水合肼脱氢催化剂的设计、合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,开发安全和高效的化学储氢材料替代传统的化石燃料引起了人们广泛的研究兴趣。水合肼(N2H4H2O)在213-392K内是无色液体、储氢量高达8.0wt%、易于储存,而且它的催化分解产物只有氮(N2)和氢(H2),其催化分解的化学反应方程式如下:N2H4→N2(g)+2H2(g)。它的这些特点使其成为非常有应用潜力的化学储氢材料。然而,在应用过程中一定要避免它的不完全分解:3N2H4→4NH3(g)+N2(g)。研究表明,反应途径取决于催化剂的使用和反应条件。因此,研发高效的催化剂对于N2H4H2O作为储氢材料至关重要。
     到目前为止,Ni和贵金属(Rh,Pt)基合金相的双金属纳米催化剂被用于N2H4H2O的脱氢反应。研究表明,它们在298K时具有100%的H2选择性,但它们的脱氢反应速率很低,不能满足实际应用的需求。此外,已报道的大多数催化剂是由贵金属或很高的贵金属含量组成,由于较高的成本和资源稀缺,阻碍了它们的大规模应用。最近,非贵金属或低贵金属含量的催化剂(例如NiFe、Ni-Al2O3-HT、和NiMoB-La(OH)3)被用于催化N2H4H2O分解。然而,在室温下它们的活性很低。因此,从实际应用的角度出发,改善室温下催化剂的催化动力学性质对于发展N2H4H2O作为储氢材料是非常重要的。在这种背景下,研发一种在298K下对N2H4H2O脱氢作用具有高催化活性和100%H2选择性的低贵金属含量催化剂是一个目标。
     本论文主要内容如下两个部分:
     第一,使用共还原法在室温下合成非晶态的Co0.65Pt0.30(CeOx)0.05纳米颗粒。非晶态的Co0.65Pt0.30(CeOx)0.05纳米催化剂比结晶态的CoPt合金具有更高的催化活性。在该非晶催化剂的作用下,N2H4H2O在常温下能释放出72.1%的氢气(3.5分钟),初始转化效率(TOF)高于结晶CoPt催化剂的TOF,而且高于所有目前报道的N2H4H2O脱氢催化剂的TOF。
     第二,我们合成了Ni0.90Pt0.05Rh0.05/La2O3纳米颗粒。得到的纳米颗粒的分散性很好,平均粒径尺寸为2.0nm。通过对比发现,没有使用La前驱体时,得到的Ni0.90Rt0.05Rh0.05纳米颗粒的平均粒径尺寸为3.2nm,比使用La前驱体时的粒径尺寸大。研究结果表明在合成过程中加入La(NO3)3能有效地降低纳米颗粒的尺寸,使得纳米颗粒具有更多的催化活性位。我们还研究了不同成分的NiPtRh/La2O3催化剂在298K下对N2H4H2O脱氢的催化活性。
     总而言之,本论文首次重点研究了Co基催化剂在N2H4H2O脱氢反应中的应用。CeOx导致的高催化活性使得N2H4H2O作为储氢材料具有很大的应用前景。当前的结果对于设计和开发下一代高效和低成本的N2H4H2O脱氢催化剂提供了新的思路,极大地推动了N2H4H2O作为储氢材料在实际生活中的应用。
In recent years, discovering chemical hydrogen (H2) storage materials that can store andgenerate H2in a safe and efficient way has attracted much research interest to transform thepresent fossil fuel economy to a H2economy in recent years. Hydrazine monohydrate(N2H4H2O), which is a liquid in a wide range of temperature (213-392K) and has a H2storage capacity as high as8.0wt%, merits attention as a promising chemical H2storagematerial due to its easy recharging as a liquid and only production of nitrogen (N2) and H2via its catalytic decomposition: N2H4→N2(g)+2H2(g). However, its undesired incompletedecomposition:3N2H4→4NH3(g)+N2(g) must be avoided. Studies have shown that thereaction pathway depends on the catalyst and the reaction condition. Therefore, thedevelopment of highly efficient catalysts is quite desired for the practical application ofhydrous N2H4as a hydrogen storage material.
     Up to now, the bi-metallic catalysts based on the alloy phase of Ni and noble metal (Rh,Pt) in the form of nanoparticles have emerged as an important type of catalysts with100%H2selectivity at298K, But the catalytic kinetic of H2generation rate is still not satisfyingthe practical use. Recently, the catalysts using non or low noble metal including NiFe,Ni-Al2O3-HT, NiMoB-La(OH)3was applied the catalyst for the decomposition of hydrousN2H4. However, the catalysts typically show degraded catalytic activity at298K on reducingor eliminating the noble metal components. From a viewpoint of practical application, toimprove the catalytic kinetic at ambient temperature also is urgently important for thedevelopment of hydrous N2H4as a hydrogen storage material. Thus, the development of alow noble metal loading catalyst with high catalytic activity and100%H2selectivity for thedehydrogenation of N2H4H2O at298K is a desired goal.
     The main results obtained in the thesis are divided into four parts as following:
     Firstly, Amorphous Co0.65Pt0.30(CeOx)0.05NPs are successfully synthesized by a facileco-reduction method under ambient atmosphere. Amorphous Co0.65Pt0.30(CeOx)0.05NPs aresuccessfully synthesized by a facile co-reduction method under ambient atmosphere. Asresults, amorphous CoPt NPs induced on CeOxwith the TOF value of of194.8h-1caneffectively exhibit the high catalytic kinetic performance for the H2generation from hydrousN2H4at298K.
