介孔二氧化硅微球纳米反应器的设计及其产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于介孔二氧化硅(MS)微球比表面积大、孔体积大、孔径可调、表面可官能团化、稳定性好、生物相容性好,在吸附与分离、主客体组装等领域有着广泛的应用前景,而这些离不开MS微球的功能化。而根据性能要求,设计基于MS微球的纳米反应器来完成其对纳米材料的组装,形成介孔杂化材料,是目前对MS进行功能化的一个非常有效的途径,其中MS微球的孔径是影响纳米反应器性能的一个关键因素。不同孔径的MS微球通过尺寸选择效应对带电的不同尺寸的纳米客体材料进行选择性地组装。此外,层层自组装技术也是一种可以用于限域反应的有效手段。本课题设计了四种基于MS微球的纳米反应器,并结合层层自组装技术,将不同种类的纳米材料组装上去,形成具有催化、光电响应、荧光等不同性质的复合微球,并考察了其相应的性能以及在不同领域的应用。
     1.本文第二章以十六胺为模板、氨水为催化剂、正硅酸乙酯(TEOS)为前驱体,制备了平均粒径为1.3pm的MS微球,通过复盐浸渍、高温焙烧法调节MS微球的介孔孔径,并考察了焙烧温度和气氛对孔径的影响,有效地制备了具有不同孔径且形貌规整的MS微球,其孔径可从3.2nm调节至46.8nm。该方法简单易行,为纳米反应器的构筑奠定了基础。
     2.本文第三章利用MS微球和Au纳米颗粒或脲酶之间的静电吸附作用,制备了MS/Au或者MS/脲酶复合微球。结果表明,随着不同孔径的MS微球对Au纳米颗粒负载程度的增加,Au纳米颗粒在组装过程中的团聚程度不同,溶液由原来的红色逐渐变为紫色,当负载程度最大时,溶液变为蓝紫色:基于这种选择尺寸效应,设计了基于MS微球的纳米反应器,使脲酶在MS孔道内催化尿素水解,随着MS微球对脲酶负载程度的增加,其催化效果也逐渐提高。
     3.鉴于金属氧化物纳米颗粒的催化性能,结合层层自组装技术和高温焙烧法,本文第四章设计了基于MS微球的金属氧化物纳米反应器,使金属离子在其孔道内与尿素分解的产物发生反应,生成碱式碳酸盐,再通过高温焙烧,成功地将结晶性良好的金属氧化物(CuO、NiO或C0304)纳米颗粒组装到MS微球上,形成的复合微球保持了球形形貌,单分散性良好,且仍为介孔结构,有利于提高其催化性能。该方法可用于制备含有其他金属氧化物纳米颗粒的介孔杂化材料。此外,所制备的复合微球具有较大的氧化还原峰面积,从而具有较多的催化活性位点。
     4.鉴于CuO和FeS2的光电性能,结合层层自组装技术和溶剂热法,本文第五章设计了基于MS微球的金属氧化物@金属硫化物纳米反应器,一方面使Cu2+在其孔道内与尿素分解的产物发生反应,另一方面使Fe3+经过硫代硫酸钠的还原作用,在溶剂热条件下实现CuO在介孔孔道和FeS2在MS微球表面的组装,制备而得的MS@CuO@FeS2复合微球呈球状,表面具有片层结构,能够吸收紫外到近红外范围内的光,具有光电响应性能。此外,得到的MS@CuO@FeS2复合微球还具有磁性能,将其与PVA凝胶组装成各向异性膜,可以提高太阳能电池的性能。
     5.鉴于碳量子点(CDs)的生物相容性及荧光性能,本文第六章设计了基于MS微球的CDs的纳米反应器,使CDs在其孔道内限域生长,用NaOH刻蚀Si02,释放得到的CDs,具有波长依赖和上转换荧光特性,其稳定性、水溶性以及生物相容性良好。增大MS微球的孔径或者前驱体的用量,CDs的粒径也会相应增加。将CDs用于检测Cu2+和L-半胱氨酸(L-Cys), Cu2+的加入引起了荧光淬灭,L-Cys对Cu2+的竞争反应,又使荧光得到恢复。该方法简单、响应速度快、成本低、环境友好、选择性且灵敏度高,Cu2+的检测限为2.3x10-8M,而L-Cys的检测限可达3.4×10-10M。此外,通过酰胺化反应用PAMMA连接Au纳米颗粒和CDs,形成了Au-PAMAM-CDs复合物,有效地增强了CDs的荧光。研究了Au纳米颗粒或者CDs的用量对荧光增强效果的影响,在优化条件下,荧光增强效果达到了62倍。
Mesoporous silica spheres have opened up many possibilities for applications in absorption and separation, and host-guest assembly, due to their large surface areas, large pore volume, controllable pore size, easy surface-functionalization, good stability and biocompatibility. However, it can't work without the functionalization of mesoporous silica spheres. An effective way of the functionalization of mesoporous silica spheres is the fabrication of mesoporous silica sphere-based nanorectors to assemble nanomaterials according to the acquirements of properties. It is worth noting that the pore size is one of the important factors to affect the performance of the nanoreactors. Due to the size-selective effect, the charged nanomaterials with different sizes can be assembled on MS spheres with different pore sizes selectively. In addition, layer-by-layer (LbL) assembly technique is also useful for confined reaction. Herein, we fabricated four kinds of mesoporous silica sphere-based nanorectors. With the help of LbL assembly technique, different types of nanoparticles were assembled on the mesoporous silica spheres, forming composite spheres with different properties, such as catalytic, photoelectric, and fluorescent properties. Their properties and applications in different areas were also investigated.
     1. In Chapter2, MS spheres were firstly prepared with hexadecylamine as surfactant, ammonia as catalyst, and tetraethyl orthosilicate (TEOS) as silica precursor. The size of the resulting MS spheres is ca.1.3μm. In the presence of complex salts, the pores of MS spheres can be controlled by calcination, which retained the spherical morphology. The effect of calcination temperature and atmosphere on the pore size was also investigated. The pores can be enlarged from3.2to46.8nm effectively. This method is simple and feasible, which is the base for the fabrication of nanoreactors.
     2. In Chapter3, the assembly of Au nanoparticles or urease on MS spheres was carried out through their electrostatic interaction, forming MS/Au composite spheres. The increasing amount of Au nanoparticles assembled on MS sphere lead to their different aggregation. The color of Au colloid was accordingly changed initially from red, then to purple, and finally to violet blue. Similarly, urease with different amount was assembled on MS spheres with different pore sizes. By using MS spheres as nanoreactors, urease loaded on MS spheres can catalyze urea. And the enzymatic activity increased with the increase of the loading amount of urease.
     3. Considering the excellent catalytic activities of metal oxide nanoparticles, we assembled them on MS spheres using MS spheres as nanorectors with the help of LbL assembly technique in Chapter4. Metal ions absorbed in the pores of MS spheres can react with the product from the hydrolysis of urea. Metal oxides (CuO, NiO, or CO3O4) nanoparticles were then formed in the pores of MS spheres by calcination. The resulting composites are still spherical, monodisperse, and mesoporous, which is favorable to enchance their properties. This method can be expanded to prepare other composites which contain other metal oxides nanoparticles. In addition, the resulting composite spheres have large redox peak area so that they have many catalytic active sites.
     4. Considering the good photoelectric properties of CuO and FeS2, we assembled them on MS spheres using MS spheres as nanorectors in Chapter5. With the help of LbL assembly technique together with solvothermal method, Cu2+which was absorbed in the pores of MS spheres can react with the product from the hydrolysis of urea, and at the same time Fe3+can react with Na2S2O3, reslting in the successful assembling of CuO and FeS2. The resulting MS@CuO@FeS2composites are spherical, have rough shell with flake-like texture, and can absorb a wide range of light, from UV to near-infrared, making them sensitive to UV light. In addition, they show ferromagnetic properties, which enable them to align in PVA gel. The obtained films were anisotropic and promising for improving the performance of solar cells.
