一种能同时检测金黄色葡萄球菌A型和B型肠毒素单克隆抗体的制备及特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金黄色葡萄球菌(Staphylococcus aureus)是一种重要的人畜共患致病菌,广泛存在于自然界中,其产生的肠毒素(staphylococcal enterotoxins, SE)可通过污染食物而导致食物中毒。目前,随着人们对食品安全重视度的加深,国际上已将肠毒素的检测列入食品检验法规,因此建立灵敏、快速的肠毒素检测方法,是食品安全检测的一项重要研究内容。
     肠毒素的检测方法主要有动物学试验、免疫学方法、分子生物学方法、生物传感器技术和超抗原技术。在这些方法中,免疫学方法因其具有简便、快速、灵敏、特异性高等特点,是检测肠毒素广泛采用的一项技术。单克隆抗体(monoclonal anibody, McAb)纯度高,特异性强,一经研制出,便可大批量生产,将其用于肠毒素的免疫学检测将大大提高检测的特异性和灵敏度。商品化肠毒素ELISA检测试剂盒中采用的单克隆抗体主要是通过细胞融合技术,对实验动物单独免疫一种抗原所产生的单抗,一次实验只能检测一种肠毒素。已知肠毒素种类多达20种,葡萄球菌食物中毒往往也不是由单一肠毒素引起的,在实际检测过程中,有时不需要对肠毒素血清型作出鉴定,只要判断有没有肠毒素存在即可,因此如果一次反应能同时检测多种肠毒素将大大减少葡萄球菌食物中毒分析的工作量。为此,采用混合免疫法,筛选制备能同时针对多种肠毒素抗原的共同决定簇的单克隆抗体,有可能实现一次反应检测多种肠毒素。
     本课题以引起葡萄球菌食物中毒比较常见的金黄色葡萄球菌A型和B型肠毒素(staphylococcal enterotoxin A, SEA和staphylococcal enterotoxin B, SEB)作为免疫原,采用混合免疫方法,运用杂交瘤技术制备得到同时针对SEA和SEB的单克隆抗体;同时以SEA单独免疫BALB/c小鼠为对照,经同样的方法,制备得到相应的抗SEA单克隆抗体。对两种免疫方法制备的单克隆抗体的性质进行了一系列的分析和比较,并采用间接竞争ELISA对混合免疫制备的单抗在金黄色葡萄球菌肠毒素污染的乳制品中肠毒素的检测进行了初步的应用评价。主要研究结果如下:
     1抗SEA-SEB多克隆抗体的制备及ELISA分析
     采用SEA和SEB两种抗原等量混合免疫BALB/c小鼠(编号1~3),免疫剂量为20μg/次/只(SEA和SEB各10μg),在每次免疫后的第7d进行采血,得到抗血清。间接ELISA实验分析表明,免疫小鼠从第21d开始有明显抗体产生,第49d抗体的效价达到较高水平,其中2号小鼠第四次免疫后的抗血清针对SEA的效价为4.5×104,针对SEB的效价为5.0×104;抗血清对SEA的灵敏度为81.3 ng/mL,对SEB的灵敏度为62.4 ng/mL。抗血清对SEA和SEB都有很强的特异性,与金黄色葡萄球菌C1型肠毒素(SEC1)、牛血清白蛋白(BSA)和卵清白蛋白(OVA)均无交叉反应。
     同时,采用SEA单独免疫BALB/c小鼠(编号4~6),免疫剂量为10μg/次/只,免疫小鼠从第21d开始有明显抗体产生,第49d抗体的效价达到较高水平,其中4号小鼠第四次免疫后的抗血清针对SEA的效价为5.0×104;抗血清对SEA的灵敏度为73.9 ng/mL。抗血清对SEA有很强的特异性,与SEB、SEC1、BSA和OVA均无交叉反应。
     2抗SEA-SEB单克隆抗体的制备及性质分析
     采用SEA和SEB混合免疫的2号小鼠,取其脾细胞与SP2/0骨髓瘤细胞进行融合,经间接ELISA筛选和有限稀释法亚克隆,获得1株能同时分泌抗SEA和SEB的杂交瘤细胞3F2。采用SEA单独免疫的4号小鼠,经同样的方法,获得1株分泌抗SEA的杂交瘤细胞3C12。
     将2株杂交瘤细胞分别注射于BALB/c小鼠体内生产腹水抗体,用间接ELISA方法对收集到的抗体的效价、灵敏度、特异性、亲和力、杂交瘤细胞的染色体数目和分泌抗体的稳定性等性质进行了一系列的分析。结果表明,杂交瘤细胞3F2所产腹水抗体针对SEA的效价为4×105,灵敏度为133.2 ng/mL,亲和力常数为8.18×107L/mol;针对SEB的效价为1×105,灵敏度为82.5 ng/mL,亲和力常数为5.32×107L/mol,与SEC1、BSA、OVA等均无交叉反应。杂交瘤细胞3C12所产腹水抗体针对SEA的效价为2×105,灵敏度为115.9 ng/mL,亲和力常数为6.76×107 L/mol,与SEC1、BSA、OVA等均无交叉反应,与SEB仅有很微弱的交叉反应。
     通过对两株杂交瘤细胞的染色体数目分析表明,杂交瘤细胞3F2和3C12的染色体数都在100条左右,近似等于两亲本细胞染色体数目之和,说明得到的杂交瘤细胞是亲本细胞的融合。2株杂交瘤细胞经连续传代6周和三个月的反复冻融后,分泌抗体的能力及效价水平变化不大,表明这两株杂交瘤细胞株比较稳定。
     3抗SEA-SEB单克隆抗体在乳制品检测中的初步应用
