CS-based WSN的空间稀疏信号模型的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络作为物联网的关键技术之一,在国防、工业、农业、商业、学术等社会各界,都给予了更加广泛的关注,其宗旨,就是以最少的成本和最大的灵活性,解决物联网中的信息感知问题,因此,大规模高密度的网络拓展、海量数据传输和存储、能源有限等关键技术瓶颈的解决迫在眉睫。而压缩传感理论在信息测量传输和重构方面的创新思路,为解决无线传感器网络探索新的信号获取技术及信号处理方式提供了一种全新的技术手段。
     基于压缩传感这一新兴的研究理论,本文针对无线传感器网络的信息采集、传输和处理技术展开研究:(1)建立CS-based无线传感器网络模型,研究压缩传感理论对无线传感器网络的贡献,使无线传感器网络更具有普适性;(2)分析自然界各种信号的稀疏性,构建了一个更加自适应的稀疏分解平台,有助于无线监测更精确的重建目标信号;(3)研究并梳理了压缩传感理论的重构算法,建立一个新的、更适用于无线传感器网络稀疏度未知的信号重构方法;(4)分析CS-based无线传感器网络在网络全局能耗、负载、传输方式等方面的优势,提出硬件能力更容易实现的传感测量机制。其创新性的研究工作及成果如下:
     (1)对自然界信号的稀疏性进行研究,针对时域、频域非稀疏信号的稀疏域进行探索,考虑硬件允许的情况下,利用Gabor原子和Chirplet原子分别生成过完备原子库,并结合自适应匹配追踪的思路设计相应的二次寻优算法,使得绝大多数的可压缩信号都可以在稀疏字典中找到一个合适的稀疏基底,进行稀疏表示。研究结果表明,与传统的稀疏分解方法相比,Gabor稀疏字典和Chirplet稀疏字典更具有普适性,稀疏度更强,稀疏表达精度更高,绝大多数的信号都能够获得更好的稀疏效果。此外,Gabor字典二次寻优匹配算法和Chirplet字典二次寻优匹配算法能够使稀疏分解的速度更快,占用的存储空间更少,同时也更有助于重构精度的提升。
     (2)分析现有的重构算法,对比重构精度、速度的优劣性,并从迭代方式、迭代终止条件、运算复杂度等方面进行全面优化和改进,提出一种更适合大规模无线传感器网络的数据重构算法,回溯自适应阈值迭代匹配追踪算法(BATIMP),在满足RIP约束条件的基础上,速度更快、精度更高、稳定性更强,可以高概率的重构原始信号。研究结果表明,在CS-based无线传感器网络中,能够更加适合自然界中可压缩的各种稀疏度未知的信号,自适应的选择迭代步长,以节省时间提高重构速度,与传统的重构方式相比,在一定程度上降低了对重构端的硬件要求。
     (3)建立分布式的压缩传感网络模型,提出空间稀疏信号网络模型,研究CS-based无线传感器网络的数据采集和测量机制。针对无线传感器网络的拓扑设计和路由方式,将压缩传感的测量投影过程引入无线传感器网络的信号采集和传输过程中,设计高斯循环、贝努力循环两种半随机测量矩阵,使得CS-based无线传感器网络在感知信息的过程中,就能将信息进行投影测量,在多跳传输的过程中,将网络全局信息直接降维,极大程度的提高了传输带宽利用率,也能使网络负载更加均衡,使多跳传输的无线传感器网络能够真正实现。对比传统的网络传输方式,分析CS-based无线传感器网络在网络负载均衡、传输能力、信号重构等方面的效果,从网络整体的角度,验证不同空间稀疏的信号压缩传感机制的性能。研究结果表明,与传统的无线传感器网络相比,CS-based无线传感器网络无论在局部、全局能耗和负载均衡等方面都有明显优势,并且在网络拓扑的选择方面具有自由性。在CS-based无线传感器网络中实现半随机循环测量传感,既能保持随机测量矩阵与绝大部分的稀疏矩阵不相关的优势,又能使网络节点的设计和部署更加简单,只需要根据网络分配的种子和节点ID产生相应的测量系数,比传统的随机矩阵生成方式简单,更适合存储空间有限的无线传感器网络,同时,网络初始化简单,更适合网络的实际应用需求。
     总之,压缩传感理论的引入,对本文研究的无线传感器网络提出了测量传输的新理念,为数据的精确重构也提供了更高质量的重建效果,更加适合自然界的各种信号,对应用对象具有“自适应性”。
With the conception of the Internet of the thing (IOT) coming up, China makes itthe direction of guiding the whole information industry chain development, to realizethe boom of enconomy. As one of the key technologies, Wireless Sensor Networks(WSN) has been more widespread concerned on solving the information sensingproblems by minimum cost and maximum flexibility. Therefore, large-scalehigh-density network expansion, huge amounts of data transfer and storage, energylimited and other key technology bottleneckes to address immediate. Compressivesensing theory (CS) has innovative ideas on data measuring transmission andreconstruction, and provides a new technical means to solve the wireless sensornetwork to explore new signal acquisition technology and signal processing.