     5. Considering the excellent biocompatibility and fluorescent properties of CDs, we prepared them on MS spheres using MS spheres as nanorectors in Chapter6. By etching silica with NaOH, CDs can be released. The resulting hydrophilic CDs have good stability, wavelength-dependent and up-converted photoluminescent properties. They are also easily functionalized. The increase of the pore size of MS spheres and the amount of precursor of CDs results in the increase of the size of CDs. CDs were then used as fluorescent probes for the detection of Cu2+and L-cysteine (L-Cys). The addition of Cu2+cations leads to their absorption on the surface of CDs and the significant fluorescence quench of CDs. While the addition of L-Cys reverses the quenching and restore the fluorescence due to its ability to remove Cu2+from the surface of CDs. This method for the detection of Cu2+and L-Cys is facile, rapid, low-cost, environment-friendly, and highly selective and sensitive. The detection limit is2.3×10-8M for Cu2+and3.4×10-10M for L-Cys. In addition, the Au-PAMAM-CDs conjugates were formed by conjugating of Au nanoparticles (Au NPs) and CDs to PAMAM dendrimers through an amidation reaction. This makes Au NPs and CDs in an appropriate distance for the fluorescence enhancementdue to the strong local electric fields created by Au NPs surface plasmon resonance. Varying the amount of Au NPs or CDs in the system can affect the fluorescence enhancement. The results showed a62-fold enhancement for CDs was achieved.
引文
[1]Fan JQ. Fang G, Zeng F, Wang XD, Wu SZ. Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions [J]. Small 2013,9 (4):613-621.
    [2]Zhu JJ. Wang T, Xu XL, Xiao P, Li JL. Pt nanoparticles supported on SBA-15:Synthesis, characterization and applications in heterogeneous catalysis [J]. Appl. Catal. B:Environ. 2013.130-131:197-217.
    [3]Veneziano R, Derrien G, Tan S, Brisson A, Devoisselle J-M, Chopineau J, Charnay C. One step synthesis of gold-loaded radial mesoporous silica nanospheres and supported lipid bilayer functionalization:towards bio-multifunctional sensors [J]. Small 2012.8 (23): 3674-3682.
    [4]Gan JR. Zhu J, Yan GQ, Liu Y, Yang PY, Liu BH. Periodic mesoporous organosilica as a multifunctional nanodevice for large-scale characterization of membrane proteins [J]. Anal. Chem.2012,84:5809-5815.
    [5]Zhao L. Qin HQ, Wu RA, Zou HF. Recent advances of mesoporous materials in sample preparation [J]. J. Chromatogr. A 2012,1228:193-204.
    [6]Hosseini M. Ganjali M R, Rafiei-Sarmazdeh Z, Faridbod F, Goldooz H, Badiei A. Nourozi P. Ziarani G M. A novel Lu3+ fluorescent nano-chemosensor using new functionalized mesoporous structures [J].Anal. Chim. Acta 2013,771:95-101.
    [7]Wang YY, Li B, Zhang LM, Song H. Multifunctional mesoporous nanocomposites with magnetic, optical, and sensing features:synthesis, characterization. and their oxygen-sensing performance [J]. Langmuir 2013,29:1273-1279.
    [8]Zhang JM, Zhai SR. Li S, Xiao ZY, Song Y, An QD, Tian G. Pb(II) removal of Fe3O4@SiO2-NH2 core-shell nanomaterials prepared via a controllable sol-gel process [J]. Chem. Eng. J.2013,215-216:461-471.
    [9]de Sousa A F, Braga T P, Gomes E C C, Valentini A, Longhinotti E. Adsorption of phosphate using mesoporous spheres containing iron and aluminum oxide [J]. J. Ind. Eng. Chem.2011,17:504-509.
    [10]Ahn C-Y, Cheon J-Y, Joo S-H, Kim J. Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells [J]. J. Power Sources 2013,222:477-482.
    [11]Sanchez-Munoz S, Perez-Quintanilla D, Gomez-Ruiz S. Synthesis and photocatalytic applications of nano-sized zinc-doped mesoporous titanium oxide [J]. Mater. Res. Bull. 2013,48:250-255.
    [12]Cai TW, Zhou M, Ren DY, Han GS, Guan SY. Highly ordered mesoporous phenol-formaldehyde carbon as supercapacitor electrode material [J]. J. Power Source 2013,231:197-202.
    [13]Sekaran G, Karthikeyan S, Gupta VK, Boopathy R, Maharaja P. Immobilization of Bacillus sp. in mesoporous active carbon for degradation of sulphonated phenolic compound in wastewater [J]. Mater. Sci. Eng. C 2013,33:735-745.
    [14]Jiang K-J, Manseki K, Yu Y-H, Masaki N, Suzuki K, Song Y-L, Yanagida S. Photovoltaics based on hybridization of effective dye-sensitized titanium oxide and hole-conductive polymer P3HT [J]. Adv. Funct. Mater.2009,19:2481-2485.
    [15]Xie M, Shi H, Ma K, Shen HJ, Li B, Shen S, Wang XS, Jin Y. Hybrid nanoparticles for drug delivery and bioimaging:Mesoporous silica nanoparticles functionalized with carboxyl groups and a near-infrared fluorescent dye [J]. J. Colloid and Interf. Sci.2013, 395:306-314.
    [16]Sreejith S, Ma X, Zhao YL. Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging [J]. J. Am. Chem. Soc.2012,134:17346-17349.
    [17]Wu K C-W, Yamauchi Y, Hong C-Y, Yang Y-H, Liang Y-H, Funatsu T, Tsunoda M. Biocompatible, surface functionalized mesoporous titania nanoparticles for intracellular imaging and anticancer drug delivery [J]. Chem. Commun.2011,47:5232-5234.
    [18]Hartmann M. Ordered mesoporous materials for bioadsorption and biocatalysis [J]. Chem. Mater.2005,17:4577-4593.
    [19]Guliants VV, Carreon MA, Lin YS. Ordered mesoporous and macroporous inorganic films and membranes [J]. J. Membrane Sci.2004,235,53-72.
    [20]Park M, Choo H Y. Guest-cooperative templating system for as-synthesis loading of guest molecules into ordered mesoporous silica materials [J]. J. Mater. Chem.2009,19: 7273-7276.
    [21]Hoffmann F, Cornelius M, Morell J, Fr6ba M. Silica-based mesoporous organic-inorganic hybrid materials [J]. Angew. Chem. Int. Edit.2006,45,3216-3251.
    [22]Cao SL, Yao N, Yeung K L. Synthesis of freestanding silica and titania-silica aerogels with ordered and disordered mesopores [J]. J. Sol-Gel Sci. Techn.2008,46:323-333.
    [23]Grabicka B E, Jaroniec M. Microwave-assisted synthesis of periodic mesoporous organosilicas with ethane and disulfide groups [J]. Micropor. Mesopor. Mat.2009,119: 144-149.
    [24]Newalkar B L, Komarneni S, Katsuki H. Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave-hydrothermal process [J]. Chem. Commun.2000. 2389-2390.
    [25]Zhang W, Pauly T R, Pinnavaia T J. Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (S0I0) assembly pathway [J]. Chem. Mater.1997,9:2491-2498.
    [26]Thiruvengadathan R, Levi-Kalisman Y, Regev O. Templating nanostructures by mesoporous materials with an emphasis on room temperature and cryogenic TEM studies [J]. Curr. Opin. Colloid In.2005,10:280-286.
    [27]Atluri R, Hedin N, Garcia-Bennett A E. Hydrothermal phase transformation of bicontinuous cubic mesoporous material AMS-6[J].Chem. Mater.2008.20:3857-3866.
    [28]Lin W, Chen J, Sun Y. Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel [J]. J. Chem. Soc., Chem. Commun.1995: 2367-2368.
    [29]Yang P, Zhao D, Margolese D I. Gemeralized syntheses of large pore mesoporous metal ocides with semicrystalline frameworks [J]. Nature 1998,396:152-155.
    [30]Yang PD, Zhao DY, Margolese D I, Chmelka B F, Stucky G D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework [J].Chem. Mater.1999,11:2813-2816.
    [31]Sanchez C, Soler-Hlia G J De A A, Ribot F, Grosso D. Design of functional nano-structured materials through the use of controlled hybrid organic-inorganic interfaces [J].C.R. Chim.2003,6,1131-1151.
    [32]陈逢喜,黄茜丹,李全芝.中孔分子筛研究进展[J].科学通报1999,44(18):1905-1920.
