognition by reactive metabolites of anticancer compounds[J]. Journal ofMolecular Recognition,2014,27(3):138-150.
    [69] Alam S, Khan F. QSAR and docking studies on xanthone derivatives for anticancer activitytargeting DNA topoisomerase II alpha[J]. Journal of Drug Design, Development and Therapy,2014,8:183-195.
    [70] Shi S, Gao S, Cao T, et al. Targeting human telomeric G-quadruplex DNA and inhibition oftelomerase activity with [(dmb)2Ru(obip)Ru(dmb)2]4+[J]. PLoS One,2013,8(12): e84419.
    [71] Monroe K M, Yang Z, Johnson J R, et al. IFI16DNA sensor is required for death oflymphoid CD4T cells abortively infected with HIV[J]. Science,2014,343(6169):428-432.
    [72] Van Cor-Hosmer S K, Kim D H, Daly M B, et al. Restricted5'-end gap repair of HIV-1integration due to limited cellular dNTP concentrations in human primary macrophages[J]. Journalof Biological Chemistry,2013,288(46):33253-33262.
    [73] Lam T, Thomas L M, White C A, et al. Scaffold functions of14-3-3adaptors in B cellimmunoglobulin class switch DNA recombination[J]. PLoS One,2013,8(11): e80414.
    [74] Brooks P J, Zakhari S. Acetaldehyde and the genome: Beyond nuclear DNA adducts andcarcinogenesis[J]. Environmental and Molecular Mutagenesis,2014,55(2):77-91.
    [75] Perera F, Motykiewicz G, Grzybowska E, et al. DNA Adducts and Related Biomarkers inPopulations Exposed to Environmental Carcinogens[J]. Environmental Health Perspectives,1992,98:133-137.
    [76] Doemoetoer O, Tuccinardi T, Karcz D, et al. Interaction of anticancer reduced Schiff basecoumarin derivatives with human serum albumin investigated by fluorescence quenching andmolecular modeling[J]. Bioorganic Chemistry,2014,52:16-23.
    [77] Sirajuddin M, Uddin N, Ali S, et al. Potential bioactive Schiff base compounds: synthesis,characterization, X-ray structures, biological screenings and interaction with Salmon spermDNA[J]. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy,2013,116:111-121.
    [78] Abdel-Rahman L H, El-Khatib R M, Nassr L A E, et al. Synthesis, physicochemical studies,embryos toxicity and DNA interaction of some new Iron(II) Schiff base amino acid complexes[J].Journal of Molecular Structure,2013,1040:9-18.
    [79] Raman N, Pravin N. Lasing the DNA fragments through beta-diketimine framedKnoevenagel condensed Cu(II) and Zn(II) complexes--an in vitro and in vivo approach[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2014,118:867-882.
    [80] Khorasani-Motlagh M, Noroozifar M, Niroomand S, et al. Photoluminescence studies of aTerbium(III) complex as a fluorescent probe for DNA detection[J]. Journal of Luminescence,2013,143:56-62.
    [81] Sun R X, Li J Z, Zhang H Q, et al. Synthesis, Crystal Structure, Characterization and DNABinding Studies of Novel Copper (II) Complex Based on Amino Acid Schiff Base[J]. CurrentOrganic Chemistry,2012,16(23):2868-2878.
    [82] Kraemer-Chant C M, Heckman J E, Lambert D, et al. Cobalt(III)hexaammine-dependentphotocrosslinks in the hairpin ribozyme[J]. Journal of Inorganic Biochemistry,2014,131:87-98.
    [83] Gantchev T G, Girouard S, Dodd D W, et al. Gamma-radiation induced interstrandcross-links in PNA:DNA heteroduplexes[J]. Biochemistry,2009,48(29):7032-7044.
    [84] Li Y, Huang C, Zheng J, et al. Label-free electrogenerated chemiluminescence biosensingmethod for trace bleomycin detection based on a Ru(phen)2+3-hairpin DNA composite filmelectrode[J]. Biosensors&Bioelectronics,2013,44:177-182.
    [85] Chen H, Lisby M, Symington L S. RPA coordinates DNA end resection and preventsformation of DNA hairpins[J]. Molecular Cell,2013,50(4):589-600.