     选取易受肠毒素污染的乳制品(牛奶和酸奶)为研究对象,对混合免疫制备的单抗3F2在肠毒素检测中的应用效果进行了评价。(1)将单一肠毒素SEA或SEB添加到不含肠毒素的牛奶样品中,分别用单抗3F2、单抗3C12作为检测抗体,采用间接竞争ELISA法对样品中肠毒素的回收率进行了测定。3F2对SEA和SEB都有较好的回收率,对SEA的平均回收率在88.3%~103.5%之间,对SEB的平均回收率在86.2%~101.6%之间;3C12对SEA的平均回收率在86.7%~98.1%之间。(2)将三种不同型别的肠毒素(SEA、SEB和SEC1)进行组合,分别添加到不含肠毒素的牛奶样品中,用混合免疫制备的单抗3F2对牛奶样品中的SEA和SEB进行检测,发现3F2不受SEC1的干扰,能够准确的检测到SEA和SEB,并且对SEA和SEB的平均回收率都在70%~120%之间。(3)将产SEA和SEB的金黄色葡萄球菌菌株,以单一接种和混合接种的两种方式,接种于不含肠毒素的牛奶和酸奶,放置到37℃条件下培养36~48 h后,用混合免疫制备的单抗3F2检测其产生的肠毒素,发现人工污染样品中均能检测到SEA和SEB。
Staphylococcus aureus is a major human and zoonotic pathogen widely spreading in the nature. It can produce staphylococcal enterotoxins (SEs) and induce food poisoning. Detection of SEs is listed in food safety inspection regulations with the improving of people's awareness about food safety. It is necessary to establish a rapid and sensitive method for detection of SEs to insure food safety.
     Methods for detection of SEs have been mainly based on zoology test, immunological methods, polymerase chain reaction, biosensors, and technique of superantigens. Among these methods, immunological methods are convenient, rapid, sensitive and specific. It is a widely-used technology for detection of SEs. Monoclonal antibody (McAb) has the benefit of high purity and specificity, and can be put into full scale production. If it is used for immunological detection of SEs, it can improve the level of specificity and sensitivity in detection. Monoclonal anibodies used in commercial ELISA kits for detecting SEs are mainly pepared by hybridomas technique and immunized with single antigen, and it can only detect its related toxin. At present, serotypes of enterotoxin are above 20 types, and staphylococcal food poisoning is not usually only caused by a single toxin. In actual testing process, sometimes there is no need to identify serotypes of enterotoxin, it is important to determine whether enterotoxins exist. So it will greatly reduce detecting workload when a variety of toxins can be simultaneously determined in one reaction. Therefore, if monoclonal antibody against common antigen determinants shared by multiple SEs can be prepared by the method of simultaneous immunization, it is possible to detect a variety of enterotoxins in one reaction.