    [33]Othman Z A, Apblett A W. Synthesis of mesoporous silica grafted with 3-glycidoxypropyltrimethoxy-silane [J]. Mater. Lett.2009,63:2331-2334.
    [34]Wang LW, Wang ZC, Zhao JZ, Yuan ZH, Yang H, Zhao MY. Preparation of mesoporous silica by co-precipitation in the presence of non-ionic surfactant [J]. Mater. Chem. Phys. 1999,59:171-174.
    [35]Khushalani D, Ozin G A, Kuperman A. Glycometallate surfactants. Part 1:non-aqueous synthesis of mesoporous silica [J]. J. Mater. Chem.1999,9:1483-1489.
    [36]Grun M, Unger K K, Matsumoto A, Tsutsumi K. Novel pathways for the preparation of mesoporous MCM-41 materials:control of porosity and morphology [J]. Micropor. Mesopor. Mat.2009.27:207-216.
    [37]Kruk M. Jaroniec M. A unified interpretation of high-temperature pore size expaasion processes in MCM-41 mesoporous silicas [J]. J. Phys. Chem. B 1999,103:4590-4598.
    [38]Occelli ML, Biz S. Surfactant effects on the physical properties of mesoporous silica and silicates[J].J.Mol. Catal. A:Chem.2000,151:225-231.
    [38]Kresge C T, Leonowicz M E, Roth W J, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992,359: 710-712.
    [40]Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J.Am. Chem. Soc.1992,114:10834-10843.
    [41]Chen C-Y, Burkett S L, Li H X, Davis M E. Studies on mesoporous materials Ⅱ. Synthesis mechanism of MCM-41 [J]. Micropor. Mesopor. Mat.1993,2(1):27-34.
    [42]Monnier A, Schuth F, Huo Q., Kumar D, Margolese D, Maxwell R S, Stucky G D, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka B F. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science 1993, 261:1299-1303.
    [43]Steel A, Carr S W, Anderson M W. 14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates [J]. J. Chem. Soc, Chem. Commun.1994:1571-1572.
    [44]Firouzi A, Kumar D, Bull L M, Besier T, Sieger P, Huo Q, Walker S A, Zasadzinski J A, Glinka C, Nicol J, Margolese D, Stucky G D, Chmelka B F. Cooperative organization of inorganic-surfactant and biomimetic assemblies [J]. Science 1995,267 (5201): 1138-1143.
    [45]Yiu H H P, Wright P A. Enzymes supported on ordered mesoporous solids:a special case of an inorganic-organic hybrid [J]. J. Mater. Chem.2005,15:3690-3700.
    [46]Zhao D, Feng J, Huo Q, Chmelka, B F, Chmelka B F, Stucky G D. Tri-, tetra-, and octablock copolymer and nonionic surfactant synthesis of highly ordered, hydrothermlly stable, mesoporous silica structures [J]. J. Am. Chem. Soc.1998,120:6024-603.
    [47]Sun T, Ying J Y. Synthesis of microporous transition metal oxide molecular sieves with bifunctional templating molecules [J].Angew. Chem. Int. Edit.1998,37(5):664-667.
    [48]Huo Q, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials[J].Chem. Mater.1996,8:1147-1160.
    [49]刘培生.多孔硅胶的锂复盐的扩孔处理[J].广东化工1991,4:28-29.
    [50]Corma A, Kan Q, Navarro M T, Perez-Pariente J, Rey F. Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics [J]. Chem. Mater.1997,9: 2123-2126.
    [51]Peng H G. Xu L, Wu HH. Wang ZD. Liu YM. Li XH. He MY. Wu P. Synthesis and formation mechanism of TS-1@mesosilica core-shell materials template by triblock copolymer surfactant [J]. Micropor. Mesopor. Mat.2012,153:8-17.
    [52]Badie S Girgis. Ammo mother mal treatment of silica gel and simultaneous changes in surface area [J]. J. Appl. Chem. Biotechnol.1976,26:683-691.
    [53]Liong M, Angelos S, Choi E, Patel K. Stoddart J F, Zink J I. Mesostructured multifunctional nanoparticles for imaging and drug delivery [J]. J. Mater. Chem.2009,19: 6251-6257.
    [54]Slowing I I, Trewyn B G, Giri S, Lin V S-Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications [J]. Adv. Funct. Mater.2007.17:1225-1236.
    [55]Trewyn B G, Giri S, Slowing I I, Lin V S-Y. Mesoporous silica nanoparticles based controlled release, drug delivery, and biosensor systems [J]. Chem. Commun.2007, 3236-3245.
    [56]Coti K K, Belowich M E, Liong M, Ambrogio M W,Jau Y A, Khatib H A, Zink J 1. Khashab N M, Stoddart J F. Mechanised nanoparticles for drug delivery [J]. Nanoscale 2009,1:16-39.
    [57]Hasanzadeh M, Shadjou N, Eskandani M. de la Guardia M. Mesoporous silica-based materials for use in electrochemical enzyme nanobiosensors [J]. Trac-Trend. Anal. Chem. 2012,40:106-118.
    [58]Yokoi T, Kubota Y, Tatsumi T. Amino-functionalized mesoporous silica as base catalyst and adsorbent [J]. Appl. Catal. A-Gen 2012.421-422:14-37.
    [59]Kundu T K, Chakravorty D. Nanocomposite films of lead zirconate. titanate and metallic nickel by sol-gel route [J]. Appl. Phys. Lett.1995.66:3576-3578.
    [60]Chatterjee A, Chakravorty D. Electrical conduction in sol-gel derived glass-metal nanocomposites [J]. Journal of Physics D:Applied Physics 1990,23:1097-1102.
    [61]Nilsen M H, Antonakou E, Bouzga A, Lappas A, Mathisen K, Stocker M. Investigation of the effect of metal sites in Me-Al-MCM-41 (Me= Fe, Cu or Zn) on the catalytic behavior during the pyrolysis of wooden based biomass [J]. Micropor. Mesopor. Mat. 2007,105:189-203.
    [62]Dickinson C, Zhou WZ, Hodgkins R P, Shi YF, Zhao DY, He HY. Formation Mechanism of Porous Single-Crystal CraO3 and CO3O4 Templated by Mesoporous Silica [J]. Chem. Mater.2006,18:3088-3095.
    [63]Zeng W. Wang Z. Qian X-F, Yin J. Zhu Z-K. ZnO clusters in situ generated inside mesoporous silica [J]. Mater. Res. Bull.2006.41:1155-1159.
    [64]Cheng M-Y, Pan C-J, Hwang B-J. Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15:Blockage-free nanochannels [J]. J. Mater. Chem.2009,19:5193-5200.
    [65]Chen C-K, Chen Y-W, Lin C-H, Lin H-P, Lee C-F. Synthesis of CuO on mesoporous silica and its application for coupling reactions of thiols with aryl iodides [J]. Chem. Commun.2010,46,282-284.
    [66]Zhang L-X, Shi J-L, Yu J, Hua Z-L, Zhao X-G, Ruan M-L. A new in-site reduction route for the synthesis of Pt nanoclusters in the channels of mesoporous silica SBA-15 [J]. Adv. Mater.2002,14 (20):1510-1513.
    [67]Brunel D, Blanc A C, Galarneau A, Fajula F. New trends in the design of supported catalysts on mesoporous silicas and their applications in fine chemicals [J]. Catal. Today 2002,73:139-152.
    [68]Wang QQ, Jordan E, Shantz D F.2H NMR Studies of simple organic groups covalently attached to ordered mesoporous silica[J]. J. Phys. Chem. C 2009,113:18142-18151.
    [69]Kecht J, Bein T. Oxidative removal of template molecules and organic functionalities in mesoporous silica nanoparticles by H2O2 treatment [J]. Micropor. Mesopor. Mat.2008, 116:123-130.
    [70]Corriu RJP, Mehdi A, Reye C, Thieuleux C, Thieuleux C. Control of coordination chemistry in both the framework and the pore channels of mesoporous hybrid materials [J].New J. Chem.2003,27:905-908.
    [71]Descalzo A B, Rurack K, Weisshoff H, Martinez-Manez R, Martcos M D, Amoros P, Hoffmann K, Soto J. Rational design of a chromo-and fluorogenic hybrid chemosensor material for the detection of long-chain carboxylates [J]. J. Am. Chem Soc.2005,127: 184-200.
