聚苯胺及其复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种性能介于传统电容器和化学电池之间的新型储能元件,具有更高的能量密度和更大的功率密度。目前,对超级电容器的研究主要集中在高性能的电极材料的制备上。
     本文主要制备了纳米结构的聚苯胺(Polyaniline, PANI)以及聚苯胺/碳基复合材料,研究了它们的制备工艺和电化学性能,并用傅立叶转换红外光谱、X射线衍射、X射线光电子能谱、透射电子显微镜、扫描电子显微镜、比表面积、循环伏安、交流阻抗、恒电流充放电分析等对其进行了表征,得到以下结论:
     (1)采用乙醇作溶剂制备得到了PANI纳米微球,其直径在50~200 nm之间,为乙醇掺杂的翠绿亚胺态,具有一定的结晶性能;相对于传统方法制备的PANI块体材料有着更好的电化学活性,单电极放电比容量可以达到630 F·g-1,比块体PANI提高了40%左右;循环稳定性也相对提高,充放电循环1000次之后仍能保持在220 F·g-1。
     (2)采用原位聚合法将聚苯胺均匀包覆在碳纳米管(Carbon Nanotubes, CNTs)表面,制备得到核壳结构的PANI/CNTs复合材料,CNTs表面的PANI壳层厚度约为50 nm;复合材料有着良好的法拉第赝电容特性,单电极放电比容量可以达到458 F·g-1,远远高于所用纯CNTs (约31 F·g-1)和块体PANI (420 F·g-1)的比容量,其循环稳定性相对于块体PANI也有所提高。
     (3)以盐酸掺杂的PANI为前驱体在750℃煅烧制备得到了高活性的多孔碳材料(Highly Porous Carbon Materials, HPC),其比表面积可以达到1772 m2·g-1,具有良好的双电层电容性能,在充放电过程中有较高的充放电效率(99.8%)和循环稳定性,单电极放电比容量在电流密度为1 mA·cm-2时可以达到327.4 F·g-1,经过1000次充放电循环后其衰减量仅为3.5%。
     (4)以多孔碳为基体制备得到了PANI/HPC复合材料,属于二维纳米结构范畴,有着较大的比表面积、较高的电化学活性和充放电容量,在电流密度为10mA·cm-2时的单电极放电比容量为519.8 F·g-1;在1 mol·L-1的H2SO4水溶液中,相对于Hg/Hg2SO4参比电极的合适充放电电位窗口为-600 mV~600 mV。
Supercapacitor had been recognized as a new kind of electrochemical energy storage device, which provided performances between the rechargeable batteries and the typical dielectric capacitor. It had received great attention due to its high power density and energy density. Most of the studies reported recently concentrated on the preparation of high performance electrode materials.
     In this paper, nanostructured polyaniline (PANI) and polyaniline/carbon-base composites were synthesized. The materials’preparation and electrochemical performance were studied systematically by FT-IR, XRD, XPS, TGA, TEM, SEM, BET, CV test, EIS and galvannostatic charge/discharge. The main results were as follows:
     (1) The PANI nanospheres with diameter of 50~200 nm were prepared by synthesizing within ethanol solvent. FT-IR, XPS spectra and XRD pattern indicated that the PANI was emeraldine state doped with C2H5OH and crystallizable. In addition, the electrochemical analysis demonstrated that the PANI nanospheres showed an improved performance as supercapacitor. The specific capacitance of the PANI nanospheres was 630 F·g-1, 40% higher than the traditional PANI block materials. After 1000 charge/discharge cycles, the specific capacitance could also hold 220 F·g-1. The PANI nanospheres exhibited highly cyclic stability.
     (2) The polyaniline coated multi-walled carbon nanotubes (PANI/CNTs) composites were synthesized by in situ polymerization. Analysis results showed that the thickness of PANI layer on the surface of CNTs was ca. 50 nm. The composites had typical Faraday capacitor characteristics. The specific capacitance of the obtained composite materials was about 305.3 F·g-1 whereas the specific capacitance of the pure CNTs (31F·g-1) at the same conditions. The cyclic stability was higher than block materials.