     In this paper, through hybridomas technique, one hybridomas cell, designated 3F2, was obtained when Staphylococcal enterotoxin A (SEA) and B (SEB) were used as immunogen by the method of simultaneous immunization. Hybridomas cell 3F2 can produce antibody against both SEA and SEB. At the same time, the other hybridoma cell was obtained following the same procedure with mouse immunized by SEA, which was designated 3C12. Two monoclonal antibodies were obtained by injection 3F2 and 3C12 into BALB/c mice, respectively. Characteristics of two antibodies were determined by ELISA method. Potential application for 3F2 to detection SEs in dairy products was evaluated by indirect competitive ELISA. Results were as followed.
     1 Preparation and analysis of polyclonal antibody against SEA-SEB
     BALB/c mice (No.1~3) were simultaneously immunized with equal amount of SEA and SEB, immunizing dose of each mouse was 20μg every time (SEA and SEB were 10μg, respectively). After a week' immunization, mice were bled and antisera were obtained. Characteristics of antisera were analyzed by an indirect ELISA. There were obvious antibodies produced at 21st day, and mice had the highest titer of antibodies at 49th day. After the fourth immunization, the titer of antisera from mouse No.2 was 4.5×104 for SEA, and 5.0×104 for SEB; sensitivity of antisera was 81.3 ng/mL for SEA and 62.4 ng/mL for SEB. Antisera had high specificity against both SEA and SEB. It had no cross reaction with staphylococcal enterotoxin Cl (SEC1), bovine serum albumin (BSA) and ovalbumin (OVA).
     BALB/c mice (No.4~6) immunized with SEA followed the same procedure, and immunizing dose of each mouse was 10μg every time. Characteristics of antisera were analyzed by an indirect ELISA. There were obvious antibodies produced at 21st day, and mice had the highest titer of antibodies at 49th day. After the fourth immunization, the titer of antisera from mouse No.4 was 5.0×104 for SEA; sensitivity of antisera was 73.9 ng/mL for SEA. Antisera had high specificity against SEA. It had no cross reaction with SEB, SEC1, BSA and OVA.
     2 Preparation and analysis of monoclonal antibody against SEA-SEB
     McAb was produced by fusing the spleen cells taken from mouse No.2 with SP2/0 myeloma cells after the mouse was immunized by multi-antigen (SEA and SEB). By screened using the method of an indirect ELISA and subcloned by limiting dilution assay, one hybridoma cell was obtaind, designated 3F2. It secreted stable antibodies and reacted with both SEA and SEB. The other hybridoma cell, designated 3C12, was obtained following the same procedure with mouse No.4 immunized by SEA.
     Two monoclonal antibodies were obtained by injection of 3F2 and 3C12 hybridoma cells into BALB/c mice, respectively. To ananlyze and contrast characteristics between two antibodies, the McAb's titer, sensitivities, specificities, affinities, the chromosomal number of hybridoma and stability of antibody were determined by ELISA method, respectively. Results indicated that the titer of ascites from hybridoma 3F2 against SEA was 4×105, sensitivity was 133.2 ng/mL, affinity was 8.18×107 L/mol; the titer of 3F2 against SEB was 1×105, sensitivity was 82.5 ng/mL, affinity was 5.32×107 L/mol. It had no cross reaction with SEC1, BSA and OVA. The titer of ascites from hybridoma 3C12 against SEA was 2×105, sensitivity was 115.9 ng/mL, and affinity was 6.76×107 L/mol. It had no cross reaction with SEC1, BSA and OVA and its cross reaction with SEB was weak.
     Both hybridoma 3F2 and 3C12 had chromosomal number of about 100 after chromosome analysis, and it is similar with the number of mixture of spleen cells and SP2/0 myeloma cells. This indicated that two hybridoma cells obtained were fusion of parent cells. Two hybridoma cells had stable antibody titer when they had passed down serial generations, frozen and thawn in three months, which idicated that they had a good stability.