     Secondly, Ni0.90Pt0.05Rh0.05/La2O3catalyst are synthesized, it can be seen that the NPsare well-dispersed with an average particle size of2.0nm. In contrast, without addition of Laprecursors, the resulted Ni0.90Rt0.05Rh0.05NPs have a larger average particle size of3.2nmthan those prepared with La precursors. Therefore, it suggests that the addition of La(NO3)3during the synthetic process can effectively reduce the sizes of the NPs. we studied thecatalytic activities of the as-prepared NiPtRh/La2O3catalysts with different compositionhave been investigated toward the dehydrogenation of N2H4H2O at298K.
     In conclusion, this study is the first example where Co-based catalyst has been used inthe N2H4reaction system. Moreover, the high catalytic kinetic and the additional effect ofCeOxrepresent a promising step toward the practical use for H2generation from hydrousN2H4. And, the obtained promising results open new excited possibility for the developmentof next generation cost-effective and highly efficient dehydrogenation catalysts to meet therequirement of practical application of N2H4H2O.
引文
[1] MASEL R. Energy technology: Hydrogen quick and clean [J]. Nature,2006,442:521-522.
    [2] SCHLAPBACH L, ZüTTEL A. Hydrogen-storage materials for mobile applications [J].Nature,2001,414:353-358.
    [3] MOMIRLAN M, VEZIROGLU T N.[J]International Journal of Hydrogen Energy,2005,30:795-802.
    [4] ZüTTEL A, BORGSCHULTE A and SCHLAPBACH L. Hydrogen as a future energycarrier, ed. Wiley-VCH, Weinheim,2008.
    [5] EBERLE U, FELDERHOFF M, and SCHüTH F. Chemical and Physical olutions forHydrogen Storage [J]. Angewandte Chemie International Edition,2009,48:6608-6630.
    [6] SATYAPAL S, PETROVIC J, READ C, THOMAS G and ORADAZ G. The U.S.Department of Energy’s National Hydrogen Storage Project: Progress towards MeetingHydrogen-Powered Vehicle Requirements [J]. Catalysis Today,2007,120:246-256.
    [7]刘永锋,李超,高明霞,潘洪革。高容量储氢材料的研究进展。自然杂志,2011,33:19-26.
    [8] YANG J, SUDIK A, WOLVERTON C and SIEGEL D J. High Capacity HydrogenStorage Materials: Attributes for Automotive Applications and Techniques for MaterialsDiscovery [J]. Chemical Society Reviews,2010,39:656-675.
    [9] JAIN I P, JAIN P and J JAIN A. Novel Hydrogen Storage Materials: A Review ofLightweight Complex Hydrides [J]. Journal of Alloys and Compounds,2010,503:303-339.
    [10] ORIMO S-I, NAKAMORI Y, ELISEO J R, ZüTTEL A and JENSEN C M. ComplexHydrides for Hydrogen Storage [J]. Chemical Reviews,2007,107:4111-4132.
    [11] SEAYAD A M and ANTONELLI D M. Recent Advances in Hydrogen Storage inMetal-Containing Inorganic Nanostructures and Related Materials [J]. Advanced Materials,2004,16:765-777.
    [12] OLAH G A, GOEPPERT A, SURY PRAKASH G K. Beyond Oil and Gas: TheMethanol Economy, Wiley-VCH, Weinheim,2006.
    [13] HELM M L, STEWART M P, BULLOCK R M, DUBIOS M R, DUBOIS D L. ASynthetic Nickel Electrocatalyst with a Turnover Frequency Above100,000s-1for H2Production [J]. Science,2011,333:863-866.
    [14] KNOX K, GINSBERG A P, X-Ray Determination of the Crystal Structure ofPotassium Rhenium Hydride [J]. Inorganic Chemistry,1964,3:555-558.
    [15] ABRAHAMS C S, GINSBERG A P, KNOX K. Transition Metal-Hydrogen Compounds.II. The Crystal and Molecular Structure of Potassium Rhenium Hydride, K2ReH9[J].Inorganic Chemistry,1964,3:558-567.
    [16] GROCHALA W, EDWARDS P P. Thermal Decomposition of the Non-InterstitialHydrides for the Storage and Production of Hydrogen [J]. Chemical Reviews,2004,104:1283-1316.
    [17] SWITENDICK A C, Band Structure Calculations for Metal Hydrogen System [J].Zeitschrift Physikalische Chemie Neue Folge,1979,117:89-112.
    [18] WESTLAKE D G. Site Occupancies and Stoichiometries in Hydrides of IntermetallicCompounds: Geometric Considerations [J]. Journal of the Less Common Metals,1983,90:251-273.
    [19] SAKINTUNA B, LAMARI-DARKIM F, HIRSCHER M. Metal Hydride Materials forSolid Hydrogen Storage: A Review [J]. International Journal of Hydrogen Energy,2007,32:1121-1140.
    [20] MORI D, KOBOBAYASHI N, MATSUNAGA T, KUBO H, TOH K, TSUZUKI M.Hydrogen Storage Materials for Fuel Cell Vehicles High-Pressure MH System [J]. Journal ofthe Japan institute of Metals,2005,69:308-311.
    [21] KHRUSSANOVA M, TERZIEVA M, PESHEV P, KONSTANCHUK I, IVANOV E.Hydriding Kinetics of Mixtures Containing Some3d-Transition Metal Oxides andMagnesium [J]. Zeitschrift Physikalische Chemie Neue Folge,1989,164:1261-1266.