    [86] Banerjee S, Mondal S, Sen S, et al. Four new dinuclear Cu(ii) hydrazone complexes usingvarious organic spacers: syntheses, crystal structures, DNA binding and cleavage studies andselective cell inhibitory effect towards leukemic and normal lymphocytes[J]. Dalton Transactions,2009(34):6849-6860.
    [87] Zhang G W, Wang L G, Zhou X Y, et al. Binding Characteristics of Sodium Saccharin withCalf Thymus DNA in Vitro[J]. Journal of Agricultural and Food Chemistry,2014,62(4):991-1000.
    [88] Xiong Y, Kang T F, Lu L P. Electrochemistry of complex formation of carbaryl withds-DNA using [Ru(bpy)2+2dppz]as probe[J]. Journal of Solid State Electrochemistry,2013,17(1):129-136.
    [89] Tabassum S, Yadav S, Ahmad I. Heterobimetallic o-vanillin functionalized complexes: Invitro DNA binding validation, cleavage activity and molecular docking studies of Cu-II-Sn-2(IV)analogs[J]. Journal of Organometallic Chemistry,2014,752:17-24.
    [90] Zhang J, Hu L, Liu Y H, et al. Research on the DNA condensation properties by ultravioletspectrum[J]. Spectroscopy and Spectral Analysis,2012,32(5):1306-1309.
    [91] Wu H L, Wang H, Kong J, et al. Synthesis, Characterization, and DNA-Binding Propertiesof the Cadmium (II) Complex With1,3-bis (1-methylbenzimidazol-2-yl)-2-oxopropane[J].Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry,2014,44(4):545-551.
    [92] Vignesh G, Nehru S, Manojkumar Y, et al. Spectroscopic investigation on the interaction ofsome surfactant-cobalt(III) complexes with serum albumins[J]. Journal of Luminescence,2014,145:269-277.
    [93] Shahabadi N, Maghsudi M. Multi-spectroscopic and molecular modeling studies on theinteraction of antihypertensive drug; methyldopa with calf thymus DNA[J]. MolecularBioSystems,2014,10(2):338-347.
    [94] Shobha D C, Anil K D, Singh S S, et al. Synthesis, interaction with DNA, cytotoxicity, cellcycle arrest and apoptotic inducing properties of ruthenium(II) molecular "light switch"complexes[J]. European Journal of Medicinal Chemistry,2013,64:410-421.
    [95] Patel M N, Patidar A P. DNA interactions and promotion in antibacterial activities of thenorfloxacin drug due to formation of mixed-ligand copper(II) complexes[J]. Monatshefte fürChemie-Chemical Monthly,2014,145(2):369-381.
    [96] Nagaraj K, Arunachalam S. Synthesis, CMC determination, nucleic acid binding andcytotoxicity of a surfactant--cobalt (iii) complex: effect of ionic liquid additive[J]. New Journal ofChemistry,2014,38(1):366-375.
    [97] Anonymous. Nobel prize in chemistry2004[J]. Angewandte Chemie International Edition,2004,43(43):5722.
    [98] Franch H A, Price S R. Molecular signaling pathways regulating muscle proteolysis duringatrophy[J]. Current Opinion in Clinical Nutrition and Metabolic Care,2005,8(3):271-275.
    [99] Zhou H, Shi R, Wei M, et al. The expression and clinical significance of HERC4in breastcancer[J]. Cancer Cell International,2013,13(1):113.
    [100] Halwachs S, Schaefer I, Seibel P, et al. Antiepileptic drugs reduce the efficacy ofmethotrexate chemotherapy through accelerated degradation of the reduced folate carrier by theubiquitin-proteasome pathway[J]. Chemotherapy,2011,57(4):345-356.
    [101] Chen Y J, Ma Y S, Fang Y, et al. Power and promise of ubiquitin carboxyl-terminalhydrolase37as a target of cancer therapy[J]. Asian Pacific Journal of Cancer Prevention,2013,14(4):2173-2179.
    [102] Allegra A, Alonci A, Gerace D, et al. New orally active proteasome inhibitors in multiplemyeloma[J]. Leukemia Research,2014,38(1):1-9.
    [103] Stein M L, Groll M. Applied techniques for mining natural proteasome inhibitors[J].Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2014,1843(1):26-38.