     (3) The highly porous carbon materials (HPC) with highly electrochemical performance was calcined at 750℃through the precursor substance which HCl doped PANI. The specific surface area of HPC was 1772 m2·g-1. The HPC had excellent electric double-layer capacitance, highly coulombic efficiency (99.8%) in charge/discharge and cyclic stability. The specific capacitance was 327.4 F·g-1 at the electric current density of 1 mA·cm-2. The decrease of specific capacitance was only 3.5% after 1000 charge/discharge cycles.
     (4) The PANI/HPC composites were synthesized with the base of HPC. The 2-dimensional composites possessed large specific surface area, improved electrochemical performance and high specific capacitance. At the electric current density of 10 mA·cm-2, the discharge specific capacitance of the obtained composite materials was about 519.8F·g-1. The EIS test indicated that the working potential window of the obtained composite material electrode was -600 mV~600 mV vs. Hg/Hg2SO4 in 1 mol·L-1 H2SO4.
引文
[1]Song Ye, Zhu Xufei, Wang Xinlong, et al., Characteristics of ionic liquid-based electrolytes for chip type aluminum electrolytic capacitors, Journal of Power Sources , 2006,157(1): 610~615
    [2]Kwan Sik Jang, Bongjin Moon, Eung Ju Oh, et al., Characteristics of tantalum electrolytic capacitors using soluble polypyrrole electrolyte, Journal of Power Sources, 2003, 124(1): 338~342
    [3]Andrew Ritchie, Wilmont Howard, Recent developments and likely advances in lithium-ion batteries, Journal of Power Sources, 2006,162(2): 809~812
    [4]Lafont U, Locati C, Kelder E M, Nanopowders of spinel-type electrode materials for Li-ion batteries, Solid State Ionics, 2006, 177(35-36): 3023~3029
    [5]Rainer Wagner, High-power lead–acid batteries for different applications, Journal of Power Sources, 2005, 144(2): 494~504
    [6]Horiba T, Maeshima T, Matsumura T, Applications of high power density lithium ion batteries, Journal of Power Sources, 2005,146(1-2):107~110
    [7]桂长清,新型贮能单元超级电容器,电池工业,2003,4(8):163~165
    [8]朱磊,吴伯荣,陈晖等,超级电容器研究及其应用,稀有金属,2003,27(3):385~390
    [9]张步涵,王云玲,曾杰,超级电容器储能技术及其应用,水电能源科学,2006,5(24):50~52
    [10] Conway B E, Birss V, Wojtowicz J, The role and utilization of pseudocapacitance for energy storage by supercapacitors, J Power Sources, 1997, 66(1-2): 1~14
    [11] Sarangpani S, Tilak B V, Chen C P, Materials for electrochemical capacitors, J Electrochemical Society, 1996, 143(11): 3791~3796
    [12] Zheng J P, Jow T R, High energy and high power density electrochemical capacitors, J Power Sources, 1996 (62): 155~159
    [13] Zhang J P, Tow T R, A new charge mechanism for electrochemical capacitors, J Electrochemical Society, 1995, 142(1): 6~8
    [14] Kuo Chan L, Mare A, Anderson, Porous nickel oxide/nickel films for electrochemical capaitors, Journal of electrochemical capacitors, 1996, 143(1): 124~129
    [15] Zhang F B, Zhou Y K, Li H , Nanocrystalline NiO as an Electrode Material for Electrochemical capacitors, Mater Chem and Phy, 2004, 83(2-3): 346~354
    [16]闪星,董国君,景晓燕等,新型超大容量电容器电极材料-纳米水合MnO2的研究,无机化学学报,2001,17(5):669~673
    [17] Conway B E, Electrochemical Supercapacitors, NewYork, Kluwer Academic/ Plenum Publishers,1999
    [18]张玲,唐冬汉,熊奇,超级电容器极化电极材料的研究进展,重庆大学学报(自然科学版),2002,25(5):152~156
