Volterra自适应滤波算法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线性滤波器理论基础成熟、易于分析与实现,已获得了较为广泛的应用。但随着科学研究的不断深入,人们开始更多地关注高速通信信道、卫星链路、回声对消等存在非线性干扰的场合,由于线性自适应滤波器自身存在的线性特性,限制了其探索非线性信号高阶冗余性和逼近非线性函数的能力,使滤波性能不尽如人意。因此,为了克服实际应用中线性滤波器的缺陷,提高系统性能,近年来非线性滤波理论已成为人们研究的热点。其中,Volterra滤波器是一种结构相对简单、性能良好的非线性滤波器,它综合了系统的线性结构和非线性结构,较适合构建各种系统的非线性模型,因此被广泛地应用于系统辨识、回波对消、信道均衡、图像处理、混沌预测等领域。
     本文主要研究Volterra滤波器自适应算法,包括高斯噪声背景下的二阶Volterra变参数自适应滤波算法、高斯噪声背景下基于正交变换的Volterra自适应滤波算法和α稳定分布噪声背景下的Volterra自适应滤波算法。
     首先,介绍Volterra滤波器的基本理论,为全文的研究工作打下基础。
     其次,研究高斯噪声背景下的二阶Volterra变参数自适应滤波算法。一方面为了改善由于Volterra滤波器参数固定导致算法收敛性能和稳态性能差的情况,本文提出一种二阶Volterra变步长解相关NLMS算法;分别对Volterra滤波器线性部分和非线性部分输入信号进行解相关处理,并利用各阶采用不同变步长因子方法,改善算法性能。另一方面通过自适应调整输入信号数据块长度,提出一种二阶Volterra变数据块长LMS算法;利用当前时刻及该时刻以前更多输入信号和误差信号信息使收敛速度和稳态性能都得到较好的提高。
     然后,研究高斯噪声背景下基于正交变换的Volterra自适应滤波算法。由于输入信号自身相关性以及Volterra滤波器各项间的耦合使Volterra滤波器自适应算法性能下降,本文提出两种基于不同正交变换的Volterra滤波器自适应算法。一方面利用格型滤波器对输入信号进行格型预处理得到相互正交的后向预测误差信号并将其作为滤波器的输入,从而大大降低一次项、平方项和交叉乘积项信号各项之间的耦合,改善算法性能。另一方面提出基于DCT的高阶Volterra全解耦VLMS滤波算法,利用实对称矩阵经DCT可变换成对角矩阵的特性,分别推导了Volterra滤波器偶次阶输出项和奇次阶输出项,它们均可表示成权系数向量与信号向量的内积,从而大大减少权系数个数,降低计算复杂度;与此同时采用全解耦结构调整权系数,有效地降低了非线性项耦合的影响,提高了算法性能。
     最后,研究α稳定分布噪声背景下的Volterra自适应滤波算法。鉴于实际环境更接近于α稳定分布噪声,本文分别提出两种α稳定分布噪声背景下的自适应算法。首先提出一种二阶Volterra变记忆长度LMP算法,针对实际应用中非线性系统记忆长度未知致使Volterra自适应滤波器可能无法达到最优性能的问题,通过自适应调整记忆长度使其收敛到真实值,使算法在收敛速度、稳态性能和计算复杂度之间达到了较好的折中;然后通过对Volterra滤波器结构的改进,提出一种α稳定分布噪声背景下基于DCT的三阶Volterra滤波算法,相比传统的Volterra滤波器自适应算法,不仅降低了算法复杂度,而且提高了算法性能。
Linear filter has been used widely for its mature theoretical principle, easy analysis andrealization. However, in the occasion of existing nonlinear interference, such as high-speedcommunication channels, satellite links, echo cancellation and etc, the performance of a linear filteris not ideal, which is due to the linear adaptive filter’s linear nature that restricts the capability ofusing higher-order nonlinear signal redundancy and approximating nonlinear function. Therefore, tosolve this problem and improve the performance of system, nonlinear filtering theory is studieddetailedly. The Volterra filter is very suitable to construct various nonlinear models of systems,which has the structure of linear and nonlinear system, so it has been widely applied in fields ofsystem identification, echo cancellation, channel equalization, image processing, chaotic forecastingand so on.
