肠球菌中α-L-鼠李糖苷酶的分离纯化及酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-L-鼠李糖苷酶是一种水解酶,可以水解人们日常饮食中常见的黄酮苷类化合物,广泛分布于自然界的细菌和真菌中。α-L-鼠李糖苷酶在实际工艺中具有很多潜在的应用价值。本论文选用Enterococcus durans作为发酵菌种,对α-L-鼠李糖苷酶的活性条件测定进行了研究,重点讨论了从发酵液中分离提纯得到α-L-鼠李糖苷酶的主要过程,并研究了纯化后的α-L-鼠李糖苷酶的酶学性质。主要实验结果如下:
     (1)确定了α-L-鼠李糖苷酶的活性测定条件:在10 mL的比色管中,加入2 mL pH 5.0的柠檬酸-磷酸氢二钠缓冲溶液后,再加入0.1 mL酶液或粗酶液,置于45℃水浴锅中预热5 min,加入0.2mL已经预热的对硝基苯基-α-L-鼠李糖苷作为底物,反应4 min,反映结束后立即取出并加入2 mL 1 mol/L的Na2CO3终止反应,冷却至室温后,于400 nm波长处测定吸光值。
     (2)通过单因素实验以及正交试验对Enterococcus durans产α-L-鼠李糖苷酶的发酵条件进行了优化,得到基础产酶培养基的最佳配比为:蔗糖1.25%,大豆蛋白胨1.25%,磷酸二氢钾2 mmol/L,牛肉膏0.3%,蛋白胨1%,氯化钠0.5%,硫酸铁3 mmol/L;相应的产酶发酵条件为:培养基的初始pH为7.0,培养温度为34℃,发酵周期为4 d,摇床转速为180 r/min,250 mL三角瓶装液量为70 mL,接种量为3%。
     (3)α-L-鼠李糖苷酶的分离纯化:
     ①实验确定了硫酸铵分级沉淀浓度范围为50~80%;
     ②硫酸铵盐析后的沉淀用20 mL 4℃蒸馏水溶解后,装入透析袋,置于4℃蒸馏水中透析约30h后,浓缩至5mL;
     ③采用DEAE-纤维素52阴离子交换层析纯化α-L-鼠李糖苷酶:采用平衡缓冲液的pH为5.0,KCl梯度线性化洗脱浓度为0.2~0.6 mol/L,在KCl浓度低于0.2 mol/L或高于0.6 mol/L时,基本没有蛋白峰洗出。洗脱流速为0.6 mL/min,15 min收集一管,发现收集的第12管中酶活最高,第一蛋白峰没有目的酶活性,为杂蛋白峰,KCl浓度为0.3~0.5 mol/L时,即可把α-L-鼠李糖苷酶洗脱下来。
     ④采用Sephadex G-100凝胶过滤层析纯化α-L-鼠李糖苷酶:用pH 5.0、浓度0.02 mol/L的醋酸缓冲液洗脱,流速为0.4 mL/min,15 min收集一管,得到三个蛋白峰,第三个为峰为目标峰。
     (4)对盐析后和凝胶层析纯化后的酶蛋白进行SDS-聚丙烯酰胺凝胶电泳,分离胶浓度为10%,浓缩胶浓度为6%。结果表明,盐析并透析后的酶液仍含有很多杂蛋白,经过离子交换层析和凝胶层析后,SDA-PAGE凝胶电泳显示单条带,表明酶蛋白已经得到纯化,并确定酶蛋白的分子量约为90 KDa。
     (5)纯化后的α-L-鼠李糖苷酶经酶学性质研究发现耐酸性较强并具有较强的耐热性;K~+、Mg~(2+)对α-L-鼠李糖苷酶具有明显的激活作用,而Ca~(2+)、Fe~(2+)则对酶具有显著的抑制作用。多数有机溶剂对α-L-鼠李糖苷酶均有一定程度的抑制作用,其中丙酮对α-L-鼠李糖苷酶的抑制作用最强。以对硝基苯基-α‐L‐鼠李糖苷为底物的动力学常数为:Vmax﹦16.13 U/L,Km﹦4.58 mmol/L。
α-L-rhamnosidase is a kind of hydrolase , it can hydrolyze compounds of flavonoids nucleoside which are common compounds in daily diet.α-L-rhamnosidase is widely distributed in bacteria and fungi. It has a lot of potential applications in actual processes. Enterococcus durans was selected as fermentation strain. Enzyme activity, purification and enzymatic property ofα-L-rhamnosidase were studied in this paper.
