离散Lotka-Volterra系统的持久性及周期解的存在性与全局吸引性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在第一章,我们陈述了研究生物模型的现实意义,介绍了一些已知的Lotka-Volterra类型的竞争和食饵-捕食者系统模型的研究结果;另外,还给出了一些最基本定义相关的初始条件。
     在第二章,利用李雅普诺夫函数研究了离散时滞Lotka-Volterra竞争系统的持久性。早在1974年,May首先提出了二维离散Lotka-Volterra竞争系统模型。从那以后,二维离散Lotka-Volterra竞争系统模型已引起了许多学者的注意和兴趣,而且发现此系统有相当复杂的动力行为。在现实中,时滞总是存在的,而且会对模型的模拟产生影响。因此,最近几篇文献都考虑了二维自治时滞Lotka-Volterra竞争系统。进一步,由于系数可能会改变,张勤勤和周展考虑了二维非自治时滞Lotka-Volterra竞争系统的持久性,而且获得了此系统持久性的充分必要条件。本章所研究的模型包含了前面涉及到所有二维系统模型。王稳地研究了具有时滞和振动环境的离散人口模型的全局稳定性,虽然此模型包含了我们在本章中所研究的模型,但是在我们的证明过程中去掉条件(i=1,2)。因而我们的结论改进了相关的结果。
     在第三章,我们讨论了多维Lotka-Volterra竞争系统。首先获得此系统的持久性,再假定所有系数均是周期的,得到了系统周期解的存在性;而且,增加一些适当的条件后,我们证明了周期解的全局吸引性。我们的结果可以推得二维系统的相应的结果;同时,我们的结果可以推得当耦合消失时标量方程的结果,而且改进和弥补了其不足。
     在第四章,通过构造李雅普诺夫函数,我们研究了在有限滞量背景下的二维离散食饵-捕食者系统,得到了与连续情形类似的结论,即我们证明了时滞对所研究系统解的持久性没有影响。
In the first chapter, we firstly state the necessity for the study of biological models. Then, we introduce some known competition and predator-prey models of Lotka-Volterra type. Finally, some basic definitions and the related initial conditions of those studied system are given.
    In the second chapter, the permanence for an autonomous delay
    competition model of Lotka-Volterra type is considered by means of Liapunov
    functionals. In 1974, May first proposed the discrete two-species competition
    model of Lotka-Volterra type. Since then, the discrete two-species competition
    model of Lotka-Volterra type has attracted great attention and interest of many
    authors, and it has been found that the system can demonstrate quite rich and
    complicated dynamics. In real situations, however, time delays always exist
    and they should be taken into account in modeling. Therefore, several recent
    papers considered the discrete delay two-species competition model of
    Lotka-Volterra type. Due to the possible change of the coefficients in real
    world, Qinqin Zhang and Zhan Zhou considered the permanence of the
    nonautonomous two-species competition model of Lotka-Volterra type with
    delays, and the necessary and sufficient conditions for the permanence were
    obtained. Our model includes all those models mentioned earlier. Wendi Wang
    studied the global stability of discrete population models with time delays and
    fluctuating environment. Though those models studied by Wcndi Wang include
    our model in this chapter, during our proof, we dismiss the conditions
    inf a(k)>0 for i=1,2. Therefore, our conclusion improves the
    corresponding ones.
    In the third chapter, we discuss a discrete Lotka-Volterra competition system with m-species. We first obtain the persistence of the system. Assuming that the coefficients in the system are periodic, we obtain the existence of a periodic solution. Moreover, under some additional conditions, the periodic solution is globally attractive. Our results can be reduced to those for two-species system. At the same time, our results not only can be
    
    
    
    reduced to those for the scalar equation when there is no coupling, but also improve and complement some in the literature.
    Finally, in the fourth chapter, by constructing Liapunov functional, we study a discrete two-dimensional predator prey-system with a finite number of delay, the similar conclusions to the continuous case are obtained. That is, the time delays are harmless for permanence of the solution of the system.
引文
[1] May R M. Biological populations with nonoverlapping generation: Stable points, stable cycles and chaos. Science. 1974 (186): 645-647
    [2] Saito Y, Ma W B. Tadayuki Hara. A necessary and sufficient condition for permanence of a Lotka-Volterra discrete system with delays. J. Math. Anal. Appl. 2001(256):162-174
    [3] Zhang Q Q, Zhan Zhou. Permanence of a nonautonomous Lotka-Volterra difference system with delays. Math. Sci. Res. J. 2003, 7(3): 99-106
    [4] Wang W D, Lu Z Y. Global stability of discrete models of Lotka-Volterra type. Nonlinear Anal. 1999(35): 1019-1030
    [5] Zhou Z, Zou X F. Stable periodic solutions in a periodic logistic equation. Appl. Math. Lett. 2003(16):165-171
    [6] Chen Y M, Zhou Z. Stable periodic solution of a discrete periodic Lotka-Volterra competition system. J. Math. Anal. Appl. 2003(277): 358-366
    [7] Wang W D, Mulone G, Salemi F, Salone V. Global stability of discrete population models with time delays and fluctuating. J. Math. Anal. Appl. 2001(264):147-167
    [8] Beretta E, Yang K. Global analyses in some delayed Ratio-Dependent predator-prey systems. Nonlinear. Anal. 1998, 32(3): 381-408
    [9] He X Z. Stability and delays in a predator-prey system. J. Math. Anal. Appl.1996(198): 355-370
    [10] Wang W D, Ma Z E. Harmless delays for uniform persistence. J. Math. Anal. Appl. 1991(158): 256-268
    [11] Xu R, Chen L S. Persistence and global stability for a delayed nonautonomous predator-prey system without dominating instantaneous negative feedback. J. Math. Anal. Appl. 2001(262): 50-67
    [12] May R M. Stability and Complexity in Model Ecosystems Princeton: Princeton, Press, 1974
    [13] Fan M, Wang K. Periodicity in a delayed Ratio-Dependent predator-prey system. J. Math. Anal. Appl. 2001 (262):179-190
    [14] Yang P H, Xu R. Permanence and global attractivity for Lotka-Volterra difference
    