    [22] DOMRNHEIM M, DOPPIU S, BARKHORDARIAN G, KLASSEN T, GUTFLEISCHO, BORMANN R. Hydrogen Storage in Magnesium-Based Hydrides and HydrideComposites [J]. Scripta Materialia,2007,56:841-846.
    [23] WAGEMANS RWP, VAN LENTHE J H, DE JONGH P E, VAN DILLON A J, DEJONG K P. Hydrogen Storage in Magnesium Clusters: Quantum Chemical Study [J]. Journalof the American Chemical Society,2005,127:16675-16680.
    [24] DE JONGH P E, WAGEMANS RWP, EGGENHUISEN T M, DAUVILLIER B S,RADSTAKE P B, MEELDIJK J D, GEUS J W, DE JONG K P. The Preparation ofCarbon-Supported Magnesium Nanoparticles using Melt Infiltration [J]. Chemistry ofMaterials,2007,19:6052-6057.
    [25] BOGDANOVI B, RITTER A, SPLIETHOFF B. Aktivé MgH2-Mg-Systeme alsreversible Chemishe Energiespeicher [J]. Angewandte Chemie,1990,102:239-250.
    [26] THOMAS K M. Hydrogen Adsorption and Storage on Porous Materials [J]. CatalysisToday,2007,120:389-398.
    [27] PANELLA B, HIRSCHER M, ROTH S. Hydrogen Adsorption in Different CarbonNanostructures [J]. Carbon,2005,43:2209-2214.
    [28] ZHAO X B, XIAO B, FLETCHER A J, THOMAS K M. Hydrogen Adsorption onFunctionalized Nanoporous Activated Carbons [J]. The Journal of Physical ChemistryB,2005,109:8880-8888.
    [29] NIJKAMP M G, RAAYMAKERS J E M J, VAN DILLEN A J, DE JONG KP. Hydrogen Storage Using Physisorption-Materials Demands [J]. Applied PhysicsA,2001,72:619-623.
    [30] WEITKAMP J, FRITZ M, ERNST S. Zeolithe als Speichermaterialien für Wasserstoff[J]. Chemie Ingenieur Technik,1992,64:1106-1109.
    [31] WEITKAMP J, FRITZ M, ERNST S, Proc. Synthesis of Oligo-and Polythiophenes inZeolite Hosts.9th IZC,2,11.
    [32] WEITKAMP J, FRITZ M, ERNST S. Zeolites as Media for Hydrogen Storage [J].International Journal of Hydrogen Energy,1995,20:967-970.
    [33] WEITKAMP J, ERNST S, CUBERO F, WESTER F, SCHNICK W. Nitrido-SodaliteZn6[P12N24] as a Material for Reversible Hydrogen Encapsulation [J]. AdvancedMaterials,1997,9:247-248.
    [34] JHUNG S H, YOON J W, LEE J S, CHANG J S. Low-Temperature Adsorption/Storageof Hydrogen on FAU, MFI, and MOR Zeolites with Various Si/Al Ratios: Effect oflectrostatic Fields and Pore Structures [J]. Chemistry a EuropeanJournal,2007,13:6502-6507.
    [35] CORMA A, DIAZ-CABANAS M J, JORDA J L, MARTINEZ C, MOLINERM. High-Throughput Synthesis and Catalytic Properties of a Molecular Sieve with18-and10-Member Rings [J]. Nature2006,443:842-845.
    [36] CHEETHAM A K, RAO C N R, FELLER R K. Structural Diversity and ChemicalTrends in Hybrid Inorganic-Organic Framework Materials [J]. Chemical Communications,2006:4780-4795.
    [37] BOGDANOVIC B, SCHWICKARI M. Ti-Doped Alkali Metal Aluminium Ydrides asPotential Novel Reversible Hydrogen Storage Materials [J]. Journal of Alloys andCompounds,1997,253-254:1-9.
    [38] ORIMO S I, NAKAMORI Y, ELISEO J R, ZUTTEL A, JENSEN C M. ComplexHydrides for Hydrogen Storage [J]. Chemical Reviews,2007,107:4111-4132.
    [39] BOGDANOVIC B, EBERLE U, FELDERHOFF M, SCHUTH F. Complex AluminumHydrides [J]. Scripta Materialia,2007,56:813-816.
    [40] BOGDANOVIC B, FELDERHOFF M, POMMERIN A, SCHUTH F, SPIELKAMP N.Advanced Hydrogen-Storage Materials Based on Sc-, Ce-, and Pr-Doped NaAlH4[J].Advanced Materials,2006,18:1198-1201.
    [41] SUN T, ZHOU B, WANG H, ZHU M. The Effect of Doping Rare-Earth ChlorideDopant on the Dehydrogenation Properties of NaAlH4and its Catalytic Mechanism [J].International Journal of Hydrogen Energy,2008,33:2260-2267.
    [42] FAN XL, XIAO XZ, CHEN LX, YU KR, WU Z, LI SQ, WANG Q. Active Species ofCeAl4in the CeCl3-Doped Sodium Aluminium Hydride and its Enhancement on ReversibleHydrogen Storage Performance [J]. Chemical Communications,2009,6857-6859.
    [43] SUN DL, KIYOBAYASHI T, TAKESHITA H T. X-ray Diffraction Studies of Titaniumand Zirconium Doped NaAlH4Elucidation of Doping Induced Structural Changes and theirRelationship to Enhanced Hydrogen Storage Properties [J]. Journal of Alloys andCompounds,2002,337: L8-L11.
    [44] SINGH S, EIJTS W H, HUOT J, KOCKELMANN W A. The TiCl3Catalyst in NaAlH4for Hydrogen Storage Induces Grain Refinement and Impacts on Hydrogen VacancyFormation [J]. Acta Materialia,2007,55:5549-5557.