     The main experimental results are as follows:
     (1) This work identified the determination method ofα-L-rhamnosidase from Enterococcus durans as following: in a 10 mL colorimetric tube accessed 2 mL 0.02 mol/L pH 5.0 citric acid-disodium hydrogen phosphate buffer solution, then add crude enzyme extract in it, keep in water bath at 45℃for 5 min, and then incorporated 0.2 mL the preheated substrate pNPR solution into them, after 14 min get out immediately and add 2 mL 1 mol/L Na2CO3 solution to terminate the reaction, then measure the absorbence at 400 nm when it was cooled to room temperature.
     (2) With a single factor and orthogonal experiment, the fermentation conditions ofα-L-rhamnosidase producing of Enterococcus durans were optimized to be the best basis for enzyme production medium nutrient as : saccharose 1.25%, soybean peptone 1.25%, K2HPO3 2 mmol/L, beef extract 0.3%, peptone 1%, NaCl 0.5%, Fe2(SO4)3 3 mmol/L; the correspondent fermentation conditions of Enterococcus duransα-L-rhamnosidase producing were as following: initial pH 7.0 of nutrient medium, fermentation temperature is 34℃, fermentation time is 4 days, rotation speed is 180 r/min, 250 mL flask with 50 mL liquid volume, inoculation size 3%.
     (3) Purification ofα-L-rhamnosidase
     ①It is determined that the concentration for the ammonium sulphate was between 50% and 80%.
     ②In order to concentrate the precipitation after ammonium sulphate to 5 mL, dissolved it with 4℃distilled water, and then enclosed in dialysis membrane and sink it into 4℃distilled for 30 hours.
     ③Purify theα-L-rhamnosidase by means of anion-exchange chromatography on DEAE-Sephadex 52: The balance buffer at pH 5.0 was used as eluent and the concentration range of sodium chloride was controlled between 0.2 and 0.6 mol/L. Below 0.2 mol/L or above 0.6 mol/L, there was almost no protein eluted out. The velocity eluate is 0.6 ml/min, and collect each tube every 15 min. The NO.12 tube displayed the highest activity among all tubes, and the first protein peak has no activity. When the sodium chloride concentration was between 0.3 mol/L and 0.5 mol/L, theα-L-rhamnosidase can be eluted completely.
     ④The unrefinedα-L-rhamnosidase was applied to the column of gel filtration chrmatography on Sephadex G-100. The velocity was 0.4 mL/min, and collect each tube every 15 min. Three protein peaks were eluted out, the third one is target peak.
     (4) The homogeneity of the enzyme was verified by using SDS-PAGE after salting out and Gel-filtration chromatography. The concentration of separate glue is 10% and the concentrate glue is 4%. The result showed that after the ammonium suphate fractional precipitation it contained some proteins with different molecular weights. However, after gel-filtration chromatography on Sephadex G-100, theα-L-rhamnosidase was purified completely and it showed homogeneity by SDS-PAGE. The molecular weight was about 90 K Da.
     (5) Enzymatic properties study indicate that this enzyme has high acid tolerance and thermal stability. The enzyme activity synergistically increased by the addition of metal cations such as K~+ ,and Mg~(2+), meanwhile, Ca~(2+) and Fe~(2+) can significantly inhibit its activity. Some kinds of organic solvents can inhibit its activity as well, especially acetone. Kinetic studies showed that Michaelis constant Km is 4.58 mmol/L, Vmax is 16.13 U/L for the enzyme, Pnpr was used as substrate.
