低频压电俘能器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新一代传感技术的发展较大程度上依赖于改进微电子器件的无线供能技术,即直接从环境中提取能量。能从环境中俘获能量的装置称为俘能器(energy harvester)。在几种已见的俘能器(静电、电磁、压电等)中,压电俘能器从环境振动或噪声中提取能量的性能最好。考虑到以往的压电俘能器研究要么集中于对压电结构的优化而将电路端简化成阻抗或者系统阻尼,要么集中于电路优化而将压电端简化成电流源,这样处理明显忽略了压电端与电路端的耦合作用,得不到性能优良的俘能器,因此,本论文跨越压电结构分析与电路设计这两个学科,建立起了可用于压电俘能器整体优化和设计的非线性耦合作用模型,将压电俘能结构与储能电路有效地连接在一起,从而通过对多时间尺度的相互作用的研究来开展压电俘能器的整体优化。具体表现以下几个方面:
     (1)从三维压电理论的基本方程出发,建立了对微电子器件设计和分析非常有用的梁、板、壳型压电结构的动力学方程。
     (2)建立了压电双晶片梁型俘能结构与RLC储能电路间的耦合分析模型,用多时间尺度方法研究了俘能过程与储能过程的非线性耦合作用规律,并分析了俘能器的重要结构参数和电路参数对其性能的影响机理。在此基础上,对压电俘能器性能进行了整体优化。
     (3)提出了一种可以从低频振动环境中有效提取能量的螺旋状压电俘能器模型,并利用传递矩阵方法建立了这类俘能结构的耦合计算模型,分析讨论了各系统参数对俘能器性能的影响。压电结构从环境中俘获的能量不经过储存而直接供给微电子器件工作。这种型式的俘能器一般比较适用于从较高振动水平的环境中俘能,即所俘获的能量不需要累积就能有效保证微电子器件的不间断工作。
     (4)更进一步建立了一种低频、性能好、服务期长、易微型化的自适应压电俘能器模型。其两个重要特征是:一是通过调节电路参数占空比,可以有效保证在变幅振动中工作的压电俘能结构性能最优;二是在压电端引入SSHI,可进一步延长整流器的导通时间,可从环境振动中提取更多能量。将压电结构与储能电路耦合成一个整体,建立了俘能过程与储能过程的耦合作用模型。运用多时间尺度方法对俘能-储能过程进行了综合计算,并根据计算结果对螺旋状压电俘能器进行了整体优化设计。这种类型的俘能器具备良好的俘能性能,并将俘获的能量有效地储存。因其俘能和储能的高效性,具有更广泛的适用范围为微电子器件无线供能,其中包括振动水平相对较低的工作环境。
     本文建立了三种低频俘能器模型,运用多时间尺度方法,对俘能器的俘能端和电路端之间耦合进行了计算和分析,得到了一系列适用于不同俘能器模型的优化方法和结论。这些成果对压电俘能器俘能结构和储能电路的优化设计,提高俘能器性能具有重要的指导意义。为俘能器的研究提供了行之有效的分析方法,为其它类型俘能器的研究提供了范例。
The developments of new generation sensor technology rely significantly on the improvement of wireless power supply technology in microelectronic devices. In fact, energy to supply microelectronic devices can be scavenged directly from latent power source of environment. The device which picks up energy from environment is called“energy harvester”. The piezoelectric energy harvester has the best performance among common energy harvesters (electrostatic energy harvesters, electromagnetic energy harvesters and piezoelectric energy harvesters etc.). Considering the previous research about piezoelectric energy harvesters concentrate on the piezoelectric structure’s optimization, however the electric circuit’s side is simplified to impedance or system damping; or concentrate on the electric circuit’s optimization and the piezoelectric side is simplified to current source, treating like these neglect the coupling action between piezoelectric side and electric circuit side, so the high performance harvester can not be obtained.