     Three aspects’contents are studied in the paper, including variable parameters adaptivefiltering algorithms for second order Volterra filter under Gaussian noise environment, adaptiveVolterra filtering algorithms based on orthogonal transformation under Gaussian noise environmentand adaptive Volterra filtering algorithms underα-stable distribution noise environment.
     At first, the basic theory of Volterra filter is introduced, which is the foundation of the wholeresearch work.
     Secondly, the variable parameters adaptive filtering algorithms for second order Volterra filterunder Gaussian noise environment are studied. On the one hand, in order to change the conditionthat the Volterra filter’s fixed parameters lead to the bad performance at convergence andsteady-state, a variable step size NLMS algorithm based on decorrelation for second-order Volterrafilter is proposed. In the algorithm, the decorrelation is used in linear and nonlinear input signals ofVolterra filter, respectively, and the different variable step factors are adopted to improve theperformance of the algorithm. On the other hand, by changing the input data block length at eachmoment, a variable data block length LMS algorithm for second-order Volterra filter is proposed,which uses the present moment and its previous moment abundant information of input signals anderror signals to increase the convergence performance and steady-state performance.
     Thirdly, adaptive Volterra filtering algorithms based on orthogonal transformation underGaussian noise environment are studied. To overcome the problem that due to the correlation ofinput signal and the coupling among each order of Volterra filter, the performance of adaptaiveVolterra filter is decreased, two different adaptive Volterra filtering algorithms based on orthogonaltransformation are proposed. On the one hand, the input signals are pre-processed by a lattice filter to obtain mutually orthogonal backward prediction error signals which are used as the inputs of thefilter. Therefore the coupling of the linear terms, the quadratic terms and the cross-multiplicationterms is decreased, respectively, and the convergence performance of the algorithm is improved. Onthe other hand, using the character that a real symmetric matrix can be transformed into a diagonalmatrix by DCT, the Volterra filter’s even output terms and odd output terms are deduced as the innerproducts of weighting coefficient vectors and signal vectors, respectively. And then the number ofweighting coefficients is decreased and the computational complexity is reduced. Meanwhile, afully decoupled structure is used to adjust the weighting coefficients to effectively decrease theinfluence of nonlinear items’coupling and improve the performance of algorithm.
     At last, adaptive Volterra filtering algorithms underα-stable distribution noise environmentare studied. Considering that the actual environment is more closed toα-stable distribution noiseenvironment, two adaptive algorithms underα-stable distribution noise environment are proposed.On the one hand, for the memory length of nonlinear system is unknown in practical applications,the performance of Volterra adaptive filter with a non-suitable memory length will not be optimal.Faced with this problem, a variable memory length LMP algorithm for second-order Volterra filteris proposed. By adaptive adjusting the memory length to its real value, the proposed algorithmachieves a better compromise among convergence rate, steady-state performance and computationcomplexity. On the other hand, by improving the structure of Volterra filter, an adaptive algorithmfor third-order Volterra filter based on DCT underα-stable distribution noise environment isproposed. Compared to traditional Volterra filtering algorithm, the new algorithm’s computationalcomplexity is reduced and its performance is improved.
引文
[1]林圭年.非线性电路与系统[M].北京:北京铁道出版社, 1987, 100-200.
    [2]宋亚民.非线性电路理论与分析[M].北京:北京邮电学院出版社, 1988, 275-289.
    [3]赵春晖,张朝柱,李刚.自适应信号处理[M].哈尔滨:哈尔滨工程大学出版社, 2006, 135-175.
    [4]邓晓红.非线性信道的自适应均衡技术研究[D].西南交通大学, 2004.
    [5] A. Zerguine, M. Bettayeb, C. F. N. Cown. Hybrid LMS-LMF algorithm for adaptive echo cancellation [J]. IEE Proceedings - Vision, Image and Signal Processing, 1999, 146(4): 173-180.
    [6] Nikias C.L, Shao M. Signal Processing with Alpha-stable Distribution and Application [M]. New York: John Wiley & Sons Inc, 1995.
    [7]孙永梅,邱天爽.α稳定分布噪声下自适应信号处理的研究进展[J].信号处理, 2004, 20(6): 618-622.