    [45] SAKAKI K, NAKAMURA Y, AKIBA E. Reversible Vacancy Formation and Recoveryduring Dehydrogenation-Hydrogenation Cycling of Ti-Doped NaAlH4[J]. Journal of Physicsand Chemistry C,2010,114:6869-6873.
    [46] BRINKSH W, HAUBACK B C, SRINIVASAN S S, JENSEN C M. Synchrotron X-rayStudies of Al1-yTiy Formation and Re-hydriding Inhibition in Ti-Enhanced NaAlH4[J].Journal of Physics and Chemistry B2005,109:15780-15785.
    [47] FANG F, ZHANG J, ZHU J, CHEN GR, SUN DL, HE B. Nature and Role of TiSpecies in the Hydrogenation of a NaH/Al Mixture [J]. Journal of Physics and Chemistry C2007,111:3476-3479.
    [48] KANG XD, WANG GP, CHENG HM. Advantage of TiF3over TiCl3as a DopantPrecursor to Improve the Thermodynamic Propertyf Na3AlH6[J]. Scripta Materialia,2007,56:361-364.
    [49] ZUTTEL A, WENGER P, RENTSCH S, SUDAN P, MAURON P. LiBH4a NewHydrogen Storage Material [J]. Journal of Power Sources,2003,118:1-7.
    [50] VAJO J J, SKEITHS L. Reversible Storage of Hydrogen in Destabilized LiBH4[J].Journal of Physics and Chemistry B,2005,109:3719-3722.
    [51] YANG J, SUDIK A, WOLVERTON C. Destabilizing LiBH4with a Metal (M=Mg, Al,Ti, V, Cr, or Sc) or Metal Hydride (MH2=MgH2, TiH2, or CaH2)[J]. Journal of Physics andChemistry C,2007,111:19134-19140.
    [52] SHI Q, YU XB, FEIDENHANS R, VEGGE T. Destabilized LiBH4-NaAlH4MixturesDoped with Titanium Based Catalysts [J]. Journal of Physics and Chemistry C,2008,112:18244-18248.
    [53] GROSS A F, VAJO J J, VANATTA S L, OLSON G L. Enhanced Hydrogen StorageKinetics of LiBH4in Nanoporous Carbon Scaffolds [J]. Journal of Physics and Chemistry C2008,112:5651-5657.
    [54] FANG ZZ, WANG P, RUFFOD T E, KANG XD, LU GQ, CHENG HM. Kinetic-andThermodynamic-Based Improvements of Lithium Borohydride Incorporated into ActivatedCarbon [J]. Acta Materialia,2008,56:6257-6263.
    [55] ZHENG Y, ZHANG WS, WANG AQ, SUN LX, FAN MQ, CHU HL. LiBH4Nanoparticles Supported by Disordered Mesoporous Carbon: Hydrogen StoragePerformances and Destabilization Mechanisms [J]. International Journal of Hydrogen Energy,2007,32:3976-3980.
    [56] NAKAMORI Y, LI HW, KIKUCHI K, AOKI M, MIWA K. ThermodynamicalStabilities of Metal-Borohydrides [J]. Journal of Alloys and Compounds,2007,446-447:296-300.
    [57] LI HW, KIKUCHI K, NAKAMORI Y, OHBA N, MIWA K. Dehydriding andRehydriding Processes of Well-Crystallized Mg(BH4)2Accompanying with Formation ofIntermediate Compounds [J]. Acta Materialia2008,56:1342-1347.
    [58] NEWHOUSER J, STAVILA V, HWANG SJ, KLEBANOFF L E. Reversibility andImproved Hydrogen Release of Magnesium Borohydride [J]. Journal of Physics andChemistry C,2010,114:5224-5232.
    [59] FANG ZZ, KANG XD, WANG P, LI HW, ORIMO S I. Unexpected DehydrogenationBehavior of LiBH4/Mg(BH4)2Mixture Associated with the in situ Formation of Dual-CationBorohydride [J]. Journal of Alloys and Compounds,2010,491: L1.
    [60] MARRERO-ALFONSO E Y, BEAIRD A M, DAVIS T A and MATTHEWS MA. Hydrogen Generation from Chemical Hydrides [J]. Industrial and Engineering ChemistryResearch,2009,48:3703-3712.
    [61] LIU BH, LI ZP. A Review: Hydrogen Generation from Borohydride HydrolysisReaction [J]. Journal of Power Sources,2009,187:527-534.
    [62] SCHLESINGER H I, BROWN H C, FINHOLT A B, GILBREATH J R, HOCKSTRA HR and HYDO E K. The Enzymatic Formation of Sedoheptulose Phosphate from PentosePhosphate [J]. Journal of the American Chemical Society,1953,75:215-219.
    [63] BROWN H C, BROWN C A. New, Highly Active Metal Catalysts for the Hydrolysis ofBorohydride [J]. Journal of the American Chemical Society,1962,84:1493-1494.
    [64] KOJIMA Y, SUZUKI K, FUKUMOTO K, SASAKI M, YAMAMOTO T and KAWAIY. Hydrogen Generation Using Sodium Borohydride Solution and Metal Catalyst Coated onMetal Oxide [J]. International Journal of Hydrogen Energy,2002,27:1029-1034.
    [65] AMENDOLA S C, SHARP-GOLDMAN S L, PETILLO P J and BINDER M. A Safe,Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru catalyst [J].International Journal of Hydrogen Energy,2000,25:969-975.