引文
[1]王镜岩,朱圣庚,徐长法.生物化学上册[M].北京:高等教育出版社,2002:31-34
    [2]黄致喜,金其璋,罗寿根,等,译.香味化学与工艺学[M].北京:中国轻工业出版社,1991:10-25
    [3]王燕,刘志华,陈永宽.烟草中糖苷类化合物的研究进展[J].云南大学学报,2010,32(S1):202-226
    [4]曾忠荣.氨基糖苷类抗生素临床应用调查分析[J].中国实用医药,2009,4(6):232
    [5]查长森,吕建新,王震.应对氨基糖苷类抗生素耐药的策略[J].国外医药抗生素分册,2010,31(3):133-137
    [6] Minowa N,Akiyama Y,Hiraiwa Y,et al.Synthesis and antibacterial activity of novel neamine derivatives[J].Bioorg Med Chem Lett,2006,16(24):6351
    [7] Chittapragada M,Roberts S,Ham YW.Aminoglycosides:Molecular Insights on the recognition of RNA and aminoglycoside mimics[J].Perspect Medicin Chem,2009,28(3):321
    [8]黄红卫,刘艳丽,李春.糖苷酶的研究及其改造策略[J].生物技术通报,2010,5:55-60?
    [9] Carl SR,Stephen GW.Glycosidase mechanisms Current Opinion in Chemical Biology,2000,4:573-580
    [10] Henrissat B,Davies G.Structural and sequence-based classification of glycosyl hydrolases.Current Opinion Structure in Biology,1997,7:637-644
    [11] Alfonso FM.Synthesis and modification of carbohydrates using glycosidases and lipases.Topics in Current Chemistry,1997,7:637-644
    [12] Jacobson R,Schlein Y,Eisenberger C.The biological function of sandfly and Leishmania glycosidases.Medical Microbiology and Inmunobgy,2001,190:51-55
    [13] Henrissat B.A classification of glycosyl hydrolases based on amino acid sequence similarities.Biochemical Journal,1991,280:309-316
    [14]王侃,鱼红闪,金凤燮.芦丁-α-鼠李糖苷酶分离提纯及其酶性质[J].大连轻工业学院学报,2004,23(1):30-33
    [15]金赞敏,鱼红闪,金凤燮.人参皂苷-α-鼠李糖苷酶分离提纯及其酶性[J].大连轻工业学院学报,2003,22(2):103-106
    [16]韩冰,付绍平,金凤燮,等.两种菌产两种不同天然苷类α-鼠李糖苷酶的研究[J].大连轻工业学院学报,2008,27(2):105-109
    [17] Gallego M V, Pinaga F, Ramón D, et al. Purification and characterization of an Aspergillus terreusα-L-rhamnosidase of interest in winemaking[J]. Food Science,2001, 66(2):204-209
    [18] Manzanares P,Orejas M,Ibanez E,et al.Purification and characterization of anα-L-rhamnosidase from Aspergillus nidulans[J]. Lett. Appl. Microbiol.2000,31(3):198-202
    [19] Manzanares P,Broeck H C,Graaff L H,et al.Purification and characterization of two differentα-L-rhamnosidase , RhaA and RhaB , from Aspergillus aculeatus[J].Appl. Environ. Microbiol,2001,67(5):2230-2234
    [20] Manzanares P,Valles S,Ramon D,et al. Industrial Enzymes[M].Netherlands:Springer Netherlands,2007:117-140
    [21] Qian SL,Yu HS,Zhang CZ,et al.Purification and Characterization of Dioscin-α-L-rhamnosidase from Pig Liver[J].Chem. Pharm. Bull,2005,53(8):911-914
    [22] Manzanares P,Graaff LH,Visser J.Purification and characterization of anα-L-rhamnosidase from Aspergillus niger[J].FEMS. Microbiol. Lett,1997,157(2):279-283
    [23] Yanai T,Sato M.Purification and characterization of anα-L-rhamnosidase from Pichia angusta X349[J].Biosci. Biotechnol. Biochem,2000.64(10)::2179-2185
    [24] Hashimoto W,Murata K.α-L-Rhamnosidase of Sphingomonas sp. R1 producing an unusual exopolysaccharide of sphingan[J].Biosci. Biotechnol. Biochem,1998,62(6):1068-1074