    [19]陈新丽,李伟善,超级电容器电极材料的研究现状与发展,广东化工,2006, 7(33):52~55
    [20]周建新,沈湘黔,超级电容器电极材料研究进展,功能材料,2004,增(35):1020~1024
    [21] Qu Deyang, Studies of the activated carbons used in double-layer supercapacitors, Journal of Power Sources, 2002, 109(2): 403~411
    [22] Chang Hun Yun, Yun Heum Park, Chong Rae Park, Effects of pre-carbonization on porosity development of activated carbons from rice straw, Carbon, 2001,39(4): 559~567
    [23] Centeno T A, Stoeckli F, The role of textural characteristics and oxygen containing surface groups in the supercapacitor performances of activated carbons, Electrochimica Acta, 2006, 52(2): 560~566
    [24] Li Jun, Wang Xianyou, Huang Qinghua, et al., Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor, Journal of Power Sources, 2006, 158(1): 784~788
    [25] Jurewicz K, Babe? K, Pietrzak R, Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation, Carbon, 2006, 44(12): 2368~2375
    [26]江奇,卢晓英,陈召勇等,碳纳米管电化学超级电容器性能初探,第五届全国新型碳材料学术研讨会论文集,2001,10:371
    [27] Fang WeiChuan, Huang JinHua, Chen LiChyong, et al., Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxides, Journal of Power Sources, 2006, 160(2): 1506~1510
    [28] Lee Jae-Kyung, Habib M. Pathan, Jung Kwang-Deog, et al., Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide, Journal of Power Sources , 2006, 159(2): 1527~1531
    [29] Subramanian V, Zhu Hongwei, Wei Bingqing, Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material , Journal of Power Sources, 2006, 159(1): 361~364
    [30] Wu Mengqiang, Gao Jiahui, Zhang Shuren, Comparative studies of nickel oxide films on different substrates for electrochemical supercapacitors, Journal of Power Sources, 2006, 159(1): 365~369
    [31]李晶,赖延清,李颉等,导电聚苯胺电极材料在超级电容器中的应用及研究进展,材料导报,2006,12(20):20~27
    [32]旷英姿,导电高分子聚苯胺的合成及应用,精细化工中间体,2004,4(34):18~20
    [33] Yin Wusheng, Eli Ruckenstein, Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid, Synthetic Matals, 2000, 108: 39~46
    [34] James Y Shimano, Alan G MacDiarmid, Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity, Synthetic Metals, 2001, 123: 251~262
    [35] Ivanov S, Mokeva P, Tssakova V, et al., Electrochemical and surface structural characterization of chemically and electrochemically synthesized polyaniline coatings, Thin Solid Films, 2003, 441: 44~49
    [36] Sujit Kumar Mondal, Rajendra Prasad K, Munichandraiah N, Analysis of electrochemical impedance of polyaniline films prepared by galvanostatic, potentiostatic and potentiodynamic methods, Synthetic Metals, 2005, 148: 275~286
    [37] Kwang Sun Ryu, Kwang Man Kim, Yong Joon Park, et al., Redox supercapacitor using polyaniline doped with Li salt as electrode,Solide State Ionics,2002, 152: 861~866
    [38] Rak Young Song, Jun Ho Park, Sivakkumar S R, et al., Supercapacitor properties of Polyaniline/Nafion/hydrous RuO2 composite electrodes, Journal of Power Sources, 2007, 166(1): 297~301
    [39] Prasad K Rajendra, Munichandraiah N, Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-perfomance, polyaniline coated, stainless-steel electrodes. Journal of Power Sources, 2002, 112: 443~451
    [40] Girija T C, Sangaranarayanan M V, Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors, Journal of Power Sources, 2006, 156: 705~711