    [104] Kunjappu M J, Hochstrasser M. Assembly of the20S proteasome[J]. Biochimica etBiophysica Acta (BBA)-Molecular Cell Research,2014,1843(1):2-12.
    [105] Tanaka K, Yoshimura T, Kumatori A, et al. Proteasomes (multi-protease complexes) as20Sring-shaped particles in a variety of eukaryotic cells[J]. Journal of Biological Chemistry,1988,263(31):16209-16217.
    [106] Donohue T J, Cederbaum A I, French S W, et al. Role of the proteasome in ethanol-inducedliver pathology[J]. Alcoholism-Clinical and Experimental Research,2007,31(9):1446-1459.
    [107] Kim H M, Yu Y D, Cheng Y F. Structure characterization of the26S proteasome[J].Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2011,1809(2):67-79.
    [108] Bohn S, Beck F, Sakata E, et al. Structure of the26S proteasome fromSchizosaccharomyces pombe at subnanometer resolution[J]. Proceedings of the NationalAcademy of Sciences, USA,2010,107(49):20992-20997.
    [109] Xie Y. Structure, assembly and homeostatic regulation of the26S proteasome[J]. Journal ofMolecular Cell Biology,2010,2(6):308-317.
    [110] Abaza M S, Bahman A M, Al-Attiyah R. Superior antimitogenic and chemosensitizationactivities of the combination treatment of the histone deacetylase inhibitor apicidin andproteasome inhibitors on human colorectal cancer cells[J]. International Journal of Oncology,2014,44(1):105-128.
    [111] Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system-implications forcell cycle control and the targeted treatment of cancer[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2014,1843(1):150-162.
    [112] Tacchi L, Casadei E, Bickerdike R, et al. MULAN related gene (MRG): a potential novelubiquitin ligase activator of NF-kB involved in immune response in Atlantic salmon (Salmosalar)[J]. Developmental and Comparative Immunology,2012,38(4):545-553.
    [113] Gartel A L. Mechanisms of apoptosis induced by anticancer compounds in melanomacells[J]. Current Topics in Medicinal Chemistry,2012,12(1):50-52.
    [114] De Paula F M, Castro-Borges W, Pereira Junior O S, et al. The ubiquitin-proteasome systemin Strongyloididae. Biochemical evidence for developmentally regulated proteolysis inStrongyloides venezuelensis[J]. Parasitology Research,2009,105(2):567-576.
    [115] Malynn B A, Ma A. Ubiquitin makes its mark on immune regulation[J]. Immunity,2010,33(6):843-852.
    [116] Haglund K, Dikic I. Ubiquitylation and cell signaling[J]. The EMBO Journal,2005,24(19):3353-3359.
    [117] Caldeira M V, Salazar I L, Curcio M, et al. Role of the ubiquitin-proteasome system in brainischemia: friend or foe?[J]. Progress in Neurobiology,2014,112:50-69.
    [118] Yang H, Cai Y C, Pang J Y, et al. Induction of G2/M phase arrest and apoptosis of MCF-7cells by novel benzofuran lignan via suppressing cell cycle proteins[J]. Acta Pharmaceutica Sinica,2008,43(2):138-144.
    [119] Valmori D, Gileadi U, Servis C, et al. Modulation of proteasomal activity required for thegeneration of a cytotoxic T lymphocyte-defined peptide derived from the tumor antigenMAGE-3[J]. Journal of Experimental Medicine,1999,189(6):895-906.
    [120] Masdehors P, Omura S, Merle-Beral H, et al. Increased sensitivity of CLL-derivedlymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin[J].British Journal of Haematology,1999,105(3):752-757.
    [121] Lin Y J, Huang Y H, Zhen Y Z, et al. Rhein lysinate induces apoptosis in breast cancerSK-Br-3cells by inhibiting HER-2signal pathway[J]. Acta Pharmaceutica Sinica,2008,43(11):1099-1105.
    [122] Kisselev A F, Goldberg A L. Proteasome inhibitors: from research tools to drugcandidates[J]. Chemistry&Biology,2001,8(8):739-758.
    [123] Voorhees P M, Dees E C, O'Neil B, et al. The proteasome as a target for cancer therapy[J].Clinical Cancer Research,2003,9(17):6316-6325.
    [124] Yang H, Landis-Piwowar K R, Chen D, et al. Natural compounds with proteasomeinhibitory activity for cancer prevention and treatment[J]. Current Protein&Peptide Science,2008,9(3):227-239.