     3 Initial application of McAb 3F2 against SEA-SEB for SEs detecion in dairy products
     Dairy products easily contaminated with SEs were selected for this study. Effect of detection SEs in food using McAb 3F2 obtained by simultaneous immunization was evaluated. (1) Dairy products uncontaminated with SEs were spiked with SEA or SEB, respectively. McAb 3F2 and 3C12 were used for detection SEs in these samples. Average recoveries of spiked samples were assayed by indirect competitive ELISA. McAb 3F2 had good recoveries for both SEA and SEB, average recoveries of spiked milk were from 88.3% to 103.5% for SEA and from 86.2% to 101.6% for SEB. Average recoveries of spiked milk were from 86.7% to 98.1% for SEA with McAb 3C12. (2) SEA, SEB and SEC1 were mixed with various amounts, spiked into milk samples, and then SEA and SEB were determined using McAb 3F2 by icELISA. It showed that both SEA and SEB could be determined without interfered by SEC1. Average recoveries of spiked milk were from 70% to 120% for both SEA and SEB. (3) Milk and yogurt samples uncontaminated by SEs were inoculated with SEA or SEB secreting strains in manner of single and simultaneous inoculation. After incubated 36~48 hours at 37℃, SEs were detected using McAb 3F2 by icELISA, both SEA and SEB could be detected.
引文
1. 白雪帆,崔运昌.ELISA方法用于McAb亲和常数的测定.免疫学杂志,1992,8:126-128
    2. 鲍行豪,胡海军,陈建立,桑贤辈.金黄色葡萄球菌滤液制剂中肠毒素的检测研究.微生物学杂志,2004,24:56-60
    3. 鲍秀芝,马金华.一起由金黄色葡萄球菌污染牛奶引起的食物中毒.预防医学文献信息,2002,8:572-572
    4. 曹春红.一起金黄色葡萄球菌A型肠毒素污染饮水机引起的中毒.预防医学文献信息,2004,10:86-86
    5. 巢国祥,焦新安,周丽萍,周晓辉,朱炳炎.食源性金黄色葡萄球菌流行特征、产肠毒素特性及耐药性研究.中国卫生检验杂志,2006,16:904-907
    6. 陈彬,黄晓蓉,汤敏英,郑晶,林杰.基因探针法快速检测食品中金黄色葡萄球菌的研究.现代预防医学,2007,34:1017-1018
    7. 陈福生.黄曲霉毒素B1及其产生菌As3.1108离体抗原的免疫分析.[博士学位论文].武汉:华中农业大学图书馆,1998
    8. 董志伟,王琰.抗体工程.北京:北京医科大学出版社,2002
    9. 葛书见,马双建,艾豫蜀.一起金黄色葡萄球菌肠毒素引起的食物中毒.新乡医学院学报,2000,17:337
    10. 郭炜.抗桔霉素单克隆抗体的制备及在红曲中的应用.[硕士学位论文].武汉:华中农业大学图书馆,2008
    11. 侯敏,徐庆.一起由金黄色葡萄球菌引起的牛奶中毒事件.中国卫生检验杂志,2002,12:748-749
    12. 贾万钧.抗原抗体反应动力学.北京:军事医学科学出版社,2004
    13. 黄冰,邓志爱,谭铭雄,廖育煌.食品中金黄色葡萄球菌污染状况、产肠毒素特性及耐药性研究.中国卫生检验杂志,2009,19:1380-1382
    14. 焦桂莉.新食品观.哈尔滨:黑龙江科学技术出版社,2008
    15. 李慧.金黄色葡萄球菌A型肠毒素单克隆抗体的制备及ELISA检测方法的建立.[硕士学位论文].武汉:华中农业大学图书馆,2007
    16. 李晓梅,耿艺介.金黄色葡萄球菌及其肠毒素B的生物学特性.中国热带医学,2007,7:617-619
    17. 李毅.金黄色葡萄球菌及其肠毒素研究进展.中国卫生检验杂志,2004,14:392-395
    18. 历风元,吴鄂生,胡成平,杨红忠,张卿,欧阳取长.金黄色葡萄球菌DNA体内抗肿瘤研究.中国医师杂志,2004,6:754-756
    19. 梁毅珊.金黄色葡萄球菌肠毒素及其检测方法的研究进展.中国热带医学,2008,8:1658-1659
    20. 梁勇,陈裔.金黄色葡萄球菌的药敏分析及防治策略.海峡药学,2003,15:64-65
    21. 凌巍.金黄色葡萄球菌的分布及其肠毒素基因的研究.[硕士学位论文].保定:河北农业大学,2007
    22. 刘莉.混合抗原免疫结合蛋白质芯片通量化制备单克隆抗体体系的初步建立.[硕士学位论文].北京:中国人民解放军军事医学科学院,2007
    23. 龙军.金黄色葡萄球菌B型肠毒素单克隆抗体的制备及初步应用研究.[硕士学位论文].广州:第一军医大学,2004
    24. 龙军,陈清,俞守义.金黄色葡萄球菌肠毒素单克隆抗体制备与应用.中国公共卫生,2005,21:25-26
    25. 卢汉兴,马武,陈兴乐,车光,曾超鹏,姚群燕,刘永良,李显带,冯振中,谢景高,黄德文,韦玉仙.一起由金黄色葡萄球菌A、B型肠毒素所致食物中毒的实验结果分析.广西医学,1988,10:337-339