    [72]Lei CH, Shin Y, Liu J, Ackerman E J. Entrapping enzyme in a functionalized nanoporous support [J].J.Am. Chem. Soc.2002,124:11242-11243.
    [73]Lim M H, Stein A. Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials [J]. Chem. Mater.1999,11:3285-3295.
    [74]Ariga K, Zhang Q, Niki M, Okabe A, Aida T. Proteosilica-mesoporous silicates densely filling amino acid and peptide assemblies in their nanoscale pores [J]. Stud. Surf. Sci. Catal.2003,146:427-430.
    [75]Nazeeruddin MK, Di Censo D, Humphry-Baker R, M. Grazel. Highly selective and reversible optical, colorimetric, and electrochemical detection of mercury(II) by amphiphilic ruthenium complexes anchored onto mesoporous oxide films [J]. Adv. Funct. Mater.2006.16:189-194,
    [76]Pal M. Ganesan V. Effect of silver nanoelectrode emsembles on the electrocatalytic reduction of NO2- by zinc phthalocyanine [J]. Electrochim. Acta 2010,55:4071-4077.
    [77]Luechinger M, Kienhofer A. Pirngruber G D. Immobilized complexes of metals with ami no acid ligands-A first step toward the development of new biomimetic catalysts [J]. Chem. Mater.2006,18:1330-1336.
    [78]Zheng HQ, Xing L, Cao YY, Che SN. Coordination bonding based pH-responsive drug delivery systems [J].Coordin Chem. Rev.2013.257:1933-1944.
    [79]Sun L, Zhang XG, Zheng Chao, Wu ZM. Li CX. A pH gated, glucose-sensitive nanoparticle based on worm-like mesoporous silica for controlled insulin release [J]. J. Phys. Chem. B2013,117:3852-3860.
    [80]Khashab N M, Belowich M E. Trabolsi A. Friedman D C, Valente C, Lau Y, Khatib H A, Zink J I, Stoddart J F. pH-responsive mechanized nanoparticles gated by semirotaxanes [J].Chem. Commun.2009:5371-5373.
    [81]Ferris D P, Zhao Y-L, Khashab N M, Khatib H A, Stoddart J F, Zink J I. Light-Operated Mechanized Nanoparticles[J].J. Am. Chem. Soc.2009,131:1686-1688.
    [82]Aznar E, Marcos M D. Martinez-Manez R. Sancenon F, Soto J. Amoros P, Guillem C. pH- and Photo-Switched Release of Guest Molecules from Mesoporous Silica Supports [J].J. Am. Chem. Soc.2009.131:6833-6843.
    [83]Lee J, Park J, Singha K, Kim W J. Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker |J]. Chem Commun.2013,49:1545-1547.
    [84]Li Z-J, Zhang Y-J, Zhang H-W, Fu H-X. Long-lasting phosphorescence functionalization of mesoporous silica nanospheres by CaTiO3: Pr3+ for drug delivery [J]. Micropor. Mesopor. Mat.2013,176:48-54.
    [85]Li HW, Zhang J Z, Tang QQ, Du Ming. Hu JH, Yang D. Reduction-responsive drug delivery based on mesoporous silica nanoparticle core with crosslinked poly(acrylic acid) Shell [J]. Mater. Sci. Eng.2013,33:3426-3431.
    [86]Nadrah P, Porta F, Planinsek O, Kros A, Gaberscek M. Poly(propylene imine) dendrimer caps on mesoporous silica nanoparticles for redox-responsive release:smaller is better [J]. Phys. Chem. Chem. Phys.2013,15:10740-10748.
    [87]Du L, Liao SJ, Khatib H A, Stoddart J F. Zink J I. Controlled-Access Hollow Mechanized Silica Nanocontainers [J].J.Am. Chem. Soc.2009,131:15136-15142.
    [88]Liu R, Zhao X. Wu T. Feng PY. Tunable Redox-Responsive Hybrid Nanogated Ensembles [J].J.Am. Chem. Soc.2008,130:14418-14419.
    [89]Ispas C, Sokolv I, Andreescu S. Enzyme-functionalized mesoporous silica for bioanalytical applications [J]. Anal. Bioanal. Chem.2009,393:543-554.
    [90]Fan J, Shui WQ, Yang PY, Wang XY, Xu YM, Wang HH, Chen X, Zhao DY. Mesoporous silica nanoreactors for highly efficient proteolysis [J]. Chem Eur. J.2005,11:5391-5396.
    [91]Ding SJ, Chen J S, Qi GG, Duan XN, Wang ZY, Giannelis E P, Archer L A, Lou X W. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors [J]. J. Am. Chem. Soc.2011,133:21-23.
    [92]Gauda V, Torre B, Falqui A, Canavese G, Stassi S, Bein T, Pizzi M. Confinement in oriented mesoporous induces piezoelectric behavior of polymeric nanowires [J]. Chem. Mater.2012,24(21):4215-4221.
    [93]Kah S, Honicke D. Selective oxidation of 1-butene to maleic anhydride-comparison of the performance between microchannel reactors and a fixed bed reactor [J]. Microreation Technol.2001:397-407.
    [94]Kursawe A, Dietzsch E, Kah S, Honicke D, Fichtner M, Schubert K, Wiessmeier G. Slective reactions in microchannel reactors [J]. Microreation Technol.2000:213-223.
    [95]Decher G, Hong J D. Buildup of ultrathin multiplayer films by a self-assembly process: consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces [J]. Makromol. Chem. Macromol. Symp.1991,46:321-324.
    [96]Decher G. Fuzzy nanoassemblies:toward layered polymeric multicomposites [J]. Science 1997,277:1232-1237.
    [97]Peyratout C S, Dahne L. Tailor-made polyelectrolyte microcapsules:from multilayers to smart containers [J]. Angew. Chem. Int. Edit.2004,43:3762-3783.
    [98]Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science 1998,282:1111-1113.
    [99]Vieira N CS, Figueiredo A, Faceto A D, de Queiroz A AA, Zucolotto V, Guimaraes F EG. Dendrimers/TiO2 nanoparticles layer-by-layer films as extended gate FET for pH detection [J]. Sensor. Actuat. B:Chem 2012,169:397-400.
    [100]Yajun Wang, and Frank Caruso. Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation [J]. Chem. Mater.2005,17:953-961.
    [101]Yu A M, Gentle I, Lu GQ, Caruso F. Nanoassembly of biocompatible microcapsules for urease encapsulation and their use as biomimetic reactor [J]. Chem. Commun.2006: 2150-2151.
    [102]Li Y X, Zhu Y H, Yang X L, Li C Z. Mesoporous silica spheres as microreactors for performing CdS nanocrystal synthesis [J].Cryst. Growth Des.2008.8(12):4494-4498.
    [103]Iwanami K, Sakakura T. Yasuda H. Efficient catalysis of mesoporous Al-MCM-41 for Mukaiyama aldol reactions [J]. Catal. Commun.2009,10:1990-1994.
    [104]Kumar A, Srinivas D. Selective oxidation of cyclic olefins over framework Ti-substituted, three-dimensional, mesoporous Ti-SBA-12 and Ti-SBA-16 molecular sieves [J]. Catal. Today 2012.198:59-68.
    [105]Wang C, Lim SY. Du G. Loebicki C Z, Li N. Derrouiche S, Haller G L. Synthesis, Characterization, and Catalytic Performance of Highly Dispersed Co-SBA-15 [J]. J. Phys. Chem. C 2009,113:14863-14871.
    [106]Li B, Wang J L. Li JJ, Xu YH, Fu JP, Yao WH, Zi GL, Wang W, Wang JQ. Liquid phase oxidation of 4-Methylanisole to 2-methoxy-5-methyl-1,4-benzoqui none over Cu/MCM-41 [J]. Catal. Commun.2009,10:1599-1603.
    [107]Zhu JJ, Wang T. Xu XL, Xiao P, Li JL. Pt nanoparticles supported on SBA-15: Synthesis, characterization and applications in heterogeneous catalysis [J]. Applied Catalysis B:Environmental 2013.130-131:197-217.