    [125] Han J, Liu L, Yue X, et al. A binuclear complex constituted by diethyldithiocarbamate andcopper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures andxenografts[J]. Toxicology and Applied Pharmacology,2013,273(3):477-483.
    [126] Nardon C, Boscutti G, Fregona D. Beyond platinums: gold complexes as anticanceragents[J]. Anticancer Research,2014,34(1):487-492.
    [127] Leung C H, Zhong H J, Chan D, et al. Bioactive iridium and rhodium complexes astherapeutic agents[J]. Coordination Chemistry Reviews,2013,257(11-12):1764.
    [128] Zuo J, Bi C, Fan Y, et al. Cellular and computational studies of proteasome inhibition andapoptosis induction in human cancer cells by amino acid Schiff base-copper complexes[J]. Journalof Inorganic Biochemistry,2013,118:83-93.
    [129] Buac D, Schmitt S, Ventro G, et al. Dithiocarbamate-based coordination compounds aspotent proteasome inhibitors in human cancer cells[J]. Mini Reviews in Medicinal Chemistry,2012,12(12):1193-1201.
    [130] Thalamuthu S, Annaraj B, Neelakantan M A. A systematic investigation on biologicalactivities of a novel double zwitterionic Schiff base Cu(II) complex[J]. Spectrochimica Acta, PartA.: Molecular and Biomolecular Spectroscopy,2014,118:120-129.
    [131] Song Y, Zhan P, Liu X. Heterocycle-thioacetic acid motif: a privileged molecular scaffoldwith potent, broad-ranging pharmacological activities[J]. Current Pharmaceutical Design,2013,19(40):7141-7154.
    [132] Chen W, Zhan P, De C E, et al. Design, synthesis and biological evaluation ofN2,N4-disubstituted-1,1,3-trioxo-2H,4H-pyrrolo[1,2-b][1,2,4,6]thiatriazine derivatives as HIV-1NNRTIs[J]. Bioorganic&Medicinal Chemistry,2013,21(22):7091-7100.
    [133] Banerjee S, Adhikary C, Rizzoli C, et al. Single end to end azido bridged adduct of atridentate schiff base copper(II) complex: Synthesis, structure, magnetism and catalytic studies[J].Inorganica Chimica Acta,2014,409:202-207.
    [134] Ito K, Bernstein H J. The vibrational spectra of the formate, acetate, and oxalate ions[J].Canadian Journal of Chemistry,1956,34(2):170-178.
    [135] Kaya S, Bora E, Ayd N A. Synthesis and characterization of Schiff base derivative withpyrrole ring and electrochromic applications of its oligomer[J]. Progress in Organic Coatings,2014,77(2):463-472.
    [136] Qian H F, Dai Y, Geng J, et al. A flexible multidentate Schiff-base ligand havingmultifarious coordination modes in its copper (II) and cadmium (II) complexes[J]. Polyhedron,2014,67:314-320.
    [137] Ourari A, Ouennoughi Y, Aggoun D, et al. Synthesis, characterization, and electrochemicalstudy of a new tetradentate nickel(II)-Schiff base complex derived from ethylenediamine and5'-(N-methyl-N-phenylaminomethyl)-2'-hydroxyacetophenone[J]. Polyhedron,2014,67:59-64.
    [138] Sheldrick G M. SHELXTL-97, Program for Crystal Structure Refinement[M], University ofG ttingen, Germany,1997.
    [139] Fan Y H, Wang Y F, Bi C F, et al. Synthesis, crystal structure, and fluorescence propertiesof a two-dimensional copper(II) complex with Schiff base[J]. Russian Journal of CoordinationChemistry,2010,36(7):509-513.
    [140] Quinque G T, Oliver A G, Rood J A. Synthesis and Structural Characterization of Bis(salicylaldiminato) magnesium Complexes of Varying Aggregation and Coordination State[J].European Journal of Inorganic Chemistry,2011,2011(22):3321-3326.
    [141] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03, Revision A.1,2003[M]. GaussianInc., Pittsburgh, PA.
    [142] Kohn W. Density functional theory in1997. Strongly Coupled Coulomb Syst. StronglyCoupled Coulomb Systems in Proceedings of an International Conference on Strongly CoupledCoulomb Systems[M]. Chestnut Hill, Mass,1997.