    26. 任天红,刘景武,付素兰.金黄色葡萄球菌肠毒素检测方法的应用及进展.河北医药,2008,30:1224-1226
    27. 司徒镇强,吴军正.细胞培养.西安:世界图书出版社,2004
    28. 王滨,郑向梅,高景枝,胡庆,崔龙,李玉芳,陈红霞.一起金黄色葡萄球菌毒素引起的食物中毒.中国卫生检验杂志,2007,17:2361-2361
    29. 王伯法.病理学技术.北京:人民卫生出版社,2000
    30. 王荣芳,董亮,辛才.一起金黄色葡萄球菌引起的食物中毒调查.预防医学论坛,2005,11:82-82
    31.王小红,谢笔钓,史贤明.食品中金黄色葡萄球菌肠毒素检测方法的研究进展.山西食品工业,2003,3:39-42
    32.王小红,谢笔钧,史贤明,孙科,李伟.金黄色葡萄球菌B型肠毒素的培养产毒与柱层析纯化.食品科学,2005,26:88-91
    33.王小红,徐康,王莹,王儒恺,史贤明,谢笔钧.金黄色葡萄球菌B型肠毒素间接竞争ELISA检测方法的建立.食品科学,2006,27:227-231
    34.王延华,李宫成.抗体理论与技术.北京:科学出版社,2005
    35.熊燕,刁平,龙一兵,陈智,江元山.四起金黄色葡萄球菌引起的食物中毒及毒素分析.公共卫生与预防医学,2005,16:21-22
    36.徐君英,丁丁,孙红颖,陈枢青.金黄色葡萄球菌肠毒素Ⅰ单克隆抗体的制备和鉴定.浙江大学学报:医学版,2009,38:265-270
    37.徐伟文,徐洲稳,郝文波,姚小艳,王穗海,李明.联合免疫在高通量单克隆抗体制备中的初步评价与分析.热带医学杂志,2007,7:1165-1166
    38.薛良辉,王晓虹,张红,张传宝.山东省1984-2002年由金黄色葡萄球菌引起的食物中毒资料分析.预防医学文献信息,2003,9:486-486
    39.杨利国.酶免疫测定技术.南京:南京大学出版社,1998
    40.杨庆文,郑文康,国译丹,沈其萍,朱美琼.云南省2007年由金黄色葡萄球菌肠毒素A及C引起群体性食物中毒的原因调查.中国卫生检验杂志,2008,18:2135-2135
    41.姚文兵.生物技术制药概论.北京:中国医药科技出版社,2003
    42.姚咏明,盛志勇.金黄色葡萄球菌肠毒素与多器官功能障碍综合征.中国危重病急救医学,2001,13:517-519
    43.张俊伟,鲍行豪.金黄色葡萄球菌肠毒素检测方法研究进展.浙江预防医学,2007,19:63-65
    44.章丹阳,徐景野,沈玄艺,于梅.一起产A型肠毒素金黄色葡萄球菌引起食物中毒的分析.中国卫生检验杂志,2005,15:1514-1515
    45.章谷生,容秉培.单克隆抗体在医学上的应用.上海:上海科技出版社,1987
    46.章乐怡,李毅,马雪莲.食物中毒及食品中金黄色葡萄球菌的肠毒素及基因的研究.中国卫生检验杂志,2009,19:2851-2853
    47. 赵永萍,王春玲.金黄色葡萄球菌引起食物中毒的调查与分析.地方病通报,2006,21:123-124
    48. 甄永苏,邵荣光.抗体工程药物.北京:化学出版社,2002
    49. 郑大勇,罗荣城,韩焕兴.非竞争性ELISA法测定人源抗HBaAg Fab功能性亲和常数.解放军医学杂志,2004,29:110-112
    50. 周有详.抗黄曲霉毒素B1抗独特性抗体的构建历程、特性及机理研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    51. 周正任.医学微生物学.北京:人民卫生出版社,2004
    52. 朱俊友.金黄色葡萄球菌B型肠毒素的分离纯化及其单克隆抗体的制备.[硕士学位论文].成都:西华大学,2007
    53. 周珍辉.动物细胞培养技术.北京:中国环境科学出版社,2006
    54. Adesiyun A A, Webb L A, Romain H T. Prevalence and characteristics of Staphylococcus aureus strains isolated from bulk and composite milk and cattle handlers. J Food Protect,1998,61:629-632
    55. Balaban N, Rasooly A. Staphylococcal enterotoxins. Int J Food Microbiol,2000,61: 1-10
    56. Bergdoll M S, Richard K R. Staphylococcus. Detection of staphylococcal enterotoxins. Encyc Food Microbiol. Oxford:Elsevier,1999
    57. Betley M J, Mekalanos J J. Nucleotide sequence of the type A staphylococcal enterotoxin gene. J Bacteriol,1988,170:34-41
    58. Boerema J A, Clemens R, Brightwell G. Evaluation of molecular methods to determine enterotoxigenic status and molecular genotype of bovine, ovine, human and food isolates of staphylococcus aureus. Int J Food Microbiol,2006,107: 192-201
    59. Bukovic J A, Johnson H M. Staphylococcal enterotoxin C:solid-phase radioimmunoassay. J Appl Microbiol,1975,30:700-701
    60. Couch J L, Soltis M T, Betley M J. Cloning and nucleotide sequence of the type E staphylococcal enterotoxin gene. J Bacteriol,1988,170:2954-2960