     Specific contents as follows:
     (1) From three-dimension piezoelectric fundamental equation, we set up dynamic equations of piezoelectric structure with beam, plate and shell. It is useful to design and analyses on microelectronic device.
     (2) This paper builds up coupling action model of bimorph beam-type harvester and RLC power storage circuit. We study the nonlinear coupling law between harvesting process and store process by means of multiple time scale method, and analyze on mechanism of important structure parameters and circuit parameters of harvester on its performance. Base on this, we optimize on performance of whole energy harvester.
     (3) We propose a kind of low frequency piezoelectric energy harvester structure using spiral-shaped bimorph, and build a coupling counting model for the energy harvester by using transfer matrix method. Analyze and discuss the affection of harvester system parameters on its performance. Piezoelectric structure picks up energy to power microelectronics directly and no need to storage. This type of harvester suits to scavenge energy from ambient with high vibration level. This means that energy is no need to accumulate and enough to ensure microelectronic device keeps working effectively.
     (4) This paper brings forward to set up a self-adaptive energy harvester mode with lower working frequency, better performance and longer service life time. It has two important characteristic: firstly, through modulating duty cycle of circuit parameter, piezoelectric structure can be optimized even under situation of varied vibration amplitude; secondly, introduction of SSHI into piezoelectric part further elongates the close time of the rectifier, and can pick up much more energy from vibration environment. The piezoelectric structure and storage circuit are coupled into a whole, and set up a coupling action model between harvesting process and storing process. Comprehensive calculates on harvesting-storing coupling process by means of multiple time scale. According to the results, integral optimum design on the harvester. This kind of harvester has a good performance, and stores the harvesting energy effectively, even under the low level environmental vibration. This kind of harvester has a wide-rang to supply energy to microelectronic device.
     This paper has set up three types of low frequency harvester models. By utilizing multiple times scale method, we calculates and analyzes the coupling between the piezoelectric end and circuit end, and obtains a series of methods and conclusions which respectively suits to different kind of harvester model. These achievements have instructional significance to optimum design on harvesting structure and storage circuit, and performance of the harvester. At the same time, it has given an effective analytic method and provided examples to study on harvester.
引文
[1] Chandrakasan A, Amirtharajah R, Goodman J, et al. Trends in low power digital signal processing[J]. 1998: 604-607.
    [2] Davis W R, Zhang N, Camera K, et al. A design environment for high throughput, low power dedicated signal processing systems[J]. 2001: 545-548.
    [3] Liao W H, Wang D H, Huang S L. Wireless Monitoring of Cable Tension of Cable-Stayed Bridges Using PVDF Piezoelectric Films[J]. Journal of Intelligent Material Systems and Structures. 2001, 12(5): 331-339.
    [4] 鲁开智, 陶国才. 临时心脏起搏器的应用[J]. 中华麻醉学杂志. 2005(11): 879-880.
    [5] Billinghurst M, Starner T. Wearable devices: new ways to manage information[J]. Computer. 1999, 32(1): 57-64.
    [6] Joseph A D. Energy harvesting projects[J]. IEEE Pervasive Computing. 2005, 4: 69-71.
    [7] Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics[J]. IEEE Pervasive Computing. 2005, 4(1): 18-27.
    [8] Williams C B, Yates R B. Analysis Of A Micro-electric Generator For Microsystems[J]. The 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX. Transducers' 95. 1995, 1.
    [9] Ching N N, Chan G M, Li W J, et al. PCB integrated micro-generator for wireless systems[J]. Intl. Symp. on Smart Structures and Microsystems. 2000: 19-21.
    [10] Meninger S, Mur-miranda J O, Amirtharajah R, et al. Vibration-to-Electric Energy Conversion[J]. IEEE Transactions On Very Large Scale Integration (Vlsi) Systems. 2001, 9(1): 64-76.