    [66] PATEL N, GUELLA G, KALE A, ZANCHETTA C, ROTOLO P. Thin Films of Co–BPrepared by Pulsed Laser Deposition as Efficient Catalysts in Hydrogen ProducingReactions [J]. Applied Catalysis A,2007,323:18-24.
    [67] PATEL N, FERNANDES R, GUELLA G and ZANCHETTA C. Co-B CatalystSupported over Mesoporous Silica for Hydrogen Production by Catalytic Hydrolysis ofAmmonia Borane: A Study on Influence of Pore Structure [J]. The Journal of PhysicalChemistry C,2008,112:6968-6976.
    [68] HUA D, HANXI Y, XINPING A and CHUANSIN C. Catalytic Hydrolysis of SodiumBorohydride Solution Using Nickel Boride Catalyst [J]. International Journal of HydrogenEnergy,2003,28:1095-1100.
    [69] PENG B, CHEN J. Ammonia Borane as an Efficient and Lightweight Hydrogen StorageMedium [J]. Energy&Environmental Science,2008,1:479-483.
    [70] WANG P, KANG XD. Hydrogen-Rich Boron-Containing Materials for HydrogenStorage [J]. Dalton Transactions,2008,5400-5413.
    [71] GUTOWSKA A, LI LY, SHIN YS, WANG CM. Nanoscaffold Mediates HydrogenRelease and the Reactivity of Ammonia Borane [J]. Angewandte Chemie InternationalEdition,2005,44:3578-3582.
    [72] XIONG ZT, YONG CK, WU GT. High-capacity Hydrogen Storage in Lithium andSodium Amidoboranes [J]. Nature Materials,2007,7:138-141.
    [73] YADAV M, XU Q. Liquid-phase chemical hydrogen storage materials [J]. Energy&Environmental Science,2012,5:9698-9725.
    [74] CHANDRA M, XU Q. Room Temperature Hydrogen Generation from AqueousAmmonia-Borane Using Noble Metal Nano-Cluster as Highly Active Catalysts [J]. Journalof Power Sources,2007,168:135-142.
    [75] CHANDRA M, XU Q. A High-Performance Hydrogen Generation System: TransitionMetal-Catalyzed Dissociation and Hydrolysis of Ammonia-Borane [J]. Journal of PowerSources,2006,156:190-194.
    [76] DURAP F, ZAHMAKIRAN M and ZKAR S. Water Soluble Laurate-StabilizedRhodium (0) Nanoclusters Catalyst with Unprecedented Catalytic Lifetime in the HydrolyticDehydrogenation of Ammonia-Borane [J]. Applied Catalysis A: General,2009,369:53-59.
    [77] DURAP F, ZAHMAKIRAN M and ZKAR S. Water Soluble Laurate-StabilizedRuthenium(0) Nanoclusters Catalyst for Hydrogen Generation from the Hydrolysis ofAmmonia-Borane: High Activity and Long Lifetime [J]. International Journal of HydrogenEnergy,2009,34:7223-7230.
    [78] ZAHMAKIRAN M, ZKAR S. Zeolite Framework Stabilized Rhodium(0)Nanoclusters Catalyst for the Hydrolysis of Ammonia-Borane in Air: Outstanding CatalyticActivity, Reusability and Lifetime [J]. Applied Catalysis B: Environmental,2009,89:104-110.
    [79] XU Q, CHANDRA M. Catalytic Activities of Non-Noble Metals for HydrogenGeneration from Aqueous Ammonia-Borane at Room Temperature [J]. Journal of PowerSources,2006,163:364-370.
    [80] YAN JM, ZHANG XB, HAN S, SHIOYAMA H and XU Q.Iron-Nanoparticle-Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane for ChemicalHydrogen Storage [J]. Angewandte Chemie International Edition,2008,47:2287-2289.
    [81] YAN JM, ZHANG XB, HAN S, SHIOYAMA H and XU Q. Synthesis of LongtimeWater/Air-Stable Ni Nanoparticles and Their High Catalytic Activity for Hydrolysis ofAmmonia-Borane for Hydrogen Generation [J]. Inorganic Chemistry,2009,48:7389-7393.
    [82] UMEGAKI T, YAN JM, ZHANG XB, SHIOYAMA H, KURIYAMA N and XU Q.Preparation and Catalysis of Poly(N-vinyl-2-pyrrolidone)(PVP) Stabilized Nickel Catalystfor Hydrolytic Dehydrogenation of Ammonia Borane [J]. International Journal of HydrogenEnergy,2009,34:3816-3822.
    [83] YAN JM, ZHANG XB, HAN S, SHIOYAMA H and XU Q. Magnetically RecyclableFe-Ni Alloy Catalyzed Dehydrogenation of Ammonia Borane in Aqueous Solution UnderAmbient Atmosphere [J]. Journal of Power Sources,2009,194:478-481.
    [84] UMEGAKI T, YAN JM, ZHANG XB, SHIOYAMA H, KURIYAMA N and XU Q.Co-SiO2Nanosphere-Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane forChemical Hydrogen Storage [J]. Journal of Power Sources,2010,195:8209-8214.
    [85] YAN JM, ZHANG XB, SHIOYAMA H, XU Q. Room temperature hydrolyticdehydrogenation of ammonia borane catalyzed by Co nanoparticles [J]. Journal of PowerSources,2010,195:1091-1094.
    [86] HüGLE T, KüHNEL MF, LENTZ D. Hydrazine Borane: a Promising HydrogenStorage Material [J]. Journal of the American Chemical Society,2009,131:7444-7446.