    [25] Zverlov VV,Hertel C,Bronnenmeier K,et al.The thermostableα-L- rhamn- osidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterialα-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase[J].Mol. Microbiol,2000,35(1):173-179
    [26] Miake F,Satho T,Takesue H,et al.Purification and characterization of intracellularα-L-rhamnosidase from Pseudomonas paucimobilis FP2001 [J].Arch. Microbiol,2000,173(1):65-70
    [27] Birgisson H,Hreggvidsson GO,Fridjónsson O H,et a.Two new thermostableα-L-rhamnosidases from a novel thermophilic bacterium[J].Enzyme. Microb. Technol,2004,34(6):561-571
    [28] Romero C,Manjon A,Bastida J,et al. A method for assaying the rhamnosidase activity of naringinase[J].Analytical Biiuhemisiry,1985,149(2):566-571
    [29] Magario I,Neumann A,Oliveros E,et al.Deactivation Kinetics and Response Surface Analysis of the Stability ofα-L-Rhamnosidase from Penicillium decumbens[J].Appl. Biochem. Biotechnol,2009,152(1):29-41
    [30] Rajal VB,Cid A G,Ellenrieder G,et al.Production, partial purification and characterization ofα-L-rhamnosidase from Penicillium ulaiense[J] . World. Microbiol. Biotechnol, 2009,25(6):1025-1033
    [31] Hughes HB,Morrissey JP,Osbourn AD. Characterisation of the saponin hydrolysing enzyme avenacoside-α-L-rhamnosidase from the fungal pathogen of cereals, Stagonospora avenae[J]. European Journal of Plant Pathology,2004,110(4):421-427
    [32] Cui ZL,Maruyama Y,Mikami B,et al.Crystal Structure of Glycoside Hydrolase Family 78α-L-Rhamnosidase from Bacillus sp. GL1[J].ScienceDirect,2007,374(2):384-398
    [33] Beekwilder J,Marcozzi D,Vecchi S,et al.Characterization of Rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus[J].Applied And Environmental Microbiology,2009,75(11):3447-3454
    [34] Mazzaferro LS,Orrillo GA,Ledesma P,et al.Dose-dependent significance of monosaccharides on intracellularα-L-rhamnosidase activity from Pseudoalteromonas sp.[J].Biotechnol. Lett,2008,30(12):2147-2150
    [35] Feng B,Hu W,Ma BP,et al.Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata[J].Appl. Microbiol. Biotechnol,2007,76(6):1329-1338
    [36] Birgisson H,Wheat JO,Hreggvidsson G O,et al.Immobilization of a recombinant Escherichia coli producing a thermostableα-L-rhamnosidase: Creation of a bioreactor for hydrolyses of naringin[J].ScienceDirect,2007,40(5):1181-1187
    [37] Scaroni E,Cuevas C,Carrillo L,et al.Hydrolytic properties of crudeα-L-rhamnosidases produced by several wild strains of mesophilic fungi[J].Letters in Applied Microbiology,2002,34(6):461-465
    [38] Norouzian D,Hosseinzadeh A,Inanlou D N and Moazami N.Various techniques used to immobilize naringinase produced by Penicillium decumbens PTCC 5248.Microbiol Biotechnol,1999,15(5):501–502
    [39] Prakash S,Singhal RS,Kulkarni PR.Enzymic debittering of Indian grapefruit (Citrus paradis) juice.Sci. Food Agric,2002,82:394–397
    [40] Puri M,Kaur H,Kennedy JF.Covalent immobilization of naringinase for the transformation of a flavonoid.Chem. Technol. Biotechnol,2005,80(10):1160–1165