    [143] Huang G M, Zhang X, Fan Y H, et al. Synthesis, Crystal Structure and TheoreticalCalculation of a Novel Nickel (II) Complex with Dibromotyrosine and1,10-Phenanthroline[J].Bulletin of the Korean Chemical Society,2013,34(10):2889-2894.
    [144] Yan X C, Fan Y H, Bi C F, et al. Synthesis, Crystal Structure, and Theoretical Calculationof the Cd (II) Complex with2-Aminobenzothiazole[J]. Synthesis and Reactivity in Inorganic,Metal-Organic, and Nano-Metal Chemistry,2014,44(4):603-610.
    [145] Zhang N, Fan Y H, Bi C F, et al. Synthesis and crystal structure of a new nickel (II)coordination polymer based on Schiff base[J]. Russian Journal of Coordination Chemistry,2012,38(5):349-352.
    [146] Ou G C, Yuan X Y, Jiang X P. Synthesis and crystal structures of terephthalato-bridgedmacrocyclic nickel (II) complexes with cis configurations[J]. Transition Metal Chemistry,2011,36(2):189-194.
    [147] Shen X Q, Li Z J, Zhang H Y, et al. Mechanism and kinetics of thermal decomposition of5-benzylsulfanyl-2-amino-1,3,4-thiadiazole[J]. Thermochimica Acta,2005,428(1–2):77-81.
    [148] Li M T, Wang C G, Yu L Y, et al. Synthesis, Characterization, and Thermostability of FourNovel Cadmium (II) Coordination Polymers with Mixed Ligands[J]. Zeitschrift für anorganischeund allgemeine Chemie,2012,638(2):466-472.
    [149] Sathiyaraj S, Sampath K, Butcher R J, et al. Designing, structural elucidation, comparison ofDNA binding, cleavage, radical scavenging activity and anticancer activity of copper(I) complexwith5-dimethyl-2-phenyl-4-[(pyridin-2-ylmethylene)-amino]-1,2-dihydro-pyrazol-3-one Schiffbase ligand[J]. European Journal of Medicinal Chemistry,2013,64:81-89.
    [150] Zhang N, Fan Y H, Bi C F, et al. Synthesis, Crystal Structure, Fluorescence andThermostability of Ni(II), Zn(II), Cd(II) Complexes with Schiff Base2-Acetylpyridine-d-tryptophan[J]. Journal of Inorganic and Organometallic Polymers and Materials,2013,23(6):1492-1500.
    [151] Zhang N, Fan Y H, Bi C F, et al. Synthesis, crystal structure, and DNA interaction ofmagnesium (II) complexes with Schiff bases[J]. Journal of Coordination Chemistry,2013,66(11):1933-1944.
    [152] Chen B, Liu H, Sun X, et al. Mechanistic insight into the recognition of single-stranded anddouble-stranded DNA substrates by ABH2and ABH3[J]. Molecular Biosystems,2010,6(11):2143-2149.
    [153] Kumar R S, Arunachalam S. Synthesis, characterization and DNA binding studies of apolymer-cobalt(III) complex containing the2,2-bipyridyl ligand[J]. Polyhedron,2006,25(16):3113-3117.
    [154] Kumar R S, Arunachalam S. DNA binding and antimicrobial studies of polymer-copper(II)complexes containing1,10-phenanthroline and L-phenylalanine ligands[J]. European Journal ofMedicinal Chemistry,2009,44(5):1878-1883.
    [155] Wolfe A, Shimer G J, Meehan T. Polycyclic aromatic hydrocarbons physically intercalateinto duplex regions of denatured DNA[J]. Biochemistry,1987,26(20):6392-6396.
    [156] Olmsted J, Kearns D R. Mechanism of ethidium bromide fluorescence enhancement onbinding to nucleic acids[J]. Biochemistry,1977,16(16):3647-3654.
    [157] Lepecq J B, Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids:Physical—Chemical characterization[J]. Journal of Molecular Biology,1967,27(1):87-106.
    [158] Lakowicz J R, Weber G. Quenching of fluorescence by oxygen. A probe for structuralfluctuations in macromolecules[J]. Biochemistry,1973,12(21):4161-4170.