    [108]Liu ZC, Zhou J, Cao K, Yang WM, Gao HX, Wang YD, Li HX, Highly dispersed nickel loaded on mesoporous silica:One-pot synthesis strategy and high performance as catalysts for methane reforming with carbon dioxide [J]. Appl. Catal. B:Environ.2012. 125:324-330.
    [109]Sekhar AC S, Sivaranjani K. Gopinath C S. Vinod CP. A simple one pot synthesis of nano gold-mesoporous silica and its oxidation catalysis [J]. Catal. Today 2012.198: 92-97.
    [110]Fu TM, Chen WF, Gu ZM, Liu L, Li FS. Preparation of CuO modified SBA-15 and application as catalyst in AP/HTPB solid State Propellants [J]. Combust. Sci. Technol. 2009,181:892-901.
    [111]Lu BW, Kawamoto K. Preparation of the highly loaded and well-dispersed NiO/SBA-15 for methanation of producer gas [J]. Fuel 2013.103:699-704.
    [112]Cheng M-Y, Pan C-J, Hwang B-J. Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15:Blockage-free nanochannels [J]. J. Mater. Chem. 2009,19:5193-5200.
    [114]Li L, Shi JL, Yan JN, Chen HG, Zhao XG. SBA-15 supported quaternary ammonium salt:an efficient, heterogeneous phase-transfer catalyst [J]. J. Mol. Catal. A:Chem.2004. 209:227-230.
    [113]Ballesteros R. Fajardo M. Sierra I. del Hierro I. Synthesis of titanium-triazine based MCM-41 hybrid materials as catalyst for the asymmetric epoxidation of cinammyl alcohol [J]. J. Mol. Catal. A:Chem. 2009,310:83-92.
    [115]Zarabadi-Poor P, Badiei A, Yousefi A A, Barroso-Flores J. Selective optical sensing of Hg(II) in Aqueous Media by H-acid/SBA-15:A combined experimental and theoretical study [J].J.Phys. Chem. C 2013,117,9281-9289.
    [116]Liu ZN, Yang HH, Zhang H, Huang CJ, Li LF. Oil-field wastewater purification by magnetic separation technique using a novel magnetic nanoparticle [J]. Cryogenics 2012, 52:699-703.
    [117]Yang PP, Gai SL, Lin J. Funtionalized mesoporous silica materials for controlled drug delivery [J]. Chem. Soc. Rev.2012,41:3679-3698.
    [118]Lai C-Y, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S, Lin V S-Y. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules [J]. J. Am. Chem. Soc.2003,125:4451-4459.
    [119]Adnane B, Lai Y-F, Shieh J-M, Holtz P-O, Ni W-N. Photoluminescence study of nanocrystalline-Si (Ge) embedded in mesoporous silica [J]. Solid State Electron.2009,53: 862-864.
    [120]Yang C-T, Huang M H. Formation of Arrays of Gallium Nitride Nanorods within Mesoporous Silica SBA-15 [J]. J. Phys. Chem. B 2005,109:17842-17847.
    [121]Lu QS, Wang ZY, Li JG. Structure and Photoluminescent Properties of ZnO Encapsulated in Mesoporous Silica SBA-15 Fabricated by Two-Solvent Strategy [J]. Nanoscale Res. Lett.2009,4:646-654.
    [122]Yosef M, Schaper A K, Froba M, Schlecht S. Stabilization of the Thermodynamically Favored Polymorph of Cadmium Chalcogenide Nanoparticles CdX(X=S, Se, Te) in the Polar Mesopores of SBA-15 Silica [J]. Inorg. Chem.2005,44:5890-5896.
    [123]Yang XL, Wang P, Zhu YH, Li CZ. Photoelectronic properties of horseradish peroxidase-functionalized CdSe/silica mesoporous composite and its sensing towards hydrogen peroxide [J]. J. Solid State Electr.2011,15 (4):731-736.
    [124]Itoh T, Yano K, Inada Y, Fukushima Y. Photostabilized Chlorophyll a in Mesoporous Silica:Adsorption Properties and Photoreduction Activity of Chlorophyll a [J]. J. Am. Chem. Soc.2002,124:13437-13441.
    [125]Zubieta C, Sierra M B, Morini M A, Schulz P C, Albertengo L, Rodriguez M S. The adsorption of dyes used in the textile industry on mesoporous materials [J]. Colloid Polym. Sci.2008,286:377-384.
    [126]Wang LZ, Liu YL, Chen F. Zhang JL, Anpo M. Manipulating Energy Transfer Processes between Rhodamine 6G and Rhodamine B in Different Mesoporous Hosts [J]. J. Phys. Chem. C 2007,111:5541-5548.
    [127]Tao X, Liu B, Hou Q. Xu H, Chen J-F. Enhanced accumulation and visible light-assisted degradation of aze dyes in poly(allylamine hydrochloride)-modified mesoporous silica spheres [J]. Mater. Res. Bull.2009,44:306-311.
    [128]Posudievsky O Y,, Telbiz G M, Rossokhaty V K. Effect of solvent nature on liquid-phase self-assembly of MEH-PPV/MCM-41 guest-host composites [J]. J. Mater. Chem.2006,16:2485-2489.
    [129]Tao L, Song CJ, Sun YJ, Li XH, Li YY, Jin BQ, Zhang ZJ, Yang K. A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells [J]. Anal. Chim. Acta 2013,761:194-200.
    [130]Ogawa M, Nakamura T, Mori J-1, Kuroda K. Incorporation of tris(2,2'-bipyridine)ruthenium(II) cations ([Ru(bpy)3]2+) into a mesoporous silica [J]. Micropor. Mesopor. Mat.2001,48:159-164.
    [131]Tiemann M. Repeated Templating [J]. Chem. Mater.2008,20,961-971.
    [132]Shchukin I) G, Sukhorukov G B. Nanopaeticle synthesis in engineered organic nanoscale reactors[J]. Adv. Mater.2004,16(8):671-682.
    [133]Kim J. Lee J, Na HB, Kim BC, Youn JK, Kwak JH, Moon K, Lee E, Kim J. Park J. Dohnalkova A, Park HG, Gu MB, Chang HN, (irate JW, Hyeon T. A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica [J]. Small 2005,1(12):1203-1207.
    [134]Duan GR, Li AM, Yang XJ, Lu LD, Wang X. Soft-template synthesis of ZrOC2O4 nanocapsule with mesoporous core and microporous shell structure [J]. Micropor. Mesopor. Mater.2008,116:86-90.
    [135]Sui YM, Zhang YY, Fu WY, Yang HB, Zhao Q, Sun P, Ma D, Yuan MX, Li YX, Zou GT, Low tempeerature template-free synthesis of Cu2O hollow spheres [J]. J. Cryst. Growth 2009,311:2285-2290.
    [136]Kuroda Y, Kuroda K. Layer-by-layer assembly of imogolite nanotubes and polyelectrolytes into core-shell particles and their conversion to hierarchically porous spheres [J]. Sci. Technol. Adv. Mater.2008.9(2):025018.
    [137]Liu J. Zhang L. Yang QH. Li C. Structural control of mesoporous silicas with large nanopores in a mild buffer solution [J]. Micropor. Mesopor. Mater.2008.116:330-338.
    [138]Zhao MW, Zheng LQ, Li N, Yu L. Fabrication of hollow silica spheres in an ionic liquid microemulsion [J]. Mater. Lett.2008,62(30):4591-4593.
    [139]Chen LH, Zhu GS, Zhang DL, Zhao H, Guo MY, Wei SB, Qiu SL. Novel mesoporous silica spheres with ultra-large pore sizes and their application in protein separation [J]. J. Mater. Chem.2009,19(14):2013-2017.
    [140]Hartmann M, Racouchot S, Bischof C. Characterization of copper and zinc containing MCM-41 and MCM-48 mesoporous molecular sieves by temperature programmed reduction and carbon monoxide adsorption [J]. Micropor. Mesopor. Mater.1999,27: 309-320.
    [141]Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S. Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica [J]. Chem. Mater.2000,12(11):3301-3305.
    [142]Hossain KZ, Monreal CM, Sayari A. Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea [J]. Colloid. Surface. B 2008,62(1):42-50.