    [11] Peano F, Tambosso T, Di E D. Design and optimization of a MEMS electret-basedcapacitive energy scavenger[J]. Journal of Microelectromechanical Systems. 2005, 14(3): 429-435.
    [12] Roundy S, P W, Rabaey J. A study of low lever vibrations as a power source for wireless sensor nodes[J]. Computer Communications. 2003, 26: 1131-1144.
    [13] Roundy S, Leland E S, Baker J. Improving power output for vibration-based energy scavengers[J]. IEEE Pervasive Computing. 2005, 4: 28-36.
    [14] Roundy S, Wright P K. A piezoelectric vibration based generator for wireless electronics[J]. Smart Mater.Struct. 2004, 13: 1131-1142.
    [15] Sodano H A, Inman D J, Park G. A Review of Power Harvesting from Vibration using Piezoelectric Materials[J]. The Shock and Vibration Digest. 2004, 36(3): 197-205.
    [16] Mateu L, Moll F. Review of energy harvesting techniques and applications for microelectronics[J]. Proc. SPIE. 2005, 5837: 359-373.
    [17] Yang J S. A thickness-shear high voltage piezoelectric transformer[J]. International Journal of Applied Electromagnetics and Mechanics. 1999, 10(2): 105-121.
    [18] Yang J S. Extensional vibration of a nonuniform piezoceramic rod and high voltage generation[J]. International Journal of Applied Electromagnetics and Mechanics. 2002, 16(1): 29-42.
    [19] Hu Y T, Zhang X, Yang J, et al. Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers[J]. IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control. 2003, 50(7): 773-781.
    [20] Starner T. Human-powered wearable computing[J]. IBM System Journal. 1996, 35: 618.
    [21] Gonzalez, Jose L, Antonio R, Francesc M. A prospect on the use of piezoelectric effect to supply power to wearable electronic devices[J]. 2001, 1: 202-207.
    [22] Hausler E, Stein E. Implantable Physiological Power Supply with PVDF Film[J]. Ferroelectrics. 1984, 60: 277–282.
    [23] Umeda M, Nakamura K, Ueha S. Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator[J]. JPN J Appl Phys Part 1, Regul Rap Short Note Rev Rap. 1996, 35(5): 3267-3273.
    [24] Umeda M, Nakamura K, Ueha S. Energy Storage Characteristics of a Piezo-Generator using Impact Induced Vibration[J]. Jpn. J. Appl. Phys. 1997, 36(5B): 3147–3151.
    [25] Kendall C. Parastic power collection in shoes mounted devices[D]. MIT, 1998.
    [26] Shenck N. A Demonstration of Useful Electric Energy Generation from Piezoceramics in a Shoe, a MS Thesis[D]. 1999.
    [27] Shenck N S. Piezoelectric shoe power: two approaches[J]. IEEE Computer Society, Internet Page Article. 2002.
    [28] Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoelectrics[J]. Micro, IEEE. 2001, 21(3): 30-42.
    [29] Paradiso J A. Systems for Human-Powered Mobile Computing[C]. 2006.
    [30] Kimura M. Piezoelectric generation device: US Patent, 5801475[P].
    [31] Rastegar J, Haarhoff D, Pereira C, et al. Piezoelectric-based energy-harvesting power sources for gun-fired munitions[J]. Proceedings of SPIE. 2006, 6174: 61740W.
    [32] Clark W, Ramsay M J. Smart material transducer as power sources for MEMS devices[J]. 2000.
    [33] Elvin N G, Elvin A A, Spector M. A self-powered mechanical strain energy sensor[J]. Smart Materials & Structures. 2001, 10: 293-299.
    [34] Elvin N G, Elvin A A, Spector M. Implantable bone strain telemetry system and method: US, 6034296[P].
    [35] Han J, Von J A, Le T, et al. Novel power conditioning circuits for piezoelectric micropower generators[J]. 2004, 3: 1541-15463.
