Bi_2Te_3-Sb_2Te_3基纳米复合热电材料的水热合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是一种能将热能和电能直接转换的功能材料,在温差电致冷和温差发电方面具有重要的应用前景。传统Bi_2Te_3基合金热电优值ZT在1左右,是目前室温附近性能较好的热电材料。而近年来不少学者把目光转向了性能更好的Bi_2Te_3-Sb_2Te_3基纳米复合热电材料以及Sb_2Te_3单相合金。本文先采用一步水(溶剂)热法合成出Bi_2Te_3及Sb_2Te_3单相,然后在三元合金复合材料的研究中,尝试了Sb_2Te_3-Bi_2Te_3基材料的二次(两步)水热法合成实验;采用一步混合水热法制备出BixSb2-xTe3三元合金;通过物理混合法制备Bi_2Te_3/ Sb_2Te_3三元复合材料并测试了其电性能。
     以N2H4·H2O为还原剂分别在水热条件与溶剂热(乙醇)条件下合成出了Bi_2Te_3单相粉体。SEM分析表明后者环境下的产物更均匀,但尺寸颗粒相对较大。电性能测试表明合成的样品均为n型半导体,虽然后者环境下样品的电导率不到前者的1/8,但Seebeck系数比前者明显高出许多,达到-98μV/K,这主要由于样品的微观形态与杂质Te的含量不同所引起。
     240℃,48h水热条件下合成出了纯相的Sb_2Te_3六角片。研究表明反应时间,碱浓度直接影响着Sb_2Te_3的纯度其次是形貌;温度对Sb_2Te_3六角晶片的厚度有着重要影响;不同的Te源会导致Sb_2Te_3晶片形态、尺寸的变化,主要是由于形核机理的不同而导致晶核数量上的差异所引起;表面活性剂EDTA-2Na使晶体变得更宽大主要取决于自身与Sb3+的配位作用,而PVP通过改变水热环境导致产物中有大量的不规则Sb_2Te_3块状晶粒存在。
     先以K(SbO)C4H4O6 ,Te粉为原料,N2H4·H2O为还原剂,水热合成出富Te的Sb_2Te_3+x前驱粉体,再以此为原料再加入Bi(NO3)3·5H2O等进行第二次水热合成,最终得到具有部分核壳结构的Sb_2Te_3-(Bi_2Te_3)x/3的纳米复合材料。XRD测试表明在第二步水热合成过程中过量的Te已经得了到最大程度的利用。SEM及EDAX分析表明Sb_2Te_3- (Bi_2Te_3) x/3已初步具有了部分的纳米核壳包覆结构。电性能测试表明正是这种不完全包覆界面的存在,使得该材料室温下的Seebeck系数较纯Sb_2Te_3提高了约60μV/K。
Thermoelecrtic (TE) materials are a kind of functional materials which can directly convert heat energy to electricity or reversely and it has an important application prospect in TE cooling and power generating.The traditional Bi_2Te_3 based materials, whose figure of merit ZT is about 1, are known as one of the best TE materials currently at room temperature unit now. With the Bi_2Te_3 based materials being researched more sophisticated, many scholars turned their eyes to Sb_2Te_3-Bi_2Te_3 nanocomposites and Sb_2Te_3 single phase. In this paper,firstly,Bi_2Te_3 and Sb_2Te_3 single phase was prepaired by one-step hydrothermal (solvothermal) synthesis respectively. Then in the studying ternary alloyed composites, we had a research on the double (two-step ) hydrothermal synthesis of Sb_2Te_3-Bi_2Te_3 based compounds;BixSb2-xTe3 ternary material was hydrothermally synthesized; Bi_2Te_3 / Sb_2Te_3 composites was prepared by physical mixed methods and test its electrical properties was tested.
     Bi_2Te_3 nanopowders was hydrothermally and solvothermally(ethanol) synthesized respectively N2H4·H2O as reductive.The SEM images showed that the latter product more uniform, but at relatively larger size . Electrical property tests showed that the samples are both n-type semiconductors .Although the conductivity of the latter simple is very little,only 1 / 8 of the former, its Seebeck coefficient which reach about -98μV / K is obviously much higher than the former . This was mainly due to the different morphology of samples as well as different impurity content of Te .
     Sb_2Te_3 hexagonal nanoplates was hydrothermally synthesized at 240℃in 48h. Study showed that the reaction time, alkali concentration directly impact on the purity and morphology images of Sb_2Te_3 and temperature impacts on the thickness of the Sb_2Te_3 hexagonal plates significantly. Different Te sources leading to the changes of Sb_2Te_3 plates in morphology and size, mainly due to the different nucleation mechanism which led to the difference in the number of Sb_2Te_3 nuclei. In addition, surfactants EDTA-2Na make Sb_2Te_3 crystal bigger and thiner depended primarily on its ligand-relationship with the Sb3+ then PVP caused a large number of irregular Sb_2Te_3 particles by changing the hydrothermal environment .