    [159] Xi X L, Yang M M, Zhou C Y, et al. Study on the binding mode of Mg(Sal2trien) withDNA[J]. Chinese Science Bulletin,2006,51(19):2322-2326.
    [160] Satyanarayana S, Dabrowiak J C, Chaires J B. Neither delta-nor lambda-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation[J]. Biochemistry,1992,31(39):9319-9324.
    [161] Zhang Z G, Wang S Y, Dong X D. Photodynamic activity of a nickel diimine complex andits interaction with DNA[J]. Transition Metal Chemistry,2012,37(4):379-383.
    [162] Singh R, Jadeja R N, Thounaojam M C, et al. Synthesis, characterization, DNA binding andcytotoxicity studies of moxifloxacinato complexes[J]. Transition Metal Chemistry,2012,37(6):541-551.
    [163] Tan J, Zhu L, Wang B. DNA binding and cleavage activity of quercetin nickel(II)complex[J]. Dalton Transactions,2009(24):4722-4728.
    [164] Daniel K G, Gupta P, Harbach R H, et al. Organic copper complexes as a new class ofproteasome inhibitors and apoptosis inducers in human cancer cells[J]. BiochemicalPharmacology,2004,67(6):1139-1151.
    [165] Tabassum S, Asim A, Arjmand F, et al. Synthesis and characterization of copper(II) andzinc(II)-based potential chemotherapeutic compounds: their biological evaluation viz. DNAbinding profile, cleavage and antimicrobial activity[J]. European Journal of Medicinal Chemistry,2012,58:308-316.
    [166] Ghosh K, Kumar P, Mohan V, et al. Nuclease activity via self-activation and anticanceractivity of a mononuclear copper(II) complex: novel role of the tertiary butyl group in the ligandframe[J]. Inorganic Chemistry,2012,51(6):3343-3345.
    [167] Gao C Y, Qiao X, Ma Z Y, et al. Synthesis, characterization, DNA binding and cleavage,BSA interaction and anticancer activity of dinuclear zinc complexes[J]. Dalton Transactions,2012,41(39):12220-12232.
    [168] Drewry J A, Gunning P T. Recent advances in biosensory and medicinal therapeuticapplications of zinc(II) and copper(II) coordination complexes[J]. Coordination ChemistryReviews,2011,255(3-4):459-472.
    [169] Xiao Y, Bi C, Fan Y, et al. L-glutamine Schiff base copper complex as a proteasomeinhibitor and an apoptosis inducer in human cancer cells[J]. International Journal of Oncology,2008,33(5):1073-1079.
    [170] Zhang X, Bi C, Fan Y, et al. Induction of tumor cell apoptosis by taurine Schiff base coppercomplex is associated with the inhibition of proteasomal activity[J]. International Journal ofMolecular Medicine,2008,22(5):677-682.
    [171] Arora S, Aggarwal A, Singla P, et al. Anti-proliferative effects of homeopathic medicines onhuman kidney, colon and breast cancer cells[J]. Homeopathy,2013,102(4):274-282.
    [172] Chen L, Ye H L, Zhang G, et al. Autophagy Inhibition Contributes to the SynergisticInteraction between EGCG and Doxorubicin to Kill the Hepatoma Hep3B Cells[J]. PLoS One,2014,9(1): e85771.
    [173] Kouroukis C T, Baldassarre F G, Haynes A E, et al. Bortezomib in multiple myeloma: apractice guideline[J]. Clinical oncology (Royal College of Radiologists (Great Britain)),2014,26(2):110.
    [174] Terpos E, Christoulas D, Kastritis E, et al. The combination of lenalidomide anddexamethasone reduces bone resorption in responding patients with relapsed/refractory multiplemyeloma but has no effect on bone formation: final results on205patients of the Greek myelomastudy group[J]. American Journal of Hematology,2014,89(1):34-40.
    [175] Liu N, Huang H, Xu L, et al. The combination of proteasome inhibitors bortezomib andgambogic acid triggers synergistic cytotoxicity in vitro but not in vivo[J]. Toxicology Letters,2014,224(3):333-340.
    [176] Mikecin A M, Walker L R, Kuna M, et al. Thermally targeted p21peptide enhancesbortezomib cytotoxicity in androgen-independent prostate cancer cell lines[J]. Anticancer Drugs,2014,25(2):189-199.