    [143]Kecht J, Bein T. Oxidative removal of template molecules and organic functionalities in mesoporous silica nanoparticles by H2O2 treatment [J]. Micropor. Mesopor. Mater.2008, 116:123-130.
    [144]Yao K, Zhu Y, Wang P, Yang X, Cheng P, Lu H. ENFET glucose biosensor producted with mesoporous silica microspheres [J]. Mater. Sci. Eng. C 2007,27(4):736-740.
    [145]Wang P, Zhu YH, Yang XL, Li CZ. Electrochemical synthesis of magnetic nanoparticles within mesoporous silica microspheres [J]. Colloid. Surface. A 2007,294:287-291.
    [146]Wang P, Zhu YH, Yang XL, Li CZ, Du HL. Synthesis of CdSe nanoparticles into the pores of mesoporous silica microspheres [J].Acta Mater.2008,56(5):1144-1150.
    [147]Li YX, Zhu YH, Li CY, Yang XL, Li CZ. Synthesis of ZnS nanoparticles into the pore of mesoporous silica spheres [J]. Mater. Lett.2009,63(12):1068-1070.
    [148]Suzuki TM, Mizutani M, Nakamura T, Akimoto Y, Yano K. Pore-expansion of organically functionalized monodispersed mesoporous silica spheres and pore-size effects on adsorption and catalytic properties [J]. Micropor. Mesopor. Mater.2008,116:284-291.
    [149]Li YX, Zhu YH, Yang XL, Li CZ. Mesoporous silica spheres as microreactors for performing CdS nanocrystal synthesis [J]. Cryst. Growth Des.2008,8(12):4494-4498.
    [150]Shi ZG, Feng YQ. Micropor. Synthesis and characterization of hierarchically porous silica microspheres with penetrable macropores and tunable mesopores [J]. Mesopor. Mater.2008,116:701-704.
    [151]Calvillo L, Celorrio V, Moliner R, Cabot PL, Esparbe I, Lazaro MJ. Control of textural properties of ordered mesoporous materials[J]. Micropor. Mesopor. Mater.2008.116: 292-298.
    [152]Yang LM, Wang YJ. Huang D, Luo GS. Dai YY. Preparation of high performance adsorbents by functionalizing mesostructured silica spheres for selective adsorption of organosulfur compounds [J].Ind. Eng. Chem. Res.2007,46(2):579-583.
    [153]Miyake Y, Yosuke M, Azechi E, Araki S. Tanaka S. Preparation and adsorption properties of thiol-functionalized mesoporous silica microspheres [J]. Ind. Eng. Chem. Res.2009.48(2):938-943.
    [154]Smitha S. Shajesh P, Mukundan P, Warrier KGK. Synthesis of mesoporous hydrophobic silica microspheres through a modified sol-emulsion-gel process [J]. J. Sol-Gel Sci. Technol.2008,48:356-361.
    [155]Grun M, Buchel C, Kumar D, Schumacher K. Bidlingmaier B. Unger KK. Rational design, tailored synthesis and characterization of ordered mesoporous sillicas in the micron and submicron size range [J]. Stud. Surf. Sci. Catal.2000,128:155-165.
    [156]Buining P A. Liz-Marzan L M, Philipse A P. A Simple preparation of small, smooth silicas pheres in a seed alcoso for stober synthesis [J]. J. Colloid. Interf. Sci.1996,179: 318-321.
    [157]Joo S H, Ryoo R, Kruk M. et al. Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates [J].J. Phys. Chem. B 2002.106:4640-4646.
    [158]Yamada T, Zhou H, Hiroishi D, et al. Platinum surface modification of SBA-15 by y-radiation treatment [J]. Adv. Mater.2003,15:511-513.
    [159]Peterson AK, Morgan DG, Skrabalak SE, Aerosol synthesis of poroas particles using simple salts as a pore template [J]. Langmuir 2010,26(11):8804-8809.
    [160]Yang HF, Lu QY Gao F, Shi QH, Yan Y, Zhang FQ, Xie SH, Tu B, Zhao DY One-step synthesis of highly ordered mesoporous silica monoliths with metal oxide nanocrystals in their channels [J]. Adv. Funct. Mater.2005,15(8):1377-1384.
    [161]Lozano XL, Mottet C, Weissker H-Ch. Effect of alloying on the optical properties of Ag-Au nanoparticles [J].J. Phys. Chem. C 2013,117,3062-3068.
    [162]Yi Z, Li X-Y, Liu F-J, Jin P-Y, Chu X, Yu R-Q. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles [J]. Biosensors and Bioelectronics 2013.43: 308-314.
    [163]Qiao L, Liu Y, Hudson SP, Yang PY, Magner E, Liu BH. A nanoporous reactor for efficient proteolysis [J]. Chem. Eur. J.2008,14:151-157.
    [164]Xu SY, Peng B, Han XZ. A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres [J].Biosens. Bioelectron.2007,22(8):1807-1810.
    [165]Luo XL, Xu JJ, Zhang Q, Yang GJ, Chen HY. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly [J]. Biosens. Bioelectron.2005,21(1):190-196.
    [166]de la Rica R, Matsui H. Urease as a nanoreactor for growing crystalline ZnO nanoshells at room temperature [J].Angew. Chem. Int. Ed.2008,47(29):5415-5417.
    [167]Lvov Y, Caruso F. Biocolloids with ordered urease multilayer shells as enzymatic reactors [J].Anal. Chem.2001,73(17):4212-4217.
    [168]Ghosh A, Patra CR, Mukherjee P, Sastry M, Kumar R. Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica [J]. Micropor. Mesopor. Mater.2003,58(3):201-211.
    [169]Katz E, Willner I. Integrated nanoparticle-biomolecule hydrid systems:Synthesis, properties, and applications [J]. Angew. Chem. Int. Ed.2004,43(45):6042-6108.
    [170]Wang YJ, Price AD, Caruso F. Nanoporous colloids:building blocks for a new generation of structured materials [J]. J. Mater. Chem.2009,19(36):6451-6464.
    [171]Lee CH, Lin TS, Mou CY. Mesoporous materials for encapsulating enzymes [J]. Nano Today 2009,4(2):165-179.
    [172]Liang ZP, Wang CY, Tong Z, Ye WH, Ye SQ. Bio-catalytic nanoparticles with urease immobilized in multilayer assembled through layer-by-layer technique [J]. React. Funct. Polym.2005,63(1):85-94.
    [173]Epifani M, Andreu T, Arbiol J, Diaz R, Siciliano P, Morante JR. Chloro-alkoxide route to transition metal oxides. Synthesis of WO3 thin films and powders from a Tungsten chloro-methoxide [J].Chem. Mater.2009,21(21):5215-5221.
    [174]Li CS, Li YN, Wu YL, Ong BS, Loutfy RO. Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors [J]. J. Mater. Chem.2009, 19(11):1626-1634.
    [175]Rao YX, Antonelli DM. Mesoporous transition metal oxides:characterization and applications in heterogeneous catalysis [J]. J. Mater. Chem.2009,19(14):1937-1944.
    [176]Pietrogiacomi D, Magliano A, Ciambelli P, Sannino D, Campa MC, Indovina V. The effect of sulphation on the catalytic activity of CoOx/ZrO2 for NO reduction with NH3 in the presence of O2 [J]. Appl. Catal. B-Environ.2009,89:33-40.
    [177]Flores OGM, Ha S. Activity and stability studies of MoO2 catalyst for the partial oxidation of gasoline [J]. Appl. Catal. A-Gen.2009.352:124-132.
    [178]Yang TY, Sun KN, Lei ZY, Zhang NQ, Lang Y. The influence of holding time on the performance of LiNi05Mn1.5O4 cathode for lithium ion battery [J]. J. Alloys Compd.2010. 502(1):215-219.
    [179]Du N. Zhang H, Yu JX, Wu P, Zhai CX, Xu YF, Wang JZ, Yang DR. General layer-by-layer approach to composite nanotubes and their enhanced lithium-storage and gas-sensing properties [J]. Chem. Mater.2009.21(21):5264-5271.
    [180]Serra A, Filippo E, Buccolieri A, Di Giulio M, Manno D. Self-assembling of micro-patterned titanium oxide films for gas sensors [J]. Sensor. Actuat. B-Chem.2009, 140(2):563-567.