    systems. J. Math. Anal. Appl. 1999(39): 269-282
    [15] 文贤章.数学学报.多种群生态竞争-捕食时滞系统正周期解的全局吸引性.2002,45(1):83-92
    [16] 徐建华,王志成.一类概周期时滞捕食-食饵系统的概周期解,应用数学学报.2000,23(3):394-402
    [17] Redheffer R. Lotka-Volterra systems with constant interaction coefficients. Nonlinear Analysis. 2001 (46): 1151-1164
    [18] Li Y K, Yang K. Periodic solutions of periodic delay Lotka-Volterra equations and systems. J. Math. Anal. Appl. 2001(255): 260-280
    [19] Fan M, Wang K. Global existence of positive periodic solutions of periodic predator-prey system with infinite delays. J. Math. Anal. Appl. 2001(262): 1-11
    [20] Cantrell R S, Cosner C. On the dynamics of predator-prey models with the Beddingto-Deangelis functional response. J. Math. Anal. Appl. 2001(257): 206-222
    [21] Tong Z D, Chen L S. Global asymptotic stability of periodic Lotka-Volterra systems with delays. Nonlinear Analysis. 2001(45): 1081-1095
    [22] Yang K. Global stability in delay differential systems without dominating instantaneous negative feedbacks. J. Differential Equations. 1995(119): 503-532
    [23] Yang. K, Smith H L. Global stability for infinite delay Lotka-Volterra type systems. J. Differental Equations. 1993(103): 211-246
    [24] Joseph. W. H. S, Yu J S. Global stability in a logistic equation with piecewise constant arguments. Hokkaido Math. J. 1995(24): 91-108
    [25] Yuan R. On the logistic delay differential equations with piecewise constant argument and quasi-periodic time dependence. J. Math. Anal. Appl 2002(274):124-133
    [26] Wang W D. Global attractivity of periodic solutions population models. J. Math. Anal. Appl. 1997(211): 498-511
    [27] Zhou Z, Wu J H. Attractive periodic orbits in nonlinear discrete-time neural networks with delayed feedback. J. Diff. Equ. Appl. 2002, 8(5): 467-483
    [28] 杨帆,蒋达清,万阿英.多时滞 Lotka-Volterra 互惠系统周期正解的存在性.工程数学学报.2002,45(1):83-92
    [29] Lu Z Y, Wang W D. Pcrmanence and global attractivity for Lotka-Volterra
    
    difference systems. J. Math. Biol. 1999(39): 269-282
    [30] Wang W D, Lu Z Y. Global stability of discrete models of Lotka-Volterra type. Nonlinear Anal. 1999(35): 1019-1030
    [31] Li S and Wen. Theory of Functional Differential Equations. Changsha: Science and Technology Press, 1987
    [32] Agarwal R P. Difference Equations and Inequalities. Theory, Methods and Applications. New York: Marcel Dekker, 1992
    [33] Chen L S. Mathematical Models and Methods in Ecology. Beijing: Science Press, 1988
    [34] Hale J K. Theory of Functional Differential Equations. Berlin: Spring-Verlag,1977
    [35] Gyori I, Ladas G.. Oscillation Theory of Delay Differential Equations with Applications. Oxford: Clarendon Press, 1991
    [36] 郑祖庥.泛函微分方程理论.安徽:安徽教育出版社,1994
    [37] 廖晓听.稳定性的理论、方法和应用.武汉:华中理工大学出版社,1999
    [38] 卢卡斯 W F.离散与系统模型.长沙:国防科技大学出版社,1996
    [39] 王树禾.微分方程模型与混沌.合肥:中国科学技术大学出版社,1999
    [40] 姜启源.数学模型.第二版.北京:高等教育出版社,1993
    [41] Samalenk A M, Perestyak N A. Impulsive Differential Equations. World Sci. Ser. Nonlinear, Sci. Ser. A. Mongor. Treatieskp. River Edge, NJ: World Sci.PubliShing, 1995