     Based on CS, we explored research on wireless sensor networks informationcollection, transmission and processing technologies to study the whole networkperformance:(1) estimated CS-based wireless sensor network model, do research onthe contribution of the compressed sensing theory for wireless sensor networks,makes wireless sensor networks more universal;(2) analyze the sparsity of the naturalsignals, built a more adaptable sparse decomposition platform helps wirlessmonitoring more accurate in the reconstruction of the target signals;(3) research andsort out the reconstruction algorithm for compressed sensing theory, establish a new,more suitale for wireless sensor networks unknown sparsity of the signalreconstruction method;(4) analyze the CS-based wireless sensor networksperformation in network global energy consumption, load, transmission and otheraspects advantages, proposed easier implement sensing and measureing mechanism.The exhaustive research work and achievement are as follows:
     (1) Study the sparsity of the signals in the natural time domain, frequencydomain non-sparse signal sparse domain to explore, considering the limited hardware,make use of Gabor atoms and Chirplet atoms in generating complete dictionary andthe corresponding twice optimization algorithm, making any sparse signal can find a sparse basal sparse representation in the sparse dictionary. The study results show thatcompared to the sparse decomposition method, the Gabor sparse dictionary andChirplet sparse dictionary are more universal sparseness to achieve lower sufficiently,higher sparse precision, the vast majority of signals are able to get a better sparseeffect. In addition, the Gabor dictionary twice optimal matching algorithm and theChirplet dictionary twice optimal matching algorithm can make the sparsedecomposition faster and occupy less storage space, but also more conducive to theenhancement of the reconstruction accuracy.
     (2) Analyzed the existing reconstruction algorithms, compare reconstructionaccuracy, speed, and iterative method, the iteration termination condition, thecomputational complexity and other aspects of comprehensive optimization andimprovement, and propose a more suitable for large-scale wireless sensor networks,data reconstruction algorithm, backtracking adaptive threshold iterative matchingchasing algorithm (BATIMP), based on the RIP constraints, realized faster, higheraccuracy, greater stability, high probability reconstruction of the original signal. Theresults show that the CS-based wireless sensor networks, more suitable for the natureof a variety of sparse unknown but compressible signal, adaptively select the step size,to save time and improve the reconstruction speed with traditional reconstructioncompared to a certain extent reduces the hardware requirements on the reconstructionside, making a reconstruction algorithm that compressed sensing theory to computerhardware are able to achieve.
     (3) Estimated the distributed compression of sensor network model, proposedthe space sparse signal network model, research on the CS-based wireless sensornetwork data acquisition and measurement mechanisms. Depending on topology androuting for wireless sensor networks, involved compressed sensing into the wirelesssensor networks measuring projection, signal acquisition and transmission, design aGaussian loop/Bernoulli loop semi-random measurement matrix, making theCS-based wireless sensor networks project number of information in sensing process,during multi-hop transmission, it will be able to not only reduce the dimensions ofglobal network information, the great improvement in the level of bandwidthutilization, but also make network load more balanced and transmission of multi-hop wireless sensor network is able to realize. The results show that compared withtraditional wireless sensor networks, the CS-based wireless sensor networks in termsof local and global energy consumption and load balancing can have a high degree ofoptimization, and has the freedom in the choice of network topology. Thesemi-random cycle measurement sensor in the CS-based wireless sensor networks, itcan keep the random measurement matrix and most of the sparse matrix-relatedadvantages, but also make more simple the design and deployment of the networknodes, only corresponding coefficient of the measurement according to the networkdistribution of seeds and node ID than the traditional random matrix generated ismore suitable for wireless sensor networks with limited storage space, at the sametime, the network initialization, more suitable for practical applications of thenetwork.
     In short, involving of compressive sensing theory,we introduce the new conceptof measuring the transmission for wireless sensor networks, the exact reconstructionof the data also provides a higher quality of reconstruction effect, which is moresuitable for a variety of the natural signals, has the "adaptive".