    [8]王卓.α稳定脉冲噪声中的自适应算法研究及应用[D].大连理工大学, 2006.
    [9]邱天爽,张晓旭,李小兵.统计信号处理[M].电子工业出版社, 2004, 139-198.
    [10] Volterra V. Theory of functionals and integral and integro-differential equations [M]. Dover. New York,1959.
    [11] J.F Doherty, R Porayath. A robust echo canceler for acoustic environments [J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1997, 44(5): 389-369
    [12]彭劲东,段正华,王梓展.一种变步长解相关LMS算法[J].计算机工程与应用, 2004, 40(30): 136-144.
    [13]龙剑友,王梓展,夏舜晖,段正华.一种解相关变步长归一化LMS自适应算法[J].计算机工程与科学,2006, 28(4): 60-62.
    [14]龙宇,王忠,薛晓娜.一种基于解相关的变步长LMS算法[J].电子测量技术, 2007, 30(1): 52-55.
    [15]韩琳,邱峰,孙安全.一种改进的解相关变步长LMS算法[J].火控雷达技术, 2009, 38(3): 47-50.
    [16] Jianhua Li, Jing Li. A novel variable step size LMS algorithm based on decorrelation [C]. 3rd International Congress on Image and Signal Processing (CISP 2010), 2010, 7: 3291-3294.
    [17]董科海,赵知劲,冯淑娟,孔宪正.一种变步长解相关NLMP快速算法[J].现代雷达, 2008, 30(1):63-73.
    [18]张秀梅,赵知劲,尚俊娜.变步长解相关Volterra LMS算法[J].计算机工程与应用, 2010, 46(28):157-159.
    [19] Griffith D W Jr, Arce G R. Partially decoupled Volterra filters: formulation and LMS adaptation [J]. IEEE Transactions on Signal Processing. 1997, 45(6): 1485-1494.
    [20] Griffith D W Jr, Arce G R. Partial decoupled RLS algorithm for Volterra filters [J]. IEEE Transactions on Signal Processing, 1999, 47(2): 579-582.
    [21]魏瑞轩,韩崇昭.一种全解耦的Volterra自适应滤波器[J].电子学报, 2001, 29(6): 839-841.
    [22]魏瑞轩,韩崇昭.一种基于Volterra模型的非线性系统具有全解耦结构的递阶式自适应辨识方法[J].控制理论与应用, 2002, 19(2): 313-316.
    [23]孔祥玉,韩崇昭,魏瑞轩,马红光.一种全解耦的RLS自适应Volterra滤波器[J].电子学报, 2004,32(4): 687-689.
    [24]魏瑞轩,韩崇昭,张宗麟.非线性Volterra系统的总体全解耦自适应滤波[J].电子学报, 2005, 33(4):656-659.
    [25] Mushtaq A Syed, V John Mathews. Lattice and OR decomposition-based algorithm for recursive least squares adaptive nonlinear filters [C]. IEEE International Symposium on Circuits and Systems, 1900, 1:262-265.
    [26] Peter M. Clarkson, Miroslav V. Dokic. A second order adaptive Volterra adaptive Volterra filter using a two-stage lattice preprocessor [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1993, 3: 420-423.
    [27] M. Tahir Ozden, Ahmet H. Kayran, Erdal Panayirci. Adaptive Volterra filtering with complete lattice orthogonalization [J]. IEEE Transactions on Signal Processing, 1996, 44(8): 2092-2098.
    [28] Jiangzhou Wang, Vicknarajah Prahatheesan. Adaptive lattice filters for CDMA overlay [J]. IEEE Transactions on Communications, 2000, 48(5): 820-828.
    [29]张秀梅,赵知劲,尚俊娜.基于格型预处理的二阶自适应Volterra滤波器[J].现代电子技术, 2009,32(9): 89-91.
    [30]张华君,韩崇昭.基于变步长分块滤波器的Volterra级数简化辨识方法[J].西安交通大学学报, 2004,38(6): 583-586.
    [31]倪锦根,李锋.基于变步长的仿射投影自适应滤波器[C].首届仪表自动化与先进集成技术大会, 2007:163-166.