    [41] Soares NF,Hotchkiss JH. Naringinase immobilization in packaging films for reducing naringin concentration in grapefruit juice.Food Sci,1998,63(1):61–65
    [42] Del Nobile MA,Piergiovanni L, Buonocore GG ,et al .Naringinase immobilization in polymeric films intended for food packaging applications.Food Sci,2003,68(6):2046–2049
    [43] González BR,Trindade LM,Manzanares P,et al.Production of bioavailable flavonoid glucosides in fruit juices and green tea by use of fungalα-L-rhamnosidases.Agric. Food Chem,2004,52(20):6136–6142
    [44] Rosa RD,Cret I R,Baldassarr IL,et al.Relationship between biofilm formation, the enterococcal surface protein( Esp) and gelatinase in clinical isolates of Enterococcus faecalis and Enterococcus faecium[ J].Microbiology Letters,2006,256 (1):145-150
    [45]刘运德.微生物学检验[M].北京:人民卫生出版社,2003:173
    [46]周霞,王晓兰,马勋,等.肠球菌研究进展[J].石河子大学学报,2008,26 ( 6):708-711
    [47]陈淑娟,谢志勇,胡丽娟.208株肠球菌菌种的分布及耐药性分析[J].福建医药杂志,2008,30(6):100-101
    [48]谭贵海,吴钊坤,冯亦伟.肠球菌的耐药性检测及临床分析[J].调查研究,2010,7(16):174-175
    [49]戴锐睿,杨洋,李晶洁,等.正常人肠道肠球菌耐药性与生物膜形成关系的初探[J].中国微生态学杂志,2011,23(2):137-140
    [50]李光辉,张婴元.肠球菌感染研究进展[J].国外医学(内科学分册),1999,26(11):471-474
    [51] Barie PS.Antibiotic-resistant gram-positive cocci: implications for surgical practice.World J Surg.1998,22( 2):118-126
    [52] Murray BE.Vancomycin-resistant enterococcal infections,N Engl J Med.2000,342(10):710-721
    [53]杨正时,房海.人及动物病原细菌学[M].石家庄:河北科学技术出版社,2002:332-358
    [54] Hot GJ,Krieg RN,Sneath HAP,等.伯杰氏细菌鉴定手册第9版[M].中国科学院微生物研究所“伯杰氏细菌手册”翻译组,北京:科学出版社,1994
    [55]李金钟.肠球菌分类与鉴定新进展[J].临床检验杂志,2006,24(3):228-230
    [56] Jett BD.Evaluation of the rapeutic measures for treating endophthalmitis cause by isogenic toxin producing and tocin nonproducing Enterococcus faccalis strains.Invest Ophthalmolvis Sci,1995,36:9-14
    [57] Shankar N,Baghdayan AS,Gilmore MS.Modulation of virulence within a pathogenicity island in wancom ycinresistant Enterococcus faecalis[J].NATURE,2002,417( 6890):746- 750
    [58] Leavis H,Top J,Shanker N,et al.A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity[J].J Bacteriol,2004,186(3):672-682
    [59]程金平.感染猪的肠球菌生物学特性研究[D].河南农业大学,2009
    [60]刘媚娜,程水兵,徐春泉,等.屎肠球菌和粪肠球菌的耐药性分析[J].中国卫生检验杂志,2010,20(5):1165-1166
    [61]赵永芳,黄健.生物化学技术原理及应用[M].北京:科学出版社,2008:14-18
    [62]赵永芳.生物化学技术及其应用[M].第二版.武汉:武汉大学出版社,1994
    [63] Scopes R.Protein purification principles and practice[M].New York:Springer-verlag,1982
    [64] Lymar ES.Purification and characterization of a cellulose-bindingβ-glucosidase from cellulose degrading cultures of phanerochaete chrysosporium[J].App Environ Microbio,1995,61(8): 2876-2890
    [65] Leslie WF.Purification and characterization of Yeastβ-glucosidases[J].Journal of Bacteriology,1967(1):135-141
    [66] Bongon JR.β-glucosidase from normal and brittle-stem mutant rice cultivars (Oryza sativa L),isolation,purification and characterization [D].Philipines:College Laguna,1994