     Precursor Sb_2Te_3+x powders was hydrothermally synthesized with Te powders and K(SbO)C4H4O6 as precursors, N2H4·H2O as reductive firstly.Then the second hydrothermal synthesis was operated with Sb_2Te_3+x ,Bi(NO3)3·5H2O, N2H4·H2O,KOH as materials so as to get the final product—Sb_2Te_3-(Bi_2Te_3) x nanocomposites with part-coated core-shell structure. XRD tests showed that in the second step hydrothermal synthesis process the excessive Te in Sb_2Te_3+x had been fully used. SEM and EDAX analysis showed that Sb_2Te_3-(Bi_2Te_3) x had formed part of core-shell structure initially which resulted Seebeck coefficient of the composites increased by 60μV / K than pure Sb_2Te_3 at room temperature.
引文
1 F. D. Rosi, B. Abeles and R. V. Jensen. Materials for thermoelectric refrigeration. J. Phys Chem.Solids, 1959, 10(2-3): 191~200
    2 T. M. Tritt, M. A. Subramanian. Thermoelectric materials, phenomena, and applications: A bird's eye view. Mrs Bull, 2006, 31(3): 188-194
    3 H. J. Goldsmid, J. E. Giutronich and M. M. Kai}la, Solar thermoelectric generation using bismuth telluride alloys. Sol. Energy, 1980, 24(5): 435~440
    4 M. V. Vedernikov, E. K. Iordanishvili and A. F.Ioffe, Origin of modern semiconductor thermo-electric energy coversion. Proc. 17th Int. Conf. on Thermoetectrics. IEEE, 1998: 37~42
    5 R. Fettig. A view to recent developments in thermoelectric sensors. Proc. 15th Int. Conf. on Thermoelectrics. IEEE, 1996: 315~320
    6 J. Estarte, G. Min, D. M. Rowe. Modelling Hear Exchangers for Thermoelectric Generators. J. Power Sources 2000, 93: 72~76
    7 B. D. H. Littman. Theoretical Bound on the Thermoelectric Figure of Merit from Irreversible Thermodynamics. J. Appl. Phys. 1961, 32(45): 217~219
    8 H. Javan. Optimal Design of Thermoelectric Generator. 2000 IEEE, 18th International Conference on Thermoelectrics. 1999: 345~348
    9 N. Kondo, S. Yamaguchi, I. Nomura, et al. New Proposal of Medium Temperature Thermoelectric Conversion in Power Plant. 2000 IEEE, 18th International Conference on Thermoelectrics. 1999: 88~91
    10 G. Min, D. M. Rowe. Improved Model for Calculating the Coefficient of Performance of a Peltier Module. Energ. Convers. Manage. 2000, 41: 163~171.
    11 R. Venkatasubramnian, E. Siivola, T. Collpitts, et al. Thin-film Thermoelectric Devices with High Toom-temperature Figures of Merit. Nature 2001, 413: 597~602
    12 S. A. Omer, D. G. Infield. Design Optimization of Thermoelectric Devices for Solar Power Generation. Sol. Energ. Mat. Sol. C. 1998, 53: 67~82
    13 T. Takeuchi, K. Soda, T. Kondo, et al. Contribution of Electronic Structure to the Large Thermoelectric Power in Layered Cobalt Oxides. Phys. Rev. B 2004, 69: 125410/1~125410/9
    14 Heikens. Thermoelectricity: Science and Engineering. Interscience Publishers, New York-London, 1961: 145~147.
    15马秋花,赵昆渝.热电材料综述[J ] .电工材料. 2004, 1: 43~47
    16 T. C. Harman, P. J. Taylor, M. P. Walsh, et al. Quantum Dot Superlattice Thermoelectric Materials and Devices. Science 2002, 297(5590): 2229~2232
    17 T. C. Harman, M. P. Walsh, B. E. Laforge, et al. Nanostructured Thermoelectric Materials. J. Electron, Mater. 2005, 34(5): L19~L22
    18 R. Venkatasubramanian. Phonon Blocking Electron Transmitting Superlattice Structures as Advanced Thin Film Thermoelectric Materials. In Recent Trends in Thermoelectric Materials ResearchⅢ. 2001: 175~201
    19 P. Blake, S. Latturner, J. D. Bryan, et al. Band Structure and Thermoelectric Properties of the Clatrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30. J. Chem. Phys. 2001, 115: 8060~8073
    20 L. Mihaly. Crystal Cages for Clean Coolers. Nature 1998, 395: 876~878
    21 Q. Shen, L. Chen, T. goto, et al. Effects of Partial Substitution of Ni by Pd on the Thermoelectric Properties of ZrNiSn-based Half-Heusler Compounds. Appl. Phys. Lett. 2001, 79: 4165~4167
    22 T. Ito, I. Terasaki. Thermoelectric Properties of Bi2.3-xPbxSr2.6Co2Oy Single Crystals. J. Appl. Phys. 2000, 39: 6658~6660