引文
[1] Nguyen N, Jones D.L., Krishnamurthy S. Netcompress: Coupling network coding andcompressed sensing for efficient data communication in wireless sensor networks. In:Signal Processing Systems (SIPS), IEEE Workshop on, San Francisco, CA,2010:356-361
    [2] Pathan A.S.K, Lee H W, Hong C S. Security in wireless sensor networks: Issues andchallenges. In: Advanced Communication Technology, the8th International Conference,Phoenix Park,2006,2:1043-1048
    [3] He T, Krishnamurthy S, Luo L, et al. Vigilnet: An integrated sensor network system forenergy-efficient surveillance. ACM Transactions on Sensor Networks (TOSN),2006,2:1-38
    [4] Winkler M, Tuchs K D, Hughes K, et al. Theoretical and practical aspects of militarywireless sensor networks. Journal of Telecommunications and Information Technology,2008,2:37-45
    [5] Xu N., Rangwala S., Chintalapudi K.K., et al. A wireless sensor network for structuralmonitoring. In: Proceedings of the ACM Conference on Embedded Networked SensorSystems (Sensys04),2004:13-24
    [6] Polastre J, Szewczyk R, Mainwaring A, et al. Analysis of wireless sensor networks forhabitat monitoring. Wireless sensor networks, Kluwer Academic Publishers Norwell, MA,USA2004:399-423
    [7] Borga G, Camporese R, Di Prinzio L, et al. New technologies and eo sensor data build upknowledge for a smart city.
    [8] Xu M, Ma L, Xia F, et al. Design and implementation of a wireless sensor network forsmart homes. In: International Workshop on Mobile Cyber-Physical Systems (MobiCPS),IEEE, Xi'an, China,2010:434-438
    [9] Stankovic J, Cao Q, Doan T, et al. Wireless sensor networks for in-home healthcare:Potential and challenges. In: Proceedings of the High Confidence Medical Device Softwareand Systems Workshop (HCMDSS '05),2005:2-3
    [10] Selavo L, Wood A, Cao Q, et al. Luster: Wireless sensor network for environmentalresearch. In: Proceedings of the5th international conference on Embedded networkedsensor systems, Sydney, Australia,2007:103-116
    [11] Muhammad S, Furqan Z, Guha R. Wireless sensor network security: A secure sink nodearchitecture. In: Performance, Computing, and Communications Conference, IPCCC24thIEEE International,2005:371-376
    [12] Sarma H K D, Kar A. Security threats in wireless sensor networks. In: CarnahanConferences Security Technology, Proceedings40th Annual IEEE International,2006:243-251
    [13] Song W Z, Yuan F, LaHusen R, et al. Time-optimum packet scheduling for many-to-onerouting in wireless sensor networks. The International Journal of Parallel, Emergent andDistributed Systems,2007,22:355-370
    [14] SUN G, ZHANG Y, LV L, et al. Timp compressive sensing mechanism analysis andimplementation for large-scale wireless sensor network. Journal of ComputationalInformation Systems,2011,7:3382-3389
    [15]胡向东.物联网研究与发展综述.数字通信,2010,(002):17-21
    [16] Donoho D L. Compressed sensing. Information Theory, IEEE Transactions on,2006,52:1289-1306
    [17] Candès E J. Compressive sampling. In: Proceedings of the International Congress ofMathematicians,2006:1433-1452
    [18]李树涛,魏丹.压缩传感综述.自动化学报,2009, Vol.35(11):1369-1377
    [19]黎天人.无线传感器网络中分层簇类数据融合算法的研究:[博士学位论文].湖南大学,2009
    [20]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念,问题与进展.软件学报,2003,14(10):1717-1727
    [21]聂芬.无线传感器网络路由协议的研究:[硕士学位论文],西北大学,2010
    [22] Chen H, Mineno H, Mizuno T. Adaptive data aggregation scheme in clustered wirelesssensor networks. Computer Communications,2008,31:3579-3585
    [23] Chatterjea S, Havinga P. Cludda-clustered diffusion with dynamic data aggregation. In:8thCabernet Radicals Workshop, Ajaccio, Corsica, France,2003:1201-1210
    [24] Younis O, Fahmy S. Heed: A hybrid, energy-efficient, distributed clustering approach forad hoc sensor networks. Mobile Computing, IEEE Transactions on,2004,3:366-379
    [25] Ding M, Cheng X, Xue G. Aggregation tree construction in sensor networks. In: VehicularTechnology Conference, IEEE58th,2003,4:2168-2172
    [26] Kai-Wei Fan K W, Liu S, Sinha P. Structure-free data aggregation in sensor networks.Mobile Computing, IEEE Transactions on,2007,6:929-942