    [67] Kibong OH.Isolation and properties of an extravellularβ-glucosidase from a filamentous fungus:Cladosponium resinae, isolated from kerosene[J].Biosci Biotech Biochem,1999,63(2):281- 287
    [68] Guevass L.Partial purification and characterization of a hydroxamic acid glucosideβ-D-glucosidase from maize[J].Phytochemistry,1992,131(8):2609- 2612
    [69]江昌俊,李叶云,王朝霞.茶树鲜叶中β-葡萄糖苷酶提取条件的研究[J].南京农业大学学报,2000,23(2):93-96
    [70]孙迎庆,曹淑桂,韩四平.β-葡萄糖苷酶的分离纯化和性质研究[J].中国生物化学与分子生物学报,1998,14(1):84-86
    [71]宛晓春.水果风味及风味酶的研究[D].无锡:无锡轻工大学,1992
    [72]张正竹,宛晓春,坂田完三.茶叶β-葡萄糖苷酶亲和层析纯化与性质研究[J].茶叶科学,2005,25(1):6-22
    [73] Gusmaryer S . Avenacosidase from oat: purification, sequence analysis biochemical characterization of a new member of the BGA family of beta-glucosidases[J].Plant Mol Boil,1994,26(3):909-921
    [74]张振华,蔡同一,倪元颖,等.α-鼠李糖苷酶最佳测定条件的建立及酶学性质研究[J].研究与探讨,2002,23(2):15-17
    [75]王晓辉,察少华,迟乃玉,等.海洋低温BS070623菌株选育及其发酵培养基优化( I )[J].渤海大学学报,2009,30(2):97-100
    [76] Liu Caiquin,Ruan Hui,Shen Huafeng,et al.Optimization of the fermentation medium for alpha-galactosidase production from Aspergillus Foetidus ZU-G1 using response surface methodology[J].Food Science,2007,72(4):120-125
    [77] Ye D,Xu ZN,Cen Peilin.Medium optimization for enhanced production of cytosine-substituted Mildiomycin Analogue (MIL-C) by Streptoverticillium rimofaciens ZJU 5119[J].Zhejiang Univ. Sci B,2008,9(1):77-84
    [78] Saudagar PS,Singhal RS.Optimization of nutritional requirements and feeding strategies for clavulanic acid production by Streptomyces clavuligerus [J].Bioresource technology,2007,98(10):2010-2017
    [79]肖怀秋,李玉珍.微生物培养基优化方法研究进展[J].酿酒科技,2010,187(1):90-94
    [80] Wang FQ,Gao CJ,Yang CY.Optimization of an ethanol production medium in very hign gravity fermentation[J].Biotechnology Letters,2007,29(2):233-236
    [81]刘志祥,曾超珍.响应面法在发酵培养基优化中的应用[J].北方园艺,2009,2:127-129
    [82]慕运动.响应面方法及其在食品工业中的应用[J].郑州工程学院学报,2001,22(3):91-94
    [83] Trupkin S,Levin S,Forchiass IF.Optimization of a culture medium for ligninolytic enzyme production and synthetic dye decolorization using response surface methodology[J].Journal of Industrial Microbiology Biotechnology,2003,30:682-690
    [84] Ratnam BVV,Narasimha RM,Dmodar RM,et a1.Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology[J].Journal of Microbiology & Biotechnology, 2003,19:523-526
    [85] Ambat P.Ayyanna C. Optimizing medium constituents and fermentationconditions for citric acid production from palmyra jaggery using response surface methods[J].Journal of Microbiology &Biotechnology,2001,17:331-335
    [86]褚以文.微生物培养基优化方法及其OPTI优化软件[J].国外医药抗生素杂志分册,1999,20(2):58-61
    [87]周泉.构建假单胞菌突变株M18GQ携带重组质粒pME6032Phz的工程菌株及响应面法优化吩嗪-1-羧酸发酵条件的研究[D].上海交通大学,2010
    [88]张浩忠.肠球菌中β-D-葡萄糖苷酶的分离纯化及酶学性质研究[D].山东轻工业学院,2010
    [89]梅乐和,姚善泾,林东强.生化生产工艺学[M].北京:科学出版社,2001:190-193
    [89]尚璇. H5N1亚型禽流感防疫中应用生物信息学研究免疫方案的探讨[D].华中科技大学,2007
    [91]潘锋.秸秆微生物共发酵生产单细胞蛋白研究[D].南京理工大学,2001
    [92]刘洁. UVB照射对中华大蟾蜍早期胚胎蛋白质表达的影响[D].山东大学,2009