    [41] Wu Tzong Ming, Lin Yen Wen. Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties. Polymer, 2006, 47(10): 3576~3582
    [42]江奇,张倩,杜冰等,有限域聚合法制备碳纳米管-聚苯胺复合材料及其电化学性能,物理化学学报,2008,24(9):1719~1723
    [43] Ko J M, Song R Y, Yu H J, et al., Capacitive performance of the composite electrodes consisted of polyaniline and activated carbons powder in a solid-like acid gel electrolyte, Electrochimica Acta, 2004, 50(1-2): 873~876
    [44] Tamai H, Hakoda M, Shiono T, Preparation of polyaniline coated activated carbon and their electrode performance for supercapacitor, Journal of Materials Science, 2007,42(4): 1293~1298
    [45] Liang Liang, Liu Jun, Windisch C F, et a1., Direct Assembly of Large Arrays of Oriented Conducting Polymer Nanowires, AngewChem lntEd, 2002, 41: 3665~3668
    [46] Zhang Lijuan, Wan Meixiang Self-Assembly of Polyaniline-Form Nanotubes to Hollow Microspheres, Advanced Functional Materials, 2003, 13: 815~820
    [47] Ghanbari Kh, Mousavi M F, Shamsipur M, Preparation of Polyaniline Nanofibers and Their Use as a Cathode of Aqueous Rechargeable Batteries, Electrochimica Acta, 2006, 52:1514~1522
    [48] Viii S, Huang Jiaxing, Kaner R B, et a1., Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms, Nano Lett, 2004, 4: 491~496
    [49] Lu Qiufeng, Huang Meirong, Li Xingui, Synthesis and heavymetalion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability, Chemistry-A European Journal, 2007, 13(21): 6009~6018
    [50] Zhang Donghua, Wang Yangyong, Synthesis and applications of one-dimensional nano-structured polyaniline: An overview, Materials Science and Engineering: B, 2006,134(1): 9~19
    [51] Martin C R, Cai Z, Van Dyke L S, et al., Template synthesis of conducting polymers. Enhanced conductivity, enhanced supermolecular order, interesting microstructures, Polymeric Materials Science and Engineering, 1991,64: 204~206
    [52]张璐,姚素薇,张卫国等,阳极氧化铝模板上扩散聚合法制备聚苯胺纳米管(线)阵列,功能材料,2005,11(36):1765~1768
    [53] Chellachamy Anbalagan Amarnath, Jinwoo Kim, Kyungbae Kim, et al., Nanoflakes to nanorods and nanospheres transition of selenious acid doped polyaniline, Polymer, 2008,49(2):432~437
    [54] Moon Gyu Han, Seok Ki Cho, Seong Geun Oh, et al., Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution, Synthetic Metals, 2002,126(1):53~60
    [55] Jyongsik Jang, Joon H Oh, Galen D Stucky, Fabrication of ultrafine conducting polymer and graphite nanoparticles, Angewandte Chemie-International Edition, 2002, 41(21): 4016~4019
    [56] Li Liang, Yan Guoping, Wu Jiangyu, et al., Preparation of polyaniline-metal composite nanospheres by in situ microemulsion polymerization, Journal of Colloid and Interface Science, 2008, 326(1): 72~75
    [57] Youn-Gyu Han, Takafumi Kusunose, Tohru Sekino, One-step reverse micelle polymerization of organic dispersible polyaniline nanoparticles, Synthetic Metals, 2009, 159(1-2): 123~131
    [58]方鲲,李守平,陶雪钰等,分散聚合水基聚苯胺胶乳微球制备与表征,物理化学学报,2004,20(1):103~106
    [59] Vinay Gupta, Norio Miura, Electrochemically Deposited Polyniline Nanowire’s Network, Electrochemical and Solid-State Letters, 2005, 812: A630~A632
    [60] Vinay Gupta, Norio Miura, High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline, Materials Letters, 2006, 60: 1466~1469