    [27] Hong B, Prasanna V K. Maximum lifetime data sensing and extraction in energyconstrained networked sensor systems. Journal of Parallel and Distributed Computing,Journal of Parallel and Distributed Computing,2006,66:566-577
    [28] Deligiannakis A, Kotidis Y, Roussopoulos N. Compressing historical information in sensornetworks. In: Proceeding SIGMOD '04Proceedings of the ACM SIGMOD internationalconference on Management of data, New York, NY, USA,2004:527-538
    [29] Acimovic J, Beferull-Lozano B, Cristescu R. Adaptive distributed algorithms forpower-efficient data gathering in sensor networks. In: Wireless Networks, Communicationsand Mobile Computing, International Conference on,2005,2:946-951
    [30] Yoon S, Shahabi C. The clustered aggregation (cag) technique leveraging spatial andtemporal correlations in wireless sensor networks. ACM Transactions on Sensor Networks(TOSN), New York, NY, USA,2007,3:3
    [31] Chen Z, Guiling S, Weixiang L, et al. Research on data compression algorithm based onprediction coding for wireless sensor network nodes. In: Information Technology andApplications, IFITA '09. International Forum on,2009,1:283-286
    [32]吕乐群,孙桂玲,李维祥, et al.基于簇内中转链路新型低功耗leach算法的研究.无线通信技术,2010,2:1-6
    [33] Zhang Y, Sun G L, Li W X. Dehca: Load balance clustering algorithm for energyheterogeneous wsn based on distance. Applied Mechanics and Materials,2011,44:3294-3298
    [34] Baraniuk R G. Compressive sensing [lecture notes]. Signal Processing Magazine, IEEE,2007,24:118-121
    [35] Candes E J, Romberg J. Quantitative robust uncertainty principles and optimally sparsedecompositions. Foundations of Computational Mathematics, Secaucus, NJ, USA,2006,6:227-254
    [36] Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstructionfrom highly incomplete frequency information. Information Theory, IEEE Transactions on,2006,52:489-509
    [37] Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccuratemeasurements. Communications on pure and applied mathematics,2006,59:1207-1223
    [38] Candes E J, Tao T. Near-optimal signal recovery from random projections: Universalencoding strategies? Information Theory, IEEE Transactions on,2006,52:5406-5425
    [39] http://dsp.rice.edu/research/compressive-sensing
    [40] http://people.ee.duke.edu/~lcarin/compressive-sensing-workshop.html
    [41] Wang Y, Pandharipande A, Polo Y L, et al. Distributed compressive wide-band spectrumsensing, in: Information Theory and Applications Workshop,2009:178-183
    [42] Boufounos P T, Baraniuk R G.1-bit compressive sensing, Information Sciences andSystems, CISS42nd Annual Conference on,2008:16-21
    [43] Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing.Information Theory, IEEE Transactions on,2010,56:1982-2001
    [44] Baraniuk R G, Cevher V, Duarte M F, et al. Recovery of compressible signals in unions ofsubspaces, in: Information Sciences and Systems,43rd Annual Conference on,2009:175-180
    [45] Hegde C, Duarte M F, Cevher V. Compressive sensing recovery of spike trains using astructured sparsity model. Proc. Workshop Signal Processing With Adapt. Sparse StructuredRepresentations (SPARS),2009
    [46] Duarte M F, Wakin M B, Baraniuk R G. Wavelet-domain compressive signalreconstruction using a hidden markov tree model. In: Acoustics, Speech and SignalProcessing, IEEE International Conference on,2008:5137-5140
    [47] Cevher V, Hegde C, Duarte M F, et al. Sparse signal recovery using markov random fields.2009
    [48] Duarte M, Wakin M, Baraniuk R. Fast reconstruction of piecewise smooth signals fromrandom projections. Proc SPARS05,2005
    [49] Peyré G. Best basis compressed sensing. Scale Space and Variational Methods in ComputerVision,2007:80-91
    [50] Bajwa W, Haupt J, Sayeed A, et al. Compressive wireless sensing. In: InformationProcessing in Sensor Networks,2006. IPSN2006. The Fifth International Conference on,2006:134-142
    [51] Ji S, Xue Y, Carin L. Bayesian compressive sensing. Signal Processing, IEEETransactions on,2008,56:2346-2356