    [36] Lal A, Duggirala R, Li H. Pervasive power: A radioisotope-powered piezoelectric generator[J]. IEEE Pervasive Computing. 2005, 4: 53-61.
    [37] Duggirala R J, Li H, Lal A. An autonomous self-powered acoustic transmitter using radioactive thin films[J]. Ultrasonics Symposium, 2004 IEEE. 2004, 2: 1328-1321.
    [38] Glynne-jones P, Beeby S P, White N M. Towards a piezoelectric vibration-powered microgenerator[J]. 2001, 148(2): 68-72.
    [39] Lee B S, He J J, Wu W J, et al. MEMS generator of power harvesting by vibrations using piezoelectric cantilever beam with digitate electrode[J]. Proceedings of SPIE. 2006, 6169: 61690B.
    [40] Priya S. Modeling of electric energy harvesting using piezoelectric windmill[J]. Applied Physics Letters. 2005, 87(18): 184101.
    [41] Churchill D L, Hamel M J, Townsend C P, et al. Strain energy harvesting for wireless sensor networks[J]. Smart Structures and Materials. 2003, 5055: 319-327.
    [42] Sodano H A, Magliula E A, Park G, et al. Electric power generation from piezoelectric materials[J]. The 13th International Conference on Adaptive Structures and Technologies, 7–9 October. 2002.
    [43] Sodano H A, Park G, Leo D J, et al. Use of piezoelectric energy harvesting devices for charging batteries[J]. Smart Structures and Materials. 2003, 5050: 101-108.
    [44] Wang Z L, Song J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays[J]. Science. 2006, 312(5771): 242-246.
    [45] Cho Y S, Pak Y E, H C, et al. Five-port equivalent electric circuit of piezoelectric bimorph beam[J]. Sensors Actuators. 2000, 84: 140-148.
    [46] Ha S K. Analysis of the asymmetric triple-layered piezoelectric bimorph using equivalent circuit models[J]. J.Acoust.Am. 2001, 110: 856-864.
    [47] Aoyagi R, Tanaka H. Equivalent circuit analysis of piezoelectric bending vibrators[J]. Japanese Journal of Applied Physics. 1995, 33: 3010-3014.
    [48] Koike Y, Hirashima T, Sasaki Y. Analysis and design of AT-cut quartz resonators by three dimensional finite element method[J]. 1997: 1101-1108.
    [49] Keawboonchuay C, Engel T G. Electrical power generation characteristics of piezoelectric generator under quasi-static and dynamic stress conditions[J]. IEEE Trans.on Plasma Science. 2003, 50: 1377-1382.
    [50] Keawboonchuay C, Engel T G. Maximum power generation in a piezoelectric pulse generator[J]. IEEE Trans.on Plasma Science. 2003, 31: 123-128.
    [51] Lu F, Lee H P, Lim S P. Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications[J]. Smart Materials & Structures. 2004, 13: 56-63.
    [52] Yang J S, Zhou H G, Hu Y T, et al. Performance of a piezoelectric harvester in thickness-stretch mode of a plate[J]. IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control. 2005, 52(10): 1872-1876.
    [53] Jiang S N, Li X F, Guo S H, et al. A piezoelectric analysis of a vibrating ceramic bimorph for power harvesting[J]. Smart Materials & Structures. 2005, 14: 769-774.
    [54] Hu Y T, Hu T, Jiang Q. On the interaction between the harvesting structure and the storage circuit of a piezoelectric energy harvester[J]. IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control. 2005.
    [55] Hu T, Hu Y T, Jiang Q. Coupled analysis for the harvesting structure and the modulating circuit in a piezoelectric bimorph energy harvester (in review)[J]. IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control. 2005.
    [56] Hu H P, Gao F R, Xue H, et al. Damping effect on the performance of a piezoelectric bimorph energy harvester(in review)[J]. Arctive Applied Mechanic. 2006.