    61. Edwin C, Tatini S R, Strobel R S, Maheswaran S K. Production of monoclonal antibodies to staphylococcal enterotoxin A. Appl Environ Microbiol,1984,48: 1171-1175
    62. Evenson M L, Hinds M W, Bernstein R S, Bergdoll M S. Estimation of human dose of staphylococcal enterotoxin A from a large outbreak of staphylococcal food poisoning involving chocolate milk. Int J Food Microbiol,1988,7:311-316
    63. Fantl V E, Wang D Y. Simultaneous production of monoclonal antibodies to dehydroepiandrosterone, oestradiol, progesterone and testosterone. J Endocrinol, 1984,100:367-376
    64. Gao Z, Chao F, Chao Z, Li G. Detection of staphylococcal enterotoxin C2 employing a piezoelectric crystal immunosensor. Sensor Actuat B-Chem,2000,66:193-196
    65. Goyache J, Orden J A, Blanco J L, Hernandez J, Domenech A, Suarez G, Gomez-Lucia E. Murine monoclonal antibodies against staphylococcal enterotoxin B: production and characterization. FEMS Microbiol Lett,1992,4:247-254
    66. Hawryluk T, Hirshfield I. A superantigen bioassay to detect staphylococcal enterotoxin A. J Food Protect,2002,65:1183-1187
    67. Homola J, Dostalek J, Chen S, Rasooly A, Jiang S, Yee S S. Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int J Food Microbiol,2002,75:61-69
    68. Johnson W M, Tyler S D, Ewan E P, Ashton F E, Pollard D R, Rozee K R. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J Clin Microbiol,1991,29: 426-430
    69. Khan A S, Cao C J, Thompson R G, Valdes J J. A simple and rapid fluorescence-based immunoassay for the detection of staphylococcal enterotoxin B. Mol Cell Probe,2003,17:125-126
    70. King K D, Anderson G P, Bullock K E, Regina M J, Saaski E W, Ligler F S. Detecting staphylococcal enterotoxin B using an automated fiber optic biosensor. Biosens Bioelectron,1999,14:163-170
    71. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature,1975,256:495-497
    72. Lam M T, Wan Q H, Boulet C A, Le X C. Competitive immunoassay for staphylococcal enterotoxin A using capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A,1999,853:545-553
    73. Ler S G, Lee F K, Gopalakrishnakone P. Trends in detection of warfare agents. Detection methods for ricin, staphylococcal enterotoxin B and T-2 toxin. J Chromatogr A,2006,1133:1-12
    74. Martin M C, Fueyo J M, Gonzalez-Hevia M A, Mendoza M C. Genetic procedures for identification of enterotoxigenic strains of Staphylococcus aureus from three food poisoning outbreaks. Int J Food Microbiol,2004,94:279-286
    75. Mehta M N, Joseph L J, Desai K B. Simultaneous production of antibodies against T3 and T4 in a single animal; their characteristics and usefulness in radioimmunoassay. Int J Radiat Appl Iustrum B,1989,16:599-601
    76. Meyer R F, Miller L, Bennett R W, MacMillan J D. Development of a monoclonal antibody capable of interacting with five serotypes of Staphylococcus aureus enterotoxin. Appl Environ Microbiol,1984,47:283-287