    [52] Malioutov D M, Sanghavi S R, Willsky A S. Sequential compressed sensing. SelectedTopics in Signal Processing, IEEE Journal of,2010,4:435-444
    [53] Sankaranarayanan A C, Hegde C, Nagaraj S, et al. Go with the flow: Optical flow-basedtransport operators for image manifolds. Communication, Control, and Computing(Allerton),49th Annual Allerton Conference on,2011:1824-1831
    [54] Duarte M F, Baraniuk R G. Kronecker compressive sensing. Image Processing, IEEETransactions on,2009:494-504
    [55] Sankaranarayanan A, Turaga P, Baraniuk R, et al. Compressive acquisition of dynamicscenes. Computer Vision–ECCV,2010:129-142
    [56] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressivesampling. Signal Processing Magazine, IEEE,2008,25:83-91
    [57] Wakin M B, Laska J N, Duarte M F, et al. An architecture for compressive imaging.Image Processing, IEEE International Conference on,2006:1273-1276
    [58] Wakin M, Laska J, Duarte M, et al. Compressive imaging for video representation andcoding. Proceedings of the Picture Coding Symposium (PCS),2006
    [59] Takhar D, Laska J, Wakin M B, et al. A new compressive imaging camera architectureusing optical-domain compression. In Proc. of Computational Imaging IV at SPIEElectronic Imaging,2006
    [60] Duarte M F, Baraniuk R G. Spectral compressive sensing. Applied and ComputationalHarmonic Analysis,2010
    [61] Waters A E, Sankaranarayanan A C, Baraniuk R G. Sparcs: Recovering low-rank andsparse matrices from compressive measurements. Proc Adv in Neural Processing Systems(NIPS), Granada, Spain,2011
    [62] Cevher V, Indyk P, Carin L, et al. Sparse signal recovery and acquisition with graphicalmodels. Signal Processing Magazine, IEEE,2010,27:92-103
    [63] Dai W., Milenkovic O., Sheikh M.A., et al. Probe design for compressive sensing dnamicroarrays. In: Bioinformatics and Biomedicine, BIBM '08IEEE InternationalConference on,2008:163-169
    [64] Sheikh M.A., Sarvotham S., Milenkovic O., et al. DNA array decoding from nonlinearmeasurements by belief propagation. In: Statistical Signal Processing, SSP '07IEEE/SP14th,2007:215-219
    [65] Do T.T., Chen Y., Nguyen D.T., et al. Distributed compressed video sensing. In:ImageProcessing (ICIP),16th IEEE International Conference on,2009:1393-1396
    [66] Compressive Sensing for the Random Sensor Array Design L C.
    [67] Robert Muise, A Compressive Imaging Approach for Tracking Targets in Multiplexed Data
    [68] Baraniuk R., Steeghs P. Compressive radar imaging. In: Radar Conference, IEEE2007:128-133
    [69] Bhattacharya S, Blumensath T, Mulgrew B, et al. Fast encoding of synthetic aperture radarraw data using compressed sensing. In: Statistical Signal Processing, IEEE/SP14thWorkshop on,2007:448-452
    [70] Haupt J, Nowak R. Compressive sampling for signal detection. In: Acoustics, Speech andSignal Processing, IEEE International Conference on,2007:3: III-1509-III-1512
    [71] Shi G, Lin J, Chen X, et al. Uwb echo signal detection with ultra-low rate sampling basedon compressed sensing. Circuits and Systems II: Express Briefs, IEEE Transactions on,2008,55:379-383
    [72] Hong F, Sui W.基于非常稀疏随机投影的图像重建方法. Computer Engineering andApplications,2007,43:25-27
    [73]方红,章权兵,韦穗.基于亚高斯随机投影的图像重建方法.计算机研究与发展,2008,45(8):1402-1407
    [74]傅迎华.可压缩传感重构算法与近似QR分解.计算机应用,2008,28(9):2300-2302
    [75]练秋生,郝鹏鹏.基于压缩传感和代数重建法的CT图像重建.光学技术,2009,(3):422-425
    [76]刘长红,杨扬,陈勇.基于压缩传感的手写字符识别方法.计算机应用,2009,29(8):2080-2082
    [77]李波,谢杰镇,王博亮.基于压缩传感理论的数据重建.计算机技术与发展,2009,19(5):23-25
    [78] Bajwa W, Haupt J, Sayeed A, et al. Joint source–channel communication for distributedestimation in sensor networks. Information Theory, IEEE Transactions on,2007,53:3629-3653
    [79] Rabbat M, Haupt J, Singh A, et al. Decentralized compression and predistribution viarandomized gossiping. In: Information Processing in Sensor Networks, the FifthInternational Conference on,2006:51-59
    [80] Haupt J, Bajwa W U, Rabbat M, et al. Compressed sensing for networked data. SignalProcessing Magazine, IEEE,2008,25:92-101