    [57] Mohan N, Undeland T, Robbins W. Power Electronics: Converters, Applications and Design[M]. Wiley, 1995.
    [58] Ottman G K, Hofmann H F, Bhatt A C, et al. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply[J]. IEEE Transactions On Power Electronics. 2002, 17(5): 669-676.
    [59] Ottman G K, Hofmann H F, Lesieutre G A. Optimized piezoelectric energyharvesting circuit using step-down converter in discontinuous conduction mode[J]. IEEE Transactions On Power Electronics. 2003, 18(2): 696-703.
    [60] Lesieutre G A, Ottman G K, Hofmann H F. Damping as a result of piezoelectric energy harvesting[J]. J.Sound and vibration. 2004, 269: 991-1001.
    [61] Hu Y T, Hu T, Xue H, et al. An energy harvester with an improved piezoelectric harvesting structure and an adaptive storage circuit[J]. Smart Materials and Structures. (submitted). 2006.
    [62] 胡 元 太 , 薛 欢 , 胡 洪 平 , et al. 能 高 效 俘 能 和 储 能 的 压 电 俘 能 器200610031553.9[P].
    [63] Buchen P W. Plane waves in linear viscoelastic media[J]. Geophys. JR Astron. Soc. 1971, 23: 531–542.
    [64] Tanaka K, Kon-no A. Harmonic waves in a linear viscoelastic plate[J]. Bull. JSME. 1980, 23: 185-193.
    [65] Chervinko O P, Senchenkov I K. Harmonic viscoelastic waves in a layer and in an infinite cylinder[J]. International Applied Mechanics. 1986, 22(12): 1136-1141.
    [66] Nkemzi D. The Rayleigh-lamb dispersion equation for a viscoelastic plate[J]. Mechanics research communications. 1993, 20(3): 215-222.
    [67] Lamb J, Richter J. Anisotropic Acoustic Attenuation with New Measurements for Quartz at Room Temperatures[J]. Proc. R. Soc. London. 1966, 293A: 479-492.
    [68] Ballato A. Doubly rotated thickness mode plate vibrators[J]. Physical Acoustics. 1977: 115–181.
    [69] Lee P C, Liu N, Ballato A. Thickness vibrations of a piezoelectric plate with dissipation[J]. IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control. 2004, 51(1): 52-62.
    [70] 栾桂冬, 张金铎, 王仁乾. 压电换能器和换能器阵[M]. 北京: 北京大学出版社, 1990.
    [71] Cho J H, Richards R F, Richards C D. Efficiency of energy conversion bypiezoelectrics[J]. Applied Physics Letters. 2006, 89: 1041071-1041073.
    [72] Sodano H A, Park G, Leo D J, et al. Model of Piezoelectric Power Harvesting Beam[J]. Proceedings of ASME International Mechanical Engineering Congress and Exposition. 2003.
    [73] Kasyap A, Lim J, Johnson D, et al. Energy reclamation from a vibrationing piezoceramic composite beam[J]. Ninth International Congress on Sound and Vibration, ICSV9. 2002.
    [74] Yang J S. Piezoelectromagnetic waves in a ceramic plate[J]. IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control. 2004, 51(8): 1035-1039.
    [75] Uffc S C O T I. IEEE Standard on Piezoelectricity[S]. USA, 1987.
    [76] 孙慷, 张福学. 压电学[M]. 北京: 国防工业出版社, 1984.
    [77] 张福学, 王丽坤. 现代压电学[M]. 2001.
    [78] Tiersten H F. Linear Piezoelectric Plate Vibrations[M]. New York: Plenum, 1969.
    [79] Yang J S. An Introducton to the Theory of Piezoelectricity[M]. Springer, New York, 2005.
    [80] Lee P C. Electromagnetic radiation from an AT-cut quartz plate under lateral-field excitation[J]. 1988: 407-4111.