    [181]Sokkalingam N, Kamath G, Coscione M, Potoff JJ. Extension of the transferable potentials for phase equilibria force field to dimethylmethyl phosphonate. sarin, and soman[J].J, Phys. Chem. B 2009,113(30):10292-10297.
    [182]Vatta AF, Waller PJ, Githiori JB, Medley GF, The potential to control haemonchus contortus in indigenous South African goats with copper oxide wire particles [J]. Vet. Parasitol.2009.162:306-313.
    [183]Wang W. Xu Y, Wang DIC, Li Z. Recyclable nanobiocatalysts for enantioselective sulfoxidation:Facile fabrication and high performance of chloroperoxidase-coated magnetic nanoparticles with iron oxide core and polymer shell [J]. J. Am. Chem. Soc. 2009,131(36):12892-12893.
    [184]Chen LY, Xu ZX, Dai H, Zhang ST. Facile synthesis and magnetic properties of monodisperse Fe3O4/silica nanocomposite microspheres with embedded structures via a direct solution-based route [J]. J. Alloys Compd.2010,497:221-227.
    [185]Wu PY, Li XJ, Ji SF, Lang B, Habimana F, Li CY, Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts [J]. Catal. Today 2009,146:82-86.
    [186]Emamian HR, Honarbakhsh-raouf A, Ataie A, Yourdkhani A. Synthesis and magnetic characterization of MCM-41/CoFe2O4 nano-composite [J]. J. Alloys Compd.2009, 480(2):681-683.
    [187]Ajaikumar S, Pandurangan A. Efficient synthesis of quinoxaline derivatives over ZrO2/MxOy (M= Al, Ga, In and La) mixed metal oxides supported on MCM-41 mesoporous molecular sieves [J]. Appl. Catal. A-Gen.2009,357:184-192.
    [188]Beyers E, Biermans E, Ribbens S, De Witte K, Mertens M. Meynen V, Bals S, Van Tendeloo G. Vansant EF, Cool P. Combined TiO2/SiO2 mesoporous photocatalysts with location and phase controllable TiO2 nanoparticles [J]. Appl. Catal. B-Environ.2009,88: 515-524.
    [189]Cheng MY, Pan CJ, Hwang BJ. Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15:Blockage-free nanochannels [J]. J. Mater. Chem.2009,19(29):5193-5200.
    [190]Sohrabnezhad S, Pourahmad A. CdS semiconductor nanoparticles embedded in A1MCM-41 by solid-state reaction [J]. J. Alloys Compd.2010,505(1):324-327.
    [191]Kong LL, Yan B, Li Y. Hybrid materials of SBA-15 functionalized by Tb3+ complexes of modified acetylacetone:Covalently bonded assembly and photoluminescence [J]. J. Alloys Compd.2009,481:549-554.
    [192]Wang C, Ao YH, Wang PF, Qian J, Hou J, Zhang SH. A simple method for preparation of superparamagnetic porous silica [J]. J. Alloys Compd.2010,493:410-414.
    [193]Hernandez-Pineda J, del Rio JM, Carreto E, Terres E, Montoya JA, de Jesus Zuniga-Gonzalez M, Morgado J. Synthesis of PdO/MCM-41 nanocomposite using trans-[PdCl2(PEt3)2] as the source of metal [J]. J. Alloys Compd.2009,481:526-530.
    [194]Botas JA, Melero JA, Martinez F, Pariente MI. Assessment of Fe2O3/SiO2 catalysts for the continuous treatment of phenol aqueous solutions in a fixed bed reactor [J]. Catal. Today 2010,149:334-340.
    [195]Fulvio PF, Pikus S, Jaroniec M. SBA-15-supported mixed-metal oxides:Partial hydrolytic sol-gel synthesis, adsorption, and structural properties [J]. ACS Appl. Mater. Interfaces 2010,2(1):134-142.
    [196]Eichelbaum M, Farrauto RJ, Castaldi MJ. The impact of urea on the performance of metal exchanged zeolites for the selective catalytic reduction of NOx Part I. Pyrolysis and hydrolysis of urea over zeolite catalysts [J]. Appl. Catal. B:Environ.2010,97:90-97.
    [197]Smith JWH, Westreich P, Croll LM, Reynolds JH, Dahn JR. Understanding the role of each ingredient in a basic copper carbonate based impregnation recipe for respiratior carbons [J]. J. Colloid Interf. Sci.2009,337(2):313-321.
    [198]Shaheen WM, El Maksod IHA. Thermal characterization of individual and mixed basic copper carbonate and ammonium metavanadate systems [J]. J. Alloys Compd.2009,476: 366-372.
    [199]Satti A, Larpent P, Gun'ko Y. Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking [J]. Carbon 2010,48(12): 3376-3381.
    [200]Fernandez Y, Menendez JA, Arenillas A, Fuente E, Peng JH, Zhang ZB, Li W, Zhang ZY. Microwave-assisted synthesis of CuO/ZnO and CuO/ZnO/Al2O3 precursors using urea hydrolysis [J]. Solid State Ionics 2009.180:1372-1378.
    [201]Shishido T, Yamamoto Y, Morioka H, Takehira K. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation:Steam reforming and oxidative steam reforming [J]. J. Mol. Catal. A-Chem. 2007,268:185-194.
    [202]Shishido T, Yamamoto M, Li DL, Tian Y, Morioka H. Honda M, Sano T. Takehira K. Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation [J].Appl. Catal. A-Gen.2006.303(1):62-71.
    [203]Zhu JJ, Zhao Z, Xiao D, Li J. Yang XG, Wu Y. Application of cyclic voltammetry in heterogeneous catalysis:NO decomposition and reduction [J]. El ec troche m. Commun. 2005,7(1):58-61.
    [204]Kang MC. Gewirth AA. Voltammetric and force spectroscopic examination of oxide formation on Cu(111) in basic solution [J]. J. Phys. Chem. B 2002.106(47): 12211-12220.
    [205]Yuan CZ, Gao B, Su L, Zhang XG. NiO loaded on hydrothermally treated mesocarbon microbeads (h-MCMB) and their supercapacitive behaviors [J]. Solid State Ionics 2008, 178:1859-1866.
    [206]Li HF, Li YF, Wang RD, Cao R. Synthesis and electrochemical capacitor performance of mesostructured nickel oxide/carbon composites by a co-casting method [J]. J. Alloys Compd.2009,481:100-105.
    [207]Tian L, Bian J Y, Wang BB, Qi YJ. Electrochemical study on cobalt film modified galssy carbon electrode and its application [J]. Electrochim. Acta 2010,55(9):3083-3088.
    [208]Kong AG, Wang HW, Yang X, Hou YW. Shan YK. A facile direct route to synthesize large-pore mesoporous silica incorporating high CuO loading with special catalytic propery [J]. Micropor. Mesopor. Mat.2009,118:348-353.
    [209]Gratzel M. Photoelectrochemical cells [J]. Nature 2001,414:338-344.
    [210]Schaller RD, Klimov VI. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion [J]. Phys. Rev. Lett.2004,92(18):186601.
    [211]Gur 1, Fromer NA, Geier ML, Alivisatos AP. Air-stable all-inorganic nanocrytal solar cells processed from solution [J]. Science 2005,310(5747):462-465.
    [212]Cho S. Kim S, Lee KH. Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods [J]. J. Colloid Interf. Sci.2011.361(2):436-442.
    [213]Kamat PV. Meeting the clean energy demand:Nanostructure architectures for solar energy conversion [J]. J. Phys. Chem. C 2007,111(7):2834-2860.
    [214]Liu B, Aydil ES. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells [J]. J. Am. Chem. Soc. 2009,131(11):3985-3990.
    [215]Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications [J]. Nat. Mater.2010, 9(3):239-244.
    [216]Liang ZQ, Nardes AM, van de Lagemaat J, Gregg BA. Active energy spectra:Insights into transport limitations of organic semiconductors and photovoltaic cells [J]. Adv. Funct. Mater.2012,22(5):1087-1091.
    [217]Zhao XH, Wang P, Li BJ. CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application [J]. Chem. Commun.2010,46(36): 6768-6770.