    [81] Pudlewski S, Prasanna A, Melodia T. Resilient image sensor networks in lossy channelsusing compressed sensing. Pervasive Computing and Communications Workshops(PERCOM Workshops),8th IEEE International Conference on,2010:62-67
    [82] Pudlewski S, Melodia T, Prasanna A. C-dmrc: Compressive distortion-minimizing ratecontrol for wireless multimedia sensor networks. Sensor Mesh and Ad Hoc Communicationsand Networks (SECON),7th Annual IEEE Communications Society Conference on,2010:1-9
    [83] Lee S, Pattem S, Sathiamoorthy M, et al. Spatially-localized compressed sensing androuting in multi-hop sensor networks. Geosensor Networks,2009:11-20
    [84] Duarte M F, Wakin M B, Baron D, et al. Universal distributed sensing via randomprojections. In: Proceedings of the International Conference on Information Processing inSensor Networks (IPSN),2006:177-185
    [85] Luo C., Wu F., Sun J., et al. Compressive data gathering for large-scale wireless sensornetworks. In: Proceedings of the15th annual international conference on Mobile computingand networking,2009:145-156
    [86] Hu H, Yang Z. Spatial correlation-based distributed compressed sensing in wireless sensornetworks. in: Wireless Communications Networking and Mobile Computing (WiCOM),20106th International Conference on,2010:1-4
    [87] Zhang Y, Sun G, Li W. Load balance using compressive sensing theory in large-scale wirelesssensor network. Sensor Letters,2011,9:1855-1859
    [88] SUN G, ZHANG Y, LV L, et al. Research on iterative thresholding matching pursuit basedon adaptive sparsity. Journal of Computational Information Systems,2011,7:34-41
    [89] SUN G, ZHANG Y, LV L, et al. Timp compressive sensing mechanism analysis andimplementation for large-scale wireless sensor network. Journal of ComputationalInformation Systems,2011,7:3382-3389
    [90] SUN G, ZUO J, ZHANG Y, et al. Research on sparse basement of compressed sensing inlarge-scale wireless sensor networks. Journal of Computational Information Systems,2011,7:4185-4192
    [91]沙威,压缩传感引论,香港大学电子工程系,高效计算方法研究小组,2008
    [92]杨愚.图像稀疏分解快速实现与初步应用[硕士学位论文]:西南交通大学,2007
    [93]张跃飞,姜玉亭,王建英, et al.基于稀疏分解的图像压缩.系统工程与电子技术,2006,28(4):513-515
    [94]李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望.电子学报,2009,37(1):146-152
    [95] Hyv rinen A, Karhunen J, Oja E. Independent component analysis. Wiley-interscience,2001,26
    [96] Belouchrani A, Abed-Meraim K, Cardoso J F, et al. A blind source separation techniqueusing second-order statistics. Signal Processing, IEEE Transactions on,1997,45:434-444
    [97] Starck J L, Elad M, Donoho D. Redundant multiscale transforms and their application formorphological component separation. Advances in Imaging and Electron Physics,2004,132:287-348
    [98] Starck J L, Elad M, Donoho D L. Image decomposition via the combination of sparserepresentations and a variational approach. Image Processing, IEEE Transactions on,2005,14:1570-1582
    [99] Cohen A, Dahmen W, DeVore R. Compressed sensing and best k-term approximation. JAmer Math Soc,2009,22:211-231
    [100]科恩,白居宪.时-频分析:理论与应用.西安交通大学出版社,1998
    [101] Chen S., Donoho D. Basis pursuit. In:Signals, Systems and Computers, ConferenceRecord of the Twenty-Eighth Asilomar Conference on,1994,1:41-44
    [102] Candes E J, Donoho D L. Curvelets: A surprisingly effective nonadaptive representationfor objects with edges.2000
    [103] Candes E J. Ridgelets: Theory and applications: PhD. Stanford University,1998
    [104] Le Pennec E, Mallat S. Sparse geometric image representations with bandelets. ImageProcessing, IEEE Transactions on,2005,14:423-438
    [105] Do M N, Vetterli M. The contourlet transform: An efficient directional multiresolutionimage representation. Image Processing, IEEE Transactions on,2005,14:2091-2106
    [106] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. SignalProcessing, IEEE Transactions on,1993,41:3397-3415
    [107]杨海蓉,压缩传感的测量矩阵与恢复算法研究:[博士学位论文],安徽大学,2011
    [108]李小波,基于压缩感知的测量矩阵研究:[硕士学位论文],北京交通大学,2010
    [109] Treichler J, Davenport M, Baraniuk R. Application of compressive sensing to the design ofwideband signal acquisition receivers. US/Australia Joint Work Defense Apps of SignalProcessing (DASP), Lihue, Hawaii,2009