    [32]李少伟,裴承鸣,钟雄虎,王华朋.一种改进的变步长仿射投影算法[J].计算机仿真, 2006, 23(10):69-71.
    [33]罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报, 2006, 34(6): 1123-1126.
    [34]覃景繁,韦岗.基于S型函数的变步长LMS自适应滤波算法[J].无线电工程, 1996, 26(4): 44-47.
    [35] Hongbing Li, Ningning Tong, Nannan Liu, Jun Jiang. A new variable-step-size LMS adaptive filtering algorithm [C]. 9th International Conference on Signal Processing (ICSP 2008), 2008, 38-41.
    [36]胡浩,刘增力,张亚琴,周鑫,应浩.一种新的变步长LMS自适应算法及其仿真[J].电子科技,2006(11): 48-50.
    [37]赵知劲,董科海,尚俊娜,孔宪正.α稳定分布下的自适应数据块滤波算法[J].电路与系统学报,2009, 14(3): 28-32.
    [38] Zhijin Zhao, Kehai Dong, Chunyun Xu. Data block adaptive filtering algorithms forα-stable random processes [J]. Digital Signal Processing, 2007, 17(4): 836-847.
    [39]赵知劲,郑晓华,赵治栋.α稳定分布下Volterra滤波器的自适应数据块算法[J].电子技术应用, 2010,36(5): 136-138.
    [40]杨群,曾学文,王劲林.地面电视回传信道的变块长BLMS均衡算法[J].微计算机信息, 2009, 25(8):140-142.
    [41]杨群,曾学文,王劲林.新的变块长频域批处理LMS算法[J].计算机工程与应用, 2009, 45(2): 34-38.
    [42] Takeshi H, Mitsuji M, Takao H. A pipeline architecture of quadratic adaptive Volterra filters based on NLMS algorithm [C]. IEEE International Symposium on Circuits and Systems (ISCAS 2001), 2001, 2:785-788.
    [43] Eiji N, Chisako N, Hiroshi H, Hiroshi K. Identification of disappeared Volterra kernels of M-sequence correlation method for nonlinear system [C]. International Joint Conference Digital Object Identifier(SICE-ICASE 2006), 2006, 5604-5607.
    [44] Eduardo L.O. Batista, Orlando J. Tobias, Rui Seara. A mathematical framework to describe interpolated adaptive Volterra filters [C]. International Telecommunications Symposium, 2006, 144-149.
    [45] Eduardo L.O. Batista, Orlando J. Tobias, Rui Seara. A fully LMS adaptive interpolated Volterra structure[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, 3165-3166.
    [46] Eduardo L.O. Batista, Orlando J. Tobias, Rui Seara. A sparse-interpolated scheme for implementing adaptive Volterra filters [J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2022-2035.
    [47]吴立勋,梁虹. Volterra级数模型的一种并行辨识算法[J].石家庄学院学报, 2007, 9(6): 9-12.
    [48] Walter A. Frank. MMD–an efficient approximation to the 2ndorder Volterra filter [C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 1994), 1994, 3: 517-520.
    [49] Ernest S, Bruce W, David F. Efficient implementation of Volterra systems using a multilinear SVD [C]. Proceedings of 2007 International Symposium on Intelligent Signal Processing and Communication Systems, 2007, 762-765.
    [50] Haiquan Zhao, Jiashu Zhang. A novel adaptive nonlinear filter- based pipelined feedforward second-order Volterra architecture [J]. IEEE Transactions on Signal Processing, 2009, 57(1): 237-246.
    [51] Pritzker Z. The VLSG algorithm and its application to blind equalization in digital communication systems[D]. M. Sc. Thesis, Technion, Israel institute of Technology, 1988.
    [52] Pritzker Z, Feuer. Variable length stochastic gradient algorithm [J]. IEEE Transactions on Signal Processing,1991, 39(4): 997-1001.
    [53] Y. K. Won, R. H. Park, J. H. Park, B. U. Lee. Variable LMS algorithm using the time constant concept [J]. IEEE Transactions on Consumer Electronics, 1994, 40(3): 655-661.
    [54] Rusu C, Cowan C.F.N. Novel stochastic gradient adaptive algorithm with variable length [C]. European Conference on Circuit Theory and Design, 2001, 341-344.