    [81] Lee P C, Kim Y G, Prevost J H. Electromagnetic radiation from doubly rotated piezoelectric crystal plates vibrating at thickness frequencies[J]. 1989: 423-4281.
    [82] Tiersten H F, Sham T L. On the necessity of including electrical conductivity in thedescription of piezoelectric fracture in real materials[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1998, 45(1): 1-3.
    [83] Hu Y T, Yang J S, Jiang Q. Characterization of electroelastic beams under biasing fields with applications in buckling analysis[J]. Archive of Applied Mechanics (Ingenieur Archive). 2002, 72(6): 439-450.
    [84] Hu Y, Chen C, Li,guoqing, Yang J, et al. Basic curvilinear coordinate equations of electroelastic plates under biasing fields with applications in buckling analysis[J]. ActaMechanica Solida Sinica. 2002, 15(3): 189-200.
    [85] 黄克智. 板壳理论[M]. 北京: 清华大学出版社, 1987.
    [86] 肖明心. 板的稳定理论[J]. 四川科学技术出版社. 1993.
    [87] Hu Y T, Yang J S, Jiang Q. On modeling of extension and flexure response of electroelastic shells under biasing fields[J]. Acta Mech. 2002, 156: 163-178.
    [88] 刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 1992.
    [89] 诺顿MP. 工程噪声和振动分析基础[M]. 北京: 航空工业出版社, 1993.
    [90] Huo Y, Jiang Q. Effect of polarization switch upon stress in thickness vibration of a ferroelectric plate[J]. Journal of the American Ceramic Society. 1996, 79(3): 651-654.
    [91] 邱关源. 电路[M]. 北京: 高等教育出版社, 1999.
    [92] Chen B, Cheeseman B A, Safari A, et al. Theoretical and numerical predictions of the electromechanicalbehavior of spiral-shaped lead zirconate titanate (PZT) actuators[J]. IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control. 2002, 49(3): 319-326.
    [93] 胡元太, 杨嘉实, 郭少华. 微型低频压电俘能器200520051980.4[P].
    [94] Tzou H S. Piezoelectric Shells[M]. Dordrecht: Kluwer, 1993.
    [95] 何福保, 沈亚鹏. 板壳理论[M]. 西安: 西安交通大学出版社, 1993.
    [96] Auld B A. Acoustic Fields and Waves in Solids[M]. New York: Wiley, 1973: 357-382.
    [97] Holland R, Errnisse E P. Design of Resonant Piezoelectric Devices[J]. 1969: 12-16.
    [98] Guyomar D, Badel A, Lefeuvre E, et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing[J]. IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control. 2005, 52: 584-595.
    [99] 陈坚. 电力电子学-电力电子变换和控制技术[M]. 北京: 高等教育出版社, 2002.
    [100] 徐曼珍. 新型蓄电池原理与应用[M]. 北京: 2005.
    [101] 国振喜. 工程微分方程解法与实例[M]. 北京: 机械工业出版社, 2004.
    [102] 《数学手册》编写组. 数学手册[M]. 北京: 高等教育出版社, 1979.
    [103] 吴崇试. 数学物理方法[M]. 北京: 北京大学出版社, 1999.
    [104] Badel A, Benayad A, Lefeuvre E, et al. Single crystals and nonlinear process for outstanding vibration-powered electrical generators[J]. IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control. 2006, 53(4): 673-684.
    [105] Wu W J, Chen Y Y, Lee B S, et al. Tunable resonant frequency power harvesting devices[J]. Proceedings of SPIE. 2006, 6169: 61690A.
    [106] 贺玲凤, 刘军. 声弹性技术[M]. 北京: 科学出版社, 2002.
    [107] 胡大友. 快速充电的基本模式与停充控制方式[J]. 电气时代. 2001(7): 16-17.
    [108] Guan M, Liao W H. On the energy storage devices in piezoelectric energy harvesting[J]. 2006, 6169: 61690C.