    [110] Aeron S, Saligrama V, Zhao M. Information theoretic bounds for compressed sensing.Information Theory, IEEE Transactions on,2010,56:5111-5130
    [111] Ben-Haim Z, Michaeli T, Eldar Y C. Performance bounds and design criteria forestimating finite rate of innovation signals. IEEE Trans. Information Theory,2010
    [112] Arias-Castro E, Eldar Y. Noise folding in compressed sensing. Signal Processing Letters,IEEE,2011,18(8):478-481
    [113] Tsaig Y, Donoho D L. Extensions of compressed sensing. Signal processing,2006,86:549-571
    [114] Hong F, Quan-Bing Z, Sui W. A method of image reconstruction based on sub-gaussianrandom projection. Journal of Computer Research and Development,2008,45:1402-1407
    [115] Rauhut H. Circulant and toeplitz matrices in compressed sensing. In Proc. SPARS’09,SaintMalo, France,2009
    [116] Bajwa W.U., Haupt J.D., Raz G.M., et al. Toeplitz-structured compressed sensingmatrices. In: Statistical Signal Processing, SSP '07IEEE/SP14th Workshop on,2007:294-298
    [117] Yin W, Morgan S, Yang J, et al. Practical compressive sensing with toeplitz and circulantmatrices. Rice University CAAM Technical Report TR10-01,2010,1
    [118] Sebert F., Zou Y.M., Ying L. Toeplitz block matrices in compressed sensing and theirapplications in imaging. In: ITAB International Conference on,2008:47-50
    [119] T. T. Do, Tran. T. D., Lu Gan, Fast compressive sampling with structurallyrandom matrices, Acoustics, Speech and Signal Processing. ICASSP. IEEEInternational Conference on,2008:3369-3372
    [120] Candes E., Rudelson M., Tao T., et al. Error correction via linear programming. In:Foundations of Computer Science, FOCS46th Annual IEEE Symposium on,2005:668-681
    [121] Geoffrey Davis. Adaptive nonlinear approximations: Department of Mathematics,Courant Institute of Mathematical Sciences, New York Universit,1994
    [122] Natarajan B K. Sparse approximate solutions to linear systems. SIAM J Comput,1995,24:227-234
    [123] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAMreview,2001:129-159
    [124] Boyd S P, Vandenberghe L. Convex optimization. Cambridge Univ Pr,2004
    [125] Candes E, Romberg J. L1-magic: Recovery of sparse signals via convex programming.User guide, Applied&Computational Mathematics, California Institute of Technology,Pasadena, CA91125, USA, October,2005,4
    [126] Candes E J, Tao T. Decoding by linear programming. Information Theory, IEEETransactions on,2005,51:4203-4215
    [127] Candes E, Tao T. The dantzig selector: Statistical estimation when p is much larger than n.The Annals of Statistics,2007,35:2313-2351
    [128] Gilbert A.C., Guha S., Indyk P., et al. Near-optimal sparse fourier representations viasampling. In: STOC '02Proceedings of the thiry-fourth annual ACM symposium onTheory of computing,2002:152-161
    [129] Gilbert A, Strauss M, Tropp J, et al. Algorithmic linear dimension reduction in the l_1norm for sparse vectors. The Computing Research Repository,2006, vol.608079
    [130] Gilbert A.C., Strauss M.J., Tropp J.A., et al. One sketch for all: Fast algorithms forcompressed sensing. In: Proceedings of the thirty-ninth annual ACM symposium onTheory of computing,2007:237-246
    [131] Pati Y.C., Rezaiifar R., Krishnaprasad PS. Orthogonal matching pursuit: Recursivefunction approximation with applications to wavelet decomposition. In: Signals, Systemsand Computers, Conference Record of the Twenty-Seventh Asilomar,1993:40-44
    [132] Needell D, Tropp J A. Cosamp: Iterative signal recovery from incomplete and inaccuratesamples. Applied and Computational Harmonic Analysis,2009,26:301-321
    [133] Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularizedorthogonal matching pursuit. Foundations of Computational Mathematics,2009,9:317-334
    [134] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction.Information Theory, IEEE Transactions on,2009,55:2230-2249
    [135] Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing. Appliedand Computational Harmonic Analysis,2009,27:265-274