    [55] Gu Y, Tang K, Cui H, Du W. Convergence analysis of a deficient-length LMS filter and optimal-length sequence to model exponential decay impulse response [J]. IEEE Signal Processing Letters, 2003, 10(1):4-7.
    [56] Radu C B, Pauli K, Karen E. A new variable length LMS algorithm: theoretical analysis and implementations [C]. IEEE International Conference on Electronics, Circuit and Systems, 2002, 1:1031-1034.
    [57] Y. Gong, C. F. N. Cowan. Structure adaptation of linear MMSE adaptive filters [J]. IEE Proceedings - Vision, Image and Signal Processing, 2004, 151(4): 271-277.
    [58] Y. Gong, C. F. N. Cowan. An LMS style variable tap-length algorithm for structure adaption [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2400-2407.
    [59] Y. Zhang, J. A. Chambers. Convex combination of adaptive filters for a variable tap-length LMS algorithm[J]. IEEE Signal Processing Letters, 2006, 13(10): 628-631.
    [60]林川,冯全源.变抽头长度LMS自适应滤波算法[J].电子与信息学报, 2008, 30(7): 1676-1679.
    [61]林川,冯全源.应用于自适应格型RLS滤波器的变阶数算法[J].信号处理, 2010, 26(2): 298-302.
    [62] Nowak R D, Veen B D. Random and pseudorandom inputs for Volterra system identification [J]. IEEE Transactions on Signal Processing, 1994, 42(8): 2124-2135.
    [63]李勇,韩崇昭,吴艳萍.一类非线性系统辨识的参数空间优化遗传算法[J].控制与决策, 2001, 16(6):965-967.
    [64]张华君,韩崇昭.一种基于BLMS的Volterra级数简化辨识方法[J].系统仿真学报, 2006, 18(8):2331-2337.
    [65]张华君,韩崇昭.一种Volterra级数简化辨识方法及其应用研究[J].计算机仿真, 2006, 23(9): 140-143.
    [66] Umut O, Deniz E. Second-order Volterra system identification with noisy input-output measurements [J]. IEEE Signal Processing Letters, 2009, 16(1): 18-21.
    [67] Li Gan, Abd-Elrady. Linearization of weakly nonlinear Volterra systems using FIR filters and recursive prediction error method [C]. IEEE Workshop on Machine Learning for Signal Processing, 2008, 409-414.
    [68]虞晓,胡光锐,吴小滔.自适应噪声对消中的ELMS算法及其变步长算法[J].上海交通大学学报,1998, 32(4): 92-96.
    [69] Li Tan, Jean Jiang. Adaptive Volterra filters for active control of nonlinear noise processes [J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1667-1676.
    [70]张翔,李传光.自适应有源噪声控制算法的研究与实现[J].北京理工大学学报, 2002, 22(1): 53-55.
    [71]李康辉,何培宇.一种变步长解相关的自适应声回波对消[J].算法四川大学学报(自然科学版), 2003,40(3): 471-474.
    [72] Alexandre Guerin, Gerard Faucon, Regine Le Bouquin-Jeannes. Nonlinear acoustic echo cancellation based on Volterra filters [J]. IEEE Transactions on Speech and Audio Processing, 2003, 11(6): 672-683.
    [73] Sen M. Kuo, Hsien-Tsai Wu. Nonlinear adaptive bilinear filters for active noise control systems [J]. IEEE Transactions on Circuits and Systems, 2005, 52(3): 617-624.
    [74]王振力,张雄伟,郑君杰.一种基于双通道自适应噪声对消的语音增强法[J].信号处理, 2007, 23(5):786-790.
    [75]曹斌芳,何怡刚,李建奇,方葛丰,刘慧. 3种改进型LMS算法在噪声抵消中的仿真比较[J].电声技术, 2007, 31(9): 66-69.
    [76] Yegui Xiao, Liying Ma, Jinwei Sun. A novel narrowband active noise control system with significantly reduced computational cost [C]. 9thInternational Conference on Signal Processing, 2008, 240-243.