    77. Omoe K, Ishikawa M, Shimoda Y, Hu D L, Ueda S, Shinagawa K. Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates Harboring seg, seh, or sei genes.J Clin Microbiol,2002,40:857-862
    78. Omoe K, Imanishi K, Hu D L, Kato H, Takahashi-Omoe H, Nakane A, Uchiyama T, Shinagawa K. Biological properties of staphylococcal enterotoxin-like toxin type R. Infect Immun,2004,3664-3667
    79. Orden J A, Goyache J, Hernandez J, Domenech A, Suarez G, Gomez-Lucia E. Applicability of an immunoblot technique combined with a semiautomated electrophoresis system for detection of staphylococcal enterotoxins in food extracts. Appl Environ Microbiol,1992,58:4083-4085
    80. Park C E, Akhtar M, Rayman M K. Nonspecific reactions of a commercial enzyme-linked immunosorbent assay kit (TECRA) for detection of staphylococcal enterotoxins in foods. Appl Environ Microbiol,1992,58:2509-2512
    81. Pichoud C, Berby F, Stuyver L, Petit M A, Trepo C, Zoulim F. Persistence of viral replication after anti-HBe seroconversion during antiviral therapy for chronic hepatitis B. J Hepatol,2000,32:307-316
    82. Poli M A, Rivera V R, Neal D. Sensitive and specific colorimetric ELISAs for Staphylococcus aureus enterotoxins A and B in urine and buffer. Toxicon,2002,40: 1723-1726
    83. Rasooly A, Rasooly R S. Detection and analysis of Staphylococcal enterotoxin A in food by Western immunoblotting. Int J Food Microbiol,1998,41:205-212
    84. Rasooly L, Rose N R, Shah D B, Rasooly A. In vitro assay of Staphylococcus aureus enterotoxin A activity in food. Appl Environ Microbiol,1997,63:2361-2365
    85. Sharma N K, Rees C E, Dodd C E. Development of a single-reaction multiplex PCR toxin typing assay for Staphylococcus aureus strains. Appl Environ Microbiol,2000, 66:1347-1353
    86. Shinagawa K, Kanazawa T, Matsusaka N, Sugii S, Nagata K. Murine monoclonal antibodies reactive with staphylococcal enterotoxins A, B, C2, D, and E. FEMS Microbiol Lett,1991,80:35-39
    87. Singh B R, Evenson M L, Bergdoll M S. Structural analysis of staphylococcal enterotoxins B and C1 using circular dichroism and fluorescence spectroscopy. Biochemistry,1988,27:8735-8741
    88. Singh B R, Betley M J. Comparative structural analysis of staphylococcal enterotoxins A and E.J Biol Chem,1989,264:4404-4411
    89. Torres B A, Kominsky S, Perrin G Q, Hobeika A C, Johnson H M. Superantigens: the good, the bad, and the ugly. Exp Biol Med (Maywood),2001,226:164-176
    90. Van den Bussche R A, Lyon J D, Bohach G A. Molecular evolution of the staphylococcal and streptococcal pyrogenic toxin gene family. Mol Phylogenet Evol, 1993,2:281-292
    91. Wieneke A A, Roberts D, Gilbert R J. Staphylococcal food poisoning in the United Kingdom,1969-90. Epidemiol Infect,1993,110:519-523