    [61] Delvaux M, Duchet J, Stavaux P Y, et a1., Chemical and electrochemical synthesis of polyaniline micro-and nano-tubules, Synthetic Metals, 2000, l13: 275~280
    [62]卢海,聚苯胺纳米纤维的界面聚合法制备及电化学电容特性研究:[硕士学位论文],湖南;中南大学,2007
    [63] De Araujo ACV, Alves S, Azevedo, A new synthesis route to prepare polyaniline (PANI) nanotubes containing magnetic nanoparticles, WM smart materials & micro/nanosystems, 2009, 54: 325~330
    [64] Jing Xinli, Wang Yangyong, Wu Dan, et al., Sonochemical synthesis of polyaniline nanofibres, Ultrasonics Sonochemistry, 2007, 14: 75~80
    [65]魏纯香,聚苯胺的化学合成及其性能表征:[硕士学位论文],江苏;南京理工大学,2004
    [66] Sui Xiaomeng, Chu Ying, Xing Shuangxi, et a1., Synthesis of PANI/AgC1, PANI/BaSO4 and PANI/Ti02 nanocomposites in CTAB/hexanol/water reverse micelle, Materials Letters, 2004, 58: 1255~1259
    [67] Tiwari Ashun, Sen V., Dhakate S.R., et al., Synthesis, characterization, and hoping transport properties of HCl doped conducting biopolymer-co-polyaniline zwitterion hybrids, Polymers for Advanced Technologies, 2008, 19(7): 909~914
    [68]辛凌云,张校刚,界面扩散聚合法制备樟脑磺酸掺杂聚苯胺纳米管或纳米纤维及其电化学电容行为研究,高分子学报,2005,3:437~441
    [69] Sunil K Pillalamarri, Frank D Blum, Akiara T Tokuhiro, et al., Radiolytic Synthesis of Polyaniline Nanofibers: A New Templateless Pathway, Chemstry of Materials, 2005, 17: 227~229
    [70] Jozefowicz M E, Epstein A J, Pouget J P, et al., X-ray structure of polyanilines, Synthetic Metals, 1991, 41: 723~726
    [71] Pouget J P, Jozefowicz M E, Epstein A J, et al., X-ray structure of polyaniline, Macromolecules, 1991, 24: 779~789
    [72] Swapna Rao P, Subrahmanya S, Sathyanarayana D N, Inverse emulsion polymerization: a new route for the synthesis of conducting polyaniline, Synthetic Metals, 2002, 128(3): 3l1~3l6
    [73]马利,黄可龙,陈超等,复合功能磺酸掺杂聚苯胺的结构与性能,中南大学学报(自然科学版),2008,39(3):464~468
    [74]王永刚,聚苯胺及二氧化钛纳米管基复合材料的电化学电容行为:[硕士学位论文],新疆:新疆大学,2004
    [75] Li Hanlu, Wang Jixiao, Chu Qingxin, et al., Theoretical and experimental specific capacitance of polyaniline in sulfuric acid, Journal of Power Source, 2009, 190: 578~586
    [76]赖延清,卢海,张志安等,聚苯胺纳米纤维的界面聚合法合成及电化学电容行为.中南大学学报(自然科学版),2007,38(6):1110~1114
    [77]杨红生,周啸,张庆武,以多层次聚苯胺颗粒为电极活性物质的超级电容器的电化学性能,物理化学学报,2005,21(4):414~418
    [78] Mi Hongyu, Zhang Xiaogang, Yang Sudong, et al., Poyaniline nanofibres as the electrode material for supercapacitors, Materials Chemistry and Physics, 2008, 112: 127~131
    [79] Grgur B N, Ristic V, Govozdenovic M M, et al., Polyaniline as possible anode materials for the lead acid batteries, Journal of Power Sources, 2008, 15: 635~640
    [80]汪水平,何丽红,翁睿等,质子酸掺杂聚苯胺导电材料的合成,纤维复合材料,2005,1:7~9
    [81] Yue J, Epstein A J, MacDiarmid A G, XPS study of sulfonated polyaniline, Polymeric Meterials Science and Engineering, 1991, 64: 303~304
    [82] Zhang Jing, Kong Lingbing, Wang Bin, et al., In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniine composite films for electrochemical supercapacitors, Synthetic Metals, 2009, 159: 260~266
    [83]刘郁杨,韦玮,邵颖惠,聚苯胺氧化程度的测定及性能研究,合成树脂及塑料,1998,15(4):43~46
    [84]原渊,超级电容器电极材料研究:[硕士学位论文],天津:天津大学,2008
    [85] Qin X, Durbach S, Wu G T, Electrochemical characterization on RuO2·xH2O/carbonnanotubes composite electrodes for high energy density supercapacitors, Carbon, 2004, 42: 451~453