    [77] Haiquan Zhao, Jiashu Zhang. Filtered-X Lyapunov algorithm for nonlinear active noise control using second-order Volterra fiter [C]. 11thIEEE International Conference on Communication Technology, 2008,497-500.
    [78]张家树,肖先赐.基于sigmoid函数的Volterra自适应有源噪声对消器[J],电子与信息学报, 2002,24(4): 461-466.
    [79]张秀梅,赵知劲,尚俊娜.基于Lyapunov稳定性理论的Volterra自适应噪声对消器[J].电声技术,2009, 33(12): 46-49.
    [80] Soner Ozgunel, Ahme H Kayran, Erdal Panayirci. Nonlinear channel equalization using multichannel adaptive lattice algorithms [C]. IEEE International Symposium on Circuits and Systems, 1991, 5:2826-2829.
    [81]欧阳晓曦,张效民.多信道自适应格型算法及在信道均衡中的应用[J].弹箭与制导学报, 2005, 25(4):1000-1003.
    [82]赵海全.自适应多项式均衡器的研究[D]. 2005,西南交通大学硕士论文.
    [83] Fang Yangwang, Jiao Licheng, Pan Jin. MIMO Volterra filter equalization using pth-order inverse approach[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000, 1:177-180.
    [84] Christoph Krall, Klaus Witrisal, Geert Leus. Mimimum mean-aquare error equalization for second-order Volterra systems [J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4729-4737.
    [85]朱仁祥,吴乐南.基于最低误码率准则的奇次三阶Volterra均衡器用于干扰抑制[J].电子与信息学报,2008, 30(10): 2373-2376.
    [86] Zhemin Zhuang, Jing Zhang, Weiyi Huang. Adaptive Volterra series model for nonlinear senor compensation [J]. Journal of Southeast University (English Edition). 2004, 20(3):286-288.
    [87]李爱红,肖山竹,张尔扬.基于离散小波变换的Volterra自适应预失真方法[J].信号处理, 2009, 25(1):40-41.
    [88]张永平,郑南宁,李翠华.图像边缘提取的自适应Volterra滤波器设计[J].电子学报, 1999, 27(4):75-78.
    [89] Zhuang zhemin, Zhang jing, Huang weiyi. Adaptive Volterra series model for nonlinear sensor compensation [J]. Journal of Southeast University (English Edition), 2004, 20(3): 286-288.
    [90] Hunter I W, Korenberg M J. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models [J]. Biological Cybernetics, 1986, 55(2-3): 135-144.
    [91] Ogunfunmi T, Chang S.L. Second-order adaptive Volterra system identification based on discrete nonlinear Wiener model [J]. IEE Proceedings - Vision, Image and Signal Processing, 2001, 148(1): 21-29.
    [92] Binwei Weng, Kenneth E Barner. Nonlinear system identification in impulsive environments [J]. IEEE Transactions on Signal Processing, 2007, 111153(7): 2588-2594.
    [93] Taiho Koh, Edward J Powers. Second-order Volterra filtering and its application to nonlinear system identification [J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1985, 33(6): 1445-1455.
    [94] Taiho Koh, Powers E. Second-order Volterra filtering and its application to nonlinear system identification[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, 33(6): 1445-1455.
    [95]张家树,肖先赐.混沌时间序列的自适应高阶非线性滤波预测[J].物理学报, 2000, 49(7): 1221-1227.
    [96]张家树,肖先赐.用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器[J].物理学报,2001, 50(7): 1248-1253.
    [97]韦保林,罗晓曙,王秉宏,全宏俊,郭维,傅金阶.一种基于三阶Volterra滤波器的混沌时间序列自适应预测方法[J].物理学报, 2002, 51(10): 2205-2210.
    [98]张家树,李恒超,肖先赐.连续混沌信号的离散余弦变化域二次实时滤波预测[J].物理学报, 2004,53(3): 710-716.
    [99]西蒙·赫金著.自适应滤波器原理[M] .郑宝玉等译.第四版.北京:电子工业出版社, 2003.
    [100]张贤达.时间序列分析—高阶统计量方法[M].北京:清华大学出版社, 1996.
    [101]赵知劲,张秀梅,尚俊娜.一种分阶自适应Volterra滤波算法[J].电路与系统学报, 2010, 15(4): 1-5.