    [87] HANNAUER J, AKDIM O, DEMIRCI UB, GEANTET C. High-ExtentDehydrogenation of Hydrazine Borane N2H4BH3by Hydrolysis of BH3and Decompositionof N2H4[J]. Energy&Environmental Science,2011,4:3355-3358.
    [88] KARAHAN S, ZAHMAKIRAN M, ZKAR S. Catalytic Hydrolysis of HydrazineBorane for Chemical Hydrogen Storage: Highly Efficient and Fast Hydrogen GenerationSystem at Room Temperature [J]. International Journal of Hydrogen Energy,2011,36:4958-4966.
    [89] ELIK D, KARAHAN S, ZAHMAKIRAN M, ZKAR S. Hydrogen Generation fromthe Hydrolysis of Hydrazine-Borane Catalyzed by Rhodium(0) Nanoparticles Supported onHydroxyapatite [J]. International Journal of Hydrogen Energy,2012,37:5143-5151.
    [90] ETIN, DEMIRCI U B, ENER T, XU Q, MIELE P. Nickel-based bimetallicnanocatalysts in high-extent dehydrogenation of hydrazine borane [J]. International Journalof Hydrogen Energy,2012,37:9722-9729.
    [91] MOURY R, MOUSSA G, DEMIRCI U B, MIELE P. Hydrazine borane: synthesis,characterization, and application prospects in chemical hydrogen storage [J]. PhysicalChemistry Chemical Physics,2012,14:1768-1777.
    [92] JOó F. Breakthroughs in Hydrogen Storage-Formic Acid as a Sustainable StorageMaterial for Hydrogen [J]. ChemSusChem,2008,1:805-808.
    [93] WANG Z-L, YAN J-M, PING Y, WANG H-L, ZHENG W-T, JIANG Q. An EfficientCoAuPd/C Catalyst for Hydrogen Generation from Formic Acid at Room Temperature [J].Angewandte Chemie International Edition,2013,52:4406-4409.
    [94] LIA P-Z, XU Q. Metal-Nanoparticle Catalyzed Hydrogen Generation fromLiquid-Phase Chemical Hydrogen Storage Materials [J]. Journal of the Chinse ChemicalSociety,2012,59:1181-1189.
    [95]陶建军.水合肼及其应用[J].中国氯碱,2006,11:30-32.
    [96] The Department of Energy Hydrogen and Fuel Cell Program Plan, U.S. Department ofEnergy (DOE),2010.
    [97] SCHMIDT EW. Hydrazine and its Derivatives: Preparation, Properties, Applications.2nded. New York: John Wiley&Sons;1984
    [98] YAMADA K, ASAZAWA K, YASUDA K, IOROI T, TANAKA H, MIYAZAKI Y,KOBAYASHI T. Investigation of PEM Type Direct Hydrazine Full Cell [J]. Journal ofPower Sources,2003,115:236-242.
    [99] CHO SJ, LEE J, LEE YS, KIM DP. Characterization of Iridium Catalyst forDecomposition of Hydrazine Hydrate for Hydrogen Generation [J]. Catalysis Letters,2006,109:181-186.
    [100] SANTOS J B O, VALENCA G P, RODRIGUES J A J. Catalytic decomposition ofhydrazine on tungsten carbide: the influence of adsorbed oxygen [J]. Journal of Catalysis,2002,210:1-6.
    [101] CHEN X, ZHANG T, ZHENG M, WU Z, WU W, LI C. The reaction route and activesite of catalytic decomposition of hydrazine over molybdenum nitride catalyst [J]. Journal ofCatalysis,2004,224:473-478.
    [102] ZHAO B, SONG J, RAN R, SHAO Z. Catalytic decomposition of hydrous hydrazineto hydrogen over oxide catalysts at ambient conditions for PEMFCs [J]. International Journalof Hydrogen Energy,2012,37:1133-1139.
    [103] LAO SJ, QIN HY, YE LQ, LIU BH, LI ZP, A development of directhydrazine/hydrogen peroxide fuel cell [J]. Journal of Power Sources,2010,195:4135-4138.
    [104] HUGLE T, KUHNEL M F, LENTZ D. Hydrazine Borane: A Promising HydrogenStorage Material [J]. Journal of the American Chemical Society,2009,131:7444-7446
    [105] JANG YB, KIM TH, SUN MH, LEE J, CHO SJ. Preparation of iridium catalyst and itscatalytic activity over hydrazine hydrate decomposition for hydrogen production and storage[J]. Catalysis Today,2009,146:196-201.
    [106] GU H, RAN R, ZHOU W, SHAO Z, JIN W, XU N. Solid-oxide fuel cell operated onin situ catalytic decomposition products of liquid hydrazine [J]. Journal of Power Sources,2008,177:323-329.
    [107] HE T, WU H, WU G, WANG J, ZHOU W, XIONG Z, CHEN J, ZHANG T, CHEN P.Borohydride hydrazinates: high hydrogen content materials for hydrogen storage [J]. Energy&Environmental Science,2012,5:5686-5689.
    [108] PRASAD J, GLAND JL. Hydrazine decomposition on a clean rhodium surface: Atemperature programmed reaction spectroscopy study [J]. Langmuir,1991,7:722-726.
    [109] HAZARI N. Homogeneous iron complexes for the conversion of dinitrogen intoammonia and hydrazine [J]. Chemical Society Reviews,2010,39:4044-4056.
    [110] MURAKAMI T, NISHIKIORI T, NOHIRA T, ITO Y. Electrolytic synthesis ofammonia in molten salts under atmospheric pressure [J]. Journal of the American ChemicalSociety,2003,125:334-335.