    [86] Jean-Philippe Tessonnier, Dirk Rosenthal, Thomas W Hansen, et al., Analysis of the structure and chemical properties of some commercial carbon nanostructures, Carbon, 2009, 47: 1779~1798
    [87] Master W K, Benito A M, Callejas M A, et al., Synthesis and characterization of new polyaniline/nanotube composites, Materials Science and Engineering C, 2003, 23: 87-91
    [88] Wu Tzong Ming, Lin Yen Wen, Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties, Polymer, 2006, 47: 3576~3582
    [89] Jyongsik Jang, Joonwon Bae, Moonjung Choi, et al., Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor, Carbon, 2005, 43: 2730~2736
    [90] Elena N Konyushenko, Jaroslav Stejskal, Miroslava Trchova, et al., Multi-wall carbon nanotubes coated with polyaniline, Polymer, 2006, 47: 5715~5723
    [91] Zhang Hao, Cao Gaopin, Wang Weikun, et al., Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes, Electrochimica Acta, 2009, 54: 1153~1159
    [92] Frackowiak E, Khomenko V, Jurewicz K, et al., Supercapacitors based on conducting polymers/nanotubes composites, Journal of Power Sources, 2006, 153: 413~418
    [93] Vinay Gupta, Norio Miura, Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors, Electrochimica Acta, 2006, 52: 1721~1726
    [94] Vinay Gupta, Norio Miura, Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites, Journal of Power Sources, 2006, 157: 616~620
    [95] Sivakkumar S R, Kim Wan Ju, Choi Ji-Ae, et al., Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. Journal of Power Sources, 2007, 171: 1062~1068
    [96] Lai C, Gao X P, Zhang B, et al., Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites, The Journal of Physical Chemisry C, 2009, 113(11): 4712~4716
    [97] Mi yuanzhu, Hu Weibing, Dan Youmeng, et al., Synthesis of carbon micro-spheres by a glucose hydrothermal method, Materials Letters, 2008(62): 1194~1196
    [98] Yi Zonghui, Liang Yongguang, Lei Xuefeng, et al., Low-temperature synthesis of nanosized disordered carbon spheres as an anode material for lithium ion batteries, Materials Letters, 2007(61): 4199~4203
    [99] Yannick Lei, Claire Fournier, Jean-Louis Pascal, et al., Mesoporous carbon-manganese oxide composites as negative electrode material for supercapacitors, Microporous and Mesoporous Materials, 2008, 110: 167~176
    [100]Yuan Dingsheng, Chen Jingxing, Zeng Jianghua, et al., Preparation of monodisperse carbon nanospheres for electrochemical capacitors, Electrochemistry Communications, 2008, 10(7): 1067~1070
    [101]Yukari Kibi, Takashi Saito, Mitsuyoshi Kurata, et al., Fabrication of high-power electric double-layer capacitors, Journal of Power Sources, 1996, 60: 219~224
    [102]Hu Jin, Li Hong, Huang Xuejie, Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries, Solid State Ionics, 2007(178): 265~271
    [103]Jing Xinli, Wang Yangyong, Wu Dan, et al., polyaniline nanofibres prepared with ultrasonic irradiation, Rapid Communication, 2006, 44(2): 1014~1019
    [104]Li Weikuan, Chen Juan, Zhao Junjun, et al., Application of ultrasonic irradiation in preparing conducting polymers as active materials for supercapacitor, Materials Letters, 2005, 59: 800~803
    [105]Zhang Zhiming, Deng Junying, Wan Meixiang, Highly crystalline and thin polyaniline nanofibres oxidized by ferric chloride, Materials Chemistry and Physics, 2009, 115: 275~279