    [136] Duarte M F, Eldar Y C. Structured compressed sensing: From theory to applications.Signal Processing, IEEE Transactions on,2011,59:4053-4085
    [137] Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. Springer Seriesin Statistics,2001. Vol.1
    [138]石光明,刘丹华,高大化, et al.压缩感知理论及其研究进展.电子学报,2009,37(5):1070-1081
    [139] DeVore R A. Nonlinear approximation. Acta Numerica,1998,7:51-150
    [140] Temlyakov V N. Nonlinear methods of approximation. Foundations of ComputationalMathematics,2003,3:33-107
    [141] Zhang W. Study on matching pursuit based low-bit rate speech coding. Beijing: Instituteof Software Chinese Academy of Sciences,2002
    [142]张喜明,黄巍,张红旗.采用时频分析方法进行多目标信号的分辨.现代雷达,2007,28(11):45-47
    [143] Huo X. Sparse image representation via combined transforms: stanford university,1999
    [144]徐鹏.信号的稀疏分解及其在脑电信号处理中的应用研究:[博士学位论文].电子科技大学,2006
    [145] Daubechies I. The wavelet transform, time-frequency localization and signal analysis.Information Theory, IEEE Transactions on,1990,36:961-1005
    [146] Daubechies I. Orthonormal bases of compactly supported wavelets. Communications onpure and applied mathematics,1988,41:909-996
    [147]程正兴.小波分析算法与应用.西安交通大学出版社,1998
    [148] Aunon J. Evoked potentials research. Engineering in Medicine and Biology Magazine,IEEE,1992,11:67-68
    [149] Lobo A.P., Loizou P.C. Voiced/unvoiced speech discrimination in noise using gabor atomicdecomposition. In: Acoustics, Speech, and Signal Processing Proceedings (ICASSP '03)IEEE International Conference on,2003,1:820-823
    [150]朱明,金炜东,普运伟, et al.基于chirplet原子的雷达辐射源信号特征提取.红外与毫米波学报,2007,26(4):302-306
    [151]周忠根,孔令华.Gabor和chirplet字典中的子空间匹配追踪算法对比.昆明理工大学学报(理工版),2010,35(3):89-92
    [152] McClure M R, Carin L. Matching pursuits with a wave-based dictionary. SignalProcessing, IEEE Transactions on,1997,45:2912-2927
    [153] Adler J., Rao B.D., Kreutz-Delgado K. Comparison of basis selection methods. In:Signals, Systems and Computers, Conference Record of the Thirtieth AsilomarConference on1996:1:252-257
    [154] Kim S J, Koh K, Lustig M, et al. An interior-point method for large-scale l1-regularizedleast squares. Selected Topics in Signal Processing, IEEE Journal of,2007,1:606-617
    [155] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems. Selected Topics in SignalProcessing, IEEE Journal of,2007,1:586-597
    [156] W. Yin, S. Osher, J. Darbon, et al. Bregman Iterative Algorithms for Compressed Sensingand Related Problems. SIAM Journal on Imaging Sciences,2008,1(1):143-168
    [157]方红,杨海蓉.贪婪算法与压缩感知理论.自动化学报,2011, Vol.37(012):1413-1421
    [158] Donoho D L, Drori I, Tsaig Y, et al. Sparse solution of underdetermined linear equationsby stagewise orthogonal matching pursuit. Computer and Information Science,2006,114:1-39
    [159]闫斌,周小佳,王厚军, et al.无线传感器网络路由鲁棒性研究.计算机应用研究,2009,26(6):2184-2187
    [160] Keshav S. A control-theoretic approach to flow control. In: SIGCOMM '91Proceedings ofthe conference on Communications architecture&protocols,1991,21(4)
    [161] Zhao J, Govindan R. Understanding packet delivery performance in dense wireless sensornetworks. In: SenSys '03Proceedings of the1st international conference on Embeddednetworked sensor systems,2003:1-13
    [162] Hu Y C, Johnson D B. Design and demonstration of live audio and video over multihopwireless ad hoc networks. In:MILCOM2002Proceedings,2002,1212(2):1211-1216
    [163] Couto D S J D, Aguayo D, Bicket J, et al. A high-throughput path metric for multi-hopwireless routing. Wireless Networks,2005,11:419-434
    [164] Baraniuk R, Davenport M, DeVore R, et al. A simple proof of the restricted isometryproperty for random matrices. Constructive Approximation,2008,28:253-263
    [165] Christensen O. An introduction to frames and riesz bases. Denmark: birkhauser, Boston,2003
    [166] Wojtaszczyk P. Stability and instance optimality for gaussian measurements in compressedsensing. Foundations of Computational Mathematics,2010,10:1-13
    [167] Yin W, Morgan S, Yang J, et al. Practical compressive sensing with toeplitz and circulantmatrices. Rice University CAAM Technical Report TR10-01,2010