    [111] CHIN JM, SCHROCK RR, MULLER P. Synthesis of diamidopyrrolyl molybdenumcomplexes relevant to reduction of dinitrogen to ammonia [J]. Inorganic Chemistry,2010,49:7904-7916.
    [112] SRIDHAR S, SRINIVASAN T, VIRENDRA U, KHAN AA. Pervaporation of ketazineaqueous layer in production of hydrazine hydrate by peroxide process [J]. ChemicalEngineering Journal,2003,94:51-56.
    [113] ZHENG M, CHENG R, CHEN X, LI N, LI L, WANG X, ZHANG T. A NovelApproach for CO-free H2Production via Catalytic Decomposition of Hydrazine [J].International Journal of Hydrogen Energy,2005,30:1081-1089.
    [114] SINGH SK, ZHANG XB, XU Q. Room-temperature hydrogen generation fromhydrous hydrazine for chemical hydrogen storage [J]. Journal of the American ChemicalSociety,2009,131:9894-9895.
    [115] SINGH SK, XU Q. Complete conversion of hydrous hydrazine to hydrogen at roomtemperature for chemical hydrogen storage [J]. Journal of the American Chemical Society,2009,131:18032-18033.
    [116] WANG J, ZHANG XB, WANG ZL, WANG LM, ZHANG Y. Rhodium-Nickelnanoparticles grown on graphene as highly efficient catalyst for complete decomposition ofhydrous hydrazine at room temperature for chemical hydrogen storage [J]. Energy&Environmental Science,2012,5:6885-6888.
    [123] SINGH A K, YADAV M, ARANISHI K, XU Q. Temperature-Induced SelectivityEnhancement in Hydrogen Generation from Rh-Ni Nanoparticle-Catalyzed Decompositionof Hydrous Hydrazine [J]. International Journal of Hydrogen Energy,2012,37:18915-18919.
    [117] SINGH SK, LU ZH, XU Q. Temperature-induced enhancement of catalyticperformance in selective hydrogen generation from hydrous hydrazine with Ni-basednanocatalysts for chemical hydrogen storage [J]. European Journal Inorganic Chemistry,2011,2232-2237.
    [118] SINGH SK, XU Q. Bimetallic Ni-Pt nanocatalysts for selective decomposition ofhydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogenstorage [J]. Inorganic Chemistry,2010,49:6148-6152.
    [119] SINGH SK, XU Q. Bimetallic Nickel-Iridium nanocatalysts for hydrogen generationby decomposition of hydrous hydrazine [J]. Chemical Communications,2010,46:6545-6547.
    [120] SINGH SK, IIZUKA Y, XU Q. Nickel-palladium nanoparticle catalyzed hydrogengeneration from hydrous hydrazine for chemical hydrogen storage [J]. International Journalof Hydrogen Energy,2011,36:11794-11801.
    [121] SINGH SK, SINGH AK, ARANISHI K, XU Q. Noble-metal-free bimetallicnanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemicalhydrogen storage [J]. Journal of the American Chemical Society,2011,133:19638-19641.
    [122] HE L, HUANG YQ, WANG AQ, WANG XD, CHEN XW, DELGADO JJ, ZHANG T.A noble-metal-free catalyst derived from Ni-Al hydrotalcite for hydrogen generation fromN2H4·H2O decomposition [J]. Angewandte Chemie,2012,51:1-5.
    [124] HE L, HUANG YQ, WANG AQ, LIU Y, LIU XY, CHEN XW, DELGADO JJ, WANGXD, ZHANG T. Surface modification of Ni/Al2O3with Pt: Highly efficient catalysts for H2generation via selective decomposition of hydrous hydrazine [J]. Journal of Catalysis,2013,298:1-9.
    [125] ZHANG JJ, KANG Q, YANG ZQ, DAI HB, ZHUANG DW, WANG P. Acost-effective NiMoB–La(OH)3catalyst for hydrogen generation from decomposition ofalkaline hydrous hydrazine solution [J]. Journal of Materials Chemistry A,2013,1:11623-11628.
    [126] WANG HL, YAN JM, WANG ZL, O SI, JIANG Q. Highly Efficient HydrogenGeneration from Hydrous Hydrazine over Amorphous Ni0.9Pt0.1/Ce2O3Nanocatalyst atRoom Temperature [J]. Journal of Materials Chemistry A,2013,6:162-176.
    [127] LIU Y, YANG Y, ZHANG Y, WANG Y, ZHANG X, JIANG Y, WEI M, LIU Y, LIUX, YANG J. A facile route to synthesis of CoPt magnetic nanoparticles [J]. MaterialsResearch Bulletin,2013,48:721-724.
    [128] ZHENGFEIA G, GANGA C, WEIB H, QINGYANA H, ZHIFENGA H. Effect of Ndon structure and magnetic properties of CoPt alloys [J]. Materials Chemistry and Physics,2010,124:1089-1093.
    [129] KORSVIK C, PATIL S, SEAL S, WILLIAM T. Superoxide dismutase mimeticproperties exhibited by vacancy engineered ceria nanoparticles [J]. ChemicalCommunications,2007,1056-1058.
    [130] PATSALAS P, LOGOTHETIDIS S. Structure-dependent electronic properties ofnanocrystalline cerium oxide films [J]. Physical Review B,2003,68:035104-1–13.
    [131] LIU X, ZHOU K, WANG L, WANG B, LI Y. Oxygen vacancy clusters promotingreducibility and activity of ceria nanorods [J]. Journal of the American Chemical Society,2009,131:3140-3141.