    23 F. J. Disalvo. Thermoelectric Cooling and Power Generation. Science 1999, 285: 703~706.
    24 D. M. Rowe. CRC Handbook of Thermoelectric. D. M. Rowe Ed. FL1995, Boca:CRC Press
    25高敏,张景韶, D. M. Rowe.温差电转换及其应用.第一版,北京:兵器工业出版社. 1996, 276~317
    26李玲玲,张丽鹏等.热电材料的研究进展[J].山东陶瓷. 2007, 30(2):19~26
    27 R. Funahashi, I. Matsubara, I. Hiroshi. et al. An Oxide Single Crystal with High Thermoelectric Performance in Air. Jpn. J. Appl. Phys. 2000, 39: 1127~1129
    28 Ikami, N. Ando, R. Funahashi. The Effect of Ag Addition on Electrical Properties of Thethermoelectric Compound Ca3Co4O9. J. Solid State Chem. 2005, 178: 2186~2190
    29 Hebert, S. Lambert, D. Pelloquin, et al. Large Thermopower in a Metallic Cobaltite: The layered Tl-Sr-Co-O Misfit. Phys. Rev. B 2001, 64: 172101/1~172101/4
    30 S. Galasso. Structure, Properties and Preparation of Perovskite-type Compounds, Pergamon Press, Oxford. 1969: 73
    31 G. S. Nolas, D. T. Morelli, T. M. Tritt. Skutterudites: A phonon-glass-electron crystal approachto advanced thermoelectric energy conversion applications. Annual Review of Materials Science.1999, 29: 89~116
    32 G. S. Nolas, J. Poon, M. Kanatzidis. Recent developments in bulk thermoelectricMrs Bull. 2006. 31: 199-205
    33 G. A. Slack. New Materials and Performance Limits for Thermoelectric Cooling. Materials Research Society. 1997, 478: 47~51
    34 C. Sales. Smaller is Cooler. Science. 2002, 295: 1248~1249
    35 W. Jeitschko. Metallurgical Transactions[J]. 1970(1): 315
    36 S. R. Culp, S. J. Poon, N. Hickman, et al. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 degrees C. Appl. Phys. 2006, 88(4): 042106/1~042106/3
    37 Q. Shen, L. D. Chen, et al. Effectsofpartial substitution of NibyPd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds [J]. Appl Lett. 2001, 79: 4165
    38 S. Bhattacharya, T. M. Tritt, et al. Grain structure effects on the lattice thermal conductivity ofTi-based half-Heusleralloys[J]. Appl Phys. Lett. 2002, 81: 43
    39 X. Y. Huang, Z. Xu, L. D. Chen. The thermoelectric performance of ZrNiSn/ZrO2 composites [J]. Solid State Commun. 2004, 130: 181
    40 H. Hohl, A. P. Ramirez, C. Goldmann et al. New Compounds with MgAgAs-type Structure: NbIrSn and NbIrSb. J. Phys: Condens. Matter. 1998, 10: 7843~7848
    41 A. Purkayastha, F. Lupo, S. Kim, et al. Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods. Adv. Mater. 2006, 18(4): 496
    42孙霆,朱铁军,赵新兵.纳米结构Bi2Te3化合物的低温湿化学合成.化学学报. 2005, 63:1515
    43 Bo Zhou, Yu Zhao, Lin Pu, et al. Microwave-assisted synthesis of nanocrystalline Bi2Te3. Mater.Chem. Phvs. 2006. 96(2-3): 192~196
    44 Y. Gelbstein, Z. Dashevsky and M. P. Dariel, High performance n-type PbTe-based materials for thermoelectric applications. Physica B, 2005, 363(1-4): 196~205
    45 W. Z. Wang, B. Poudel, D. Z. Wang, et al.. Synthesis of PbTe nanoboxes using a solvothermal technique. Adv. Mater. 2005, 17(17): 2110
    46 M. N. Tripathi, C. M. Bhandari. High-temperature thermoelectric performance of Si-Ge alloys. J. Phys-Condens. Mat. 2003, 15(31): 5359-5370
    47 Z. W. Jiang, W. L. Zhang, L. Q. Yan, et al. Anisotropy of the Seebeck coefficient in Czochralski grown p-type Site single crystal. Mater. Sci. Eng. B-Solid. 2005, 119(2): 182~184
    48 D. Y. Chung, T. Hogan, P. Brazis et al. CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Application. Science. 2000, 287: 1024~1027