    [132] DUTTA P, PAL S, SEEHRA MS. Concentration of Ce3+and oxygen vacancies incerium oxide nanoparticles [J]. Chemistry of Materials,2006,18:5144-5146.
    [133] BARON M, BONDARCHUK O, STACCHIOLA D, FREUND HJ. Interaction of goldwith cerium oxide supports: CeO2(111) thin films vs CeOxnanoparticles [J]. Journal ofMaterials Chemistry C,2009,113:6042-6049.
    [134] RENUKA NK. Structural characteristics of quantum-size ceria nano particlessynthesized via simple ammonia precipitation [J]. Journal of Alloys and Compounds,2012,513:230-235.
    [135] BECHE E, CHARVIN P, PERARMAU D, ABANADES S, FLAMANT G. Ce3dXPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)[J]. Surface andinterface Analysis,2008,40:264-267.
    [136] LIN J, CHEN J, SU WP. Rhodium-Cobalt Bimetallic Nanoparticles: A Catalyst forSelective Hydrogenation of Unsaturated Carbon-Carbon Bonds with Hydrous Hydrazine [J].Advanced Synthesis Catalysis,2013,355:41-46.
    [137] LIM DH, LEE WD, CHOI DH, LEE HI. Effect of ceria nanoparticles into the Pt/Ccatalyst as cathode material on the electrocatalytic activity and durability forlow-temperature fuel cell [J]. Applied Catalysis B,2010,94:85-96.
    [138] MASUDA T, FUKUMITSU H, FUGANE K, TOGASAKI H, MATSUMMURA D,TAMURA K, UOSAKI K. Role of cerium oxide in the enhancement of activity for theoxygen reduction reaction at Pt-CeOxnanocomposite electrocatalyst–an in situelectrochemical X-ray absorption fine structure study [J]. Journal of Materials Chemistry C,2012,116:10098-10102.
    [139] OU DR, MORI T, FUGANE K, TOGASAKI H, YE F, DRENNAN J. Stability ofCeria Supports in Pt-CeOx/C Catalysts [J]. Journal of Materials Chemistry C,2011,115:19239-19245.
    [140] TONG DG, CHU W, WU P, GU GF, ZHANG L. Mesoporous multiwalled carbonnanotubes as supports for monodispersed iron-boron catalysts: improved hydrogengeneration from hydrous hydrazine decomposition [J]. Journal of Materials Chemistry A,2013,1:358-366.
    [141] ARANISHI K, SINGH AK, XU Q. Dendrimer-Encapsulated Bimetallic Pt-NiNanoparticles as Highly Efficient Catalysts for Hydrogen Generation from ChemicalHydrogen Storage Materials [J]. ChemCatChem,2013,5:2248-2252.
    [142] CAO CY, CHEN CQ, LI W, SONG WG, CAI W. Nanoporous Nickel Spheres asHighly Active Catalyst for Hydrogen Generation from Ammonia Borane [J]. ChemSusChem,2010,3:1241-1244.
    [143] CUI YH, ZHANG HD, XU HY, LI WZ. The CO2reforming of CH4overNi/La2O3/a-Al2O3catalysts: The effect of La2O3contents on the kinetic performance [J].Applied Catalysis A: General,2007,331:60-69.
    [144] FAROLDI BM, LOMBARDO EA, CORNAGLIA LM. Surface properties andcatalytic behavior of Ru supported on composite La2O3-SiO2oxides [J]. Applied Catalysis AGeneral,2009,369:15-26.
    [145] LIU HC, WANG H, SHEN JH, SUN Y, LIU ZM. Promotion effect of cerium andlanthanum oxides on Ni/SBA-15catalyst for ammonia decomposition [J]. Catalysis Today,2008,131:444-449.
    [146] WANG X, LIU DP, SONG SY, ZHANG HJ. Pt@CeO2Multicore@ShellSelf-Assembled Nanospheres: Clean Synthesis, Structure Optimization, and CatalyticApplications [J]. Journal of the American Chemical Society,2013,135:15864-15872.
    [147] SIEGMANN HC, SCHLAPBACH L, BRUNDLE CR. Self-Restoring of the ActiveSurface in the Hydrogen Sponge LaNi5[J]. Physical Review Letters,1978,40:972-975.
    [148] SUNDINGA MF, HADDIA K, DIPLASB S, LOVIKA OM. XPS characterisation ofin situ treated lanthanum oxide and hydroxide using tailored charge referencing and peakfitting procedures [J]. Journal of Electron Spectroscopy and Related Phenomena,2011,184:399-409.
    [149] RAMANA CV, VEMURI RS, KAICHEV VV, ATUCHIN VV. X-ray PhotoelectronSpectroscopy Depth Profiling of La2O3/Si Thin Films Deposited by Reactive MagnetronSputtering [J]. ACS Appl Mater Interfaces,2011,3:4370-4373.
    [150] MICKEVICUS S, GREBINSKIJ S, BONDARENKA V, DRUBE W. Investigation ofepitaxial LaNiO3xthin films by high-energy XPS [J]. Journal of Alloys and Compounds,2006,423:107-111.
    [151] BOUKHA Z, FITIAN L, LOPEZ-HARO M, MORA M, RUIZ JR, BERNAL S.Influence of the calcination temperature on the nano-structural properties, surface basicity,and catalytic behavior of alumina-supported lanthana samples [J]. Jounal of Catalysis,2010,272:121-130.
    [152] KUS S, OTREMBA M, TANIEWSKI M. The catalytic performance in oxidativecoupling of methane and the surface basicity of La2O3, Nd2O3, ZrO2and Nb2O5[J]. Fuel,2003,82:1331-1338.