    49 D. A. Broido, T. L. Reinecke. Thermoelectric transport in quantum wellsuperlattices. Appl Phys Lett. 1997, 70: 2834
    50 Hugh W Hillhouse, Mark T Tuoninen. Modeling the thermoelectric transport properties of nanowires embedded in oriented microporous and mesoporous film. Microp Mesop Mater. 2001, 47: 39
    51 L. Chaput, P. Pecheur, J. Tobola, et al. Transport in doped skutterudites: Ab initio electronic structure calculations.Phys Rev B. 2005, 72: 085126
    52 S. L. Youn, T. L. Freeman. First-principles electronic struc-ture and its relation to thermoelectric properties of Bi2Te3. Phys Rev B. 2001, 63: 085112
    53 X. Guiying, G.. Yanping, G. Changchun, et al. Thermoelectric properties of p-type(Bi0.15Sb0.85)2Te3-PbTe graded thermoelectric materials with different barriers. J University Sci Techn Beijing. 2005, 12: 347
    54 G. S. Mbrian, S. Jeff. Thermoelectric Materials:New Approaches to an Old Problem. Physics Today. 1997, 5: 42~46
    55 A Lambrecht, H Beyer, et al. 20th International Conference on Thermoelectrics [C]. Beijing:IEEE. 2001: 335
    56 S Raghuveer, K Makala, Jagannadham. Pulsed laser deposition of Bi2Te3-based thermoelectric thin films. J Appl Phys. 2003, 94: 3907
    57胡淑红,赵新兵,朱铁军.机械合金化法制备Mn15Bi34Te51和La15Bi34Te51热电材料.稀有金属材料与工程. 2002, 31(4):287
    58王为.电化学组装一维纳米线阵列P型Bi2Te3温差电材料.无机材料学报. 2004,19(3):518~521
    59 J. Zhou, et al. Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films.J. Alloys Compd. 2008, 108: 1644~1647
    60何赐全,杜海燕等.无机纳米材料的水热合成及其衍生方法化工新型材料. 2007, 35(10): 19~21
    61 T. Sun, X. B. Zhao, T. J. Zhu, et al. Aqueous chemical reduction synthesis of Bi2Te3 nanowires with surfactant assistance. Mater. Lett. 2006, 60(20): 2534~2537
    62 Y. Q. Cao, T. J. Zhu, X. B. Zhao. Nanostructuring and improved performance of ternary Bi–Sb–Te thermoelectric materials.Appl. Phys A . 2008, 92: 321~324
    63 Y. Q. Cao, X. B. Zhao, X. B. Zhang et al. Syntheses and thermoelectric properties Of Bi2Te3/Sb2Te3 bulk nanocoposites with laminated nanostructure [J]. Applied Physics Letters. 2008, 92(14): 143106/1~143106/3
    64 Weidong Shi, Liang Zhou, Shuyan Song, et al. Hydrothermal Synthesis and Thermoelectric Transport Properties of Impurity-Free Antimony Telluride Hexagonal Nanoplates.adwanced. Adv. Mater. 2008, 20: 1892~1897
    65 Bo Zhou, Yong Ji, Yu-Fei Yang, et al. Rapid Microwave-Assisted Synthesis ofSingle-Crystalline Sb2Te3 Hexagonal Nanoplates. Crystal Growth & Design. 2008, 8 (12): 4394~4397
    66 Qiang Wang, Changlong Jiang, Caofang Yu, et al. General solution-based route to V–VI semiconductors nanorods from hydrolysate. Journal of Nanoparticle Research. 2007, 9: 269~274
    67 Liu, H. M. Cui, Feng Han et al. Growth of Bi2Se3 Nanobelts Synthesized through a Co-Reduction Method under Ultrasonic Irradiation at Room Temperature. Crystal Growth & Design. 2005, 5(5): 1711~1714
    68 G. Jin, X. Q. Xiang, C. Jia et al. Electrochemical Fabrication of Large-Area, Ordered Bi2Te3 Nanowire Arrays. J. Phys. Chem. B. 2004, 108: 1844~1847
    69 K. Uemura, I. Nishida. Thermoelectric semiconductors and their application. 1988, Tokyo, Japan: Nikkan-Kogyo Shinbun Press: 150
    70 Montserrat Filella, Nelson Belzile, Yu-Wei Chen. Antimony in the environment: a view focused on natural watersⅡ. Relevant solution chemistry[J]. Earth-Science Reviews. 2002, 59(4): 265~285