    [218]Leschkies KS, Divakar R, Basu J, Enache-Pommer E, Boercker JE, Carter CB, Kortshagen UR, Norris DJ, Aydil ES. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices [J]. Nano Lett.2007,7(6):1793-1798.
    [219]Yang PD, Yan RX, Fardy M. Semiconductor nanowire:What's next? [J]. Nano Lett. 2010,10(5):1529-1536.
    [220]Genovese MP, Lightcap IV, Kamat PV. Sun-believable solar paint. A transformative one-step approach for designing nanocrystalline solar cells [J]. ACS Nano 2012,6(1): 865-872.
    [221]Wang P, Zhao XH, Li BJ. ZnO-coated CuO nanowire arrays:fabrications, optoelectronic properties, and photovoltaic applicaions [J]. Opt. Express 2011,19(12): 11271-11279.
    [222]Umar A, Chauhan MS, Chauhan S, Kumar R, Kumar G, Al-Sayari SA, Hwang SW, Al-Hajry A. Large-scale synthesis of ZnO balls made of fluffy thin nanosheets by simple solution process:Structural, optical and photocatalytic properties [J]. J. Colloid Interf. Sci. 2011,363(2):521-528.
    [223]Ismail-Beigi S. Electronic excitations in single-walled GaN nanotubes from first principles:Dark excitons and unconventional diameter dependences [J]. Phys. Rev. B 2008,77(3):035306.
    [224]Chen L, Shet S, Tang HW, Wang HL, Deutsch T, Yan YF, Turner J, Al-Jassim M. Electrochemical deposition of copper oxide nanowires for photoelectrochemical applciations [J]. J. Mater. Chem.2010.20(33):6962-6967.
    [225]Liao KT. Shimpi P. Gao PX. Thermal oxidation of Cu nanofilm on three-dimensional ZnO nanorod arrays [J]. J. Mater. Chem. 2011,21(26):9564-9569.
    [226]Puthussery J. Seefeld S, Berry N. Gibbs M, Law M. Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltics [J]. J.Am. Chem. Soc.2011,133(4):716-719.
    [227]He ZB. Yu S-H, Zhou XY, Li XG. Qu JF. Magnetic-field-induced phase-selective synthesis of ferrosulfide microrods by a hydrothermal process:Microstructure control and magnetic properties [J].Adv. Funct. Mater.2006,16(8):1105-1111.
    [228]Wang DW. Wang QH, Wang TM. Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method [J]. CrystEngComm.2010,12(3): 755-761.
    [229]Gong JY, Li SZ. Zhang DG, Zhang XB, Liu C, Tong ZW. High quality self-assembly magnetite (Fe3O4) chain-like core-shell nanowires with luminescence synthesized by a facile one-pot hydrothermal process [J]. Chem. Commun.2010,46(20):3514-3516.
    [2301 Xu YY, Yuan JY, Fang B, Drechsler M, Mullner M. Bolisetty S, Ballauff M, Muller AHE. Hybrids of magnetic nanoparticles with double-hydrophilic core/shell cylindrical polymer brushes and their alignment in a magnetic field [J]. Adv. Funct. Mater.2010, 20(23):4182-4189.
    [231]Prathap MUA, Kaur B, Srivastava R. Direct synthesis of metal oxide incorporated mesoporous SBA-15, and their applications in non-enzymatic sensing of glucose [J]. J. Colloid Interf. Sci.2012,381:143-151.
    [232]Wang DW, Wang QH, Wang TM. Shape controlled growth of pyrite FeS2 crystallites via a polymer-assisted hydrothermal route [J]. Cryst Eng Comm.2010,12:3797-3805.
    [233]Benito P, Herrero M, Barriga C, Labajos FM, Rives V, Microwave-assisted homogeneous precipitation of hydrotalcites by urea hydrolysis [J]. Inorg. Chem.2008, 47(12):5453-5463.
    [234]Liu XM, Yin WD, Miao SB, Ji BM. Fabrication of CuO/Fe2O3 hollow hybrid microspheres [J]. Mater. Chem. Phys.2009,113:518-522.
    [235]Saa L, Virel A, Sanchez-Lopez J. Pavlov V. Analytical applications of enzymatic growth of quantum dots [J].Chem. Eur. J.2010,16(21):6187-6192.
    [236]Niu K, Shi DJ, Dong WF, Chen MQ. Ni ZB. Chelating template-induced encapsulation of NiO cluster in mesoporous silica via anionic surfactant-templated route [J]. Journal of Colloid and Interface Science 2011.362(1):74-80.
    [237]Deepa G, Sankaranarayanan TM. Shanthi K. Viswanathan B. Hydrodenitrogenation of model N-compounds over NiO-MoO3 supported on mesoporous materials [J]. Catal. Today 2012,198(1):252-262.
    [238]Cao F, Hu W, Zhou L, Shi WD, Song SY, Lei YQ, Wang S, Zhang HJ.3D Fe3S4 flower-like microspheres:high-yield synthesis via a biomolecule-assisted solution approach, their electrical, magnetic and electrochemical hydrogen storage properties [J]. Dalton Trans.2009, (42):9246-9252.
    [239]Fragouli D, Buonsanti R, Bertoni G, Sangregorio C, Innocenti C, Falqui A, Gatteschi D, Cozzoli PD, Athanassiou A, Cingolani R. Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic [J]. ACS Nano 2010,4(4): 1873-.
    [240]Jun BH, Hwang DW, Jung HS, Jang J, Kim H, Kang H, Kang T, Kyeong S, Lee H, Jeong DH, Kang KW, Youn H, Lee DS, Lee YS. Ultrasensitive, Biocompatible, Quantum-Dot-Embedded Silica Nanoparticles for Bioimaging [J]. Adv. Funct. Mater. 2012,22:1843-1849.
    [241]Esteve-Turrillas FA, Abad-Fuentes A. Applications of Quantum dots as probes in immunosensing of small-sized analytes [J]. Biosensors and Bioelectronics 2013,41: 12-29.
    [242]Li X, Qian SJ, He QJ, Yang B, Li J, Hu YZ. Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells [J]. Org. Biomol. Chem. 2010,8(16):3627-3630.
    [243]Kim Y, Jung H-Y, Choe Y H, Lee C, Ko S-K, Koun S, Choi Y, Chung B H, Park B C, Huh T-L, Shin I, Kim E. High-Contrast Reversible Fluorescence Photoswtiching of Dye-Crosslinked Dendritic Nanoclusters in Living Vertebrates [J]. Angew. Chem. Int. Ed. 2012,51:2878-2882.
    [244]Suen MFK, Chan WS, Hung KWY, Chen YF, Mo ZX, Yung KKL. Assessments of the effects of nicotine and ketamine using tyrosine hydroxylase-green fluorescent protein transgenic zebrafish as biosensors [J]. Biosensors and Bioelectronics 2013,42:177-185.
    [245]Fang XX, Li HL, Zhao GY, Fang XX, Xu JW, Yang W. Blue fluorescent protein analogs as chemosensors for Zn2+[J]. Biosensors and Bioelectronics 2013,42:308-313.
    [246]Zhang Y, Tran RT, Qattan IS, Tsai YT, Tang LP, Liu C, Yang J. Fluorescence imaging enabled urethane-doped citrate-based biodegradable elastomers [J]. Biomaterials 2013, 34:4048-4056.
    [247]Hiruta Y, Yoshizawa N, Citterio D, Suzuki K. Highly Durable Double Sol-Gel Layer Rationmetric Fluorescent pH Optode Based on the Combination of Two Types of Quantum Dots and Absorbing pH Indicators [J].Anal. Chem.2012,84:10650-10656.
    [248]Jia F. Zhang YJ, Narasimhan B. Mallapragada SK. Block Copolymer-Quantum Dot Micelles for Multienzyme Colocalization [J]. Langmuir 2012,28:17389-17395.
    [249]Subramaniam P, Lee S J, Shah S, Patel S, Starovoytov V, Lee KB. Generation of a Library of Non-Toxic Quantum Dots for Cellular Imaging and siRNA Delivery [J]. Adv. Mater.2012,24:4014-4019.
    [250]Maestro LM, Rodriguez EM. Rodriguez FS, Iglesias-de la Cruz MC, Juarranz A, Naccache R, Vetrone F, Jaque D, Capobianco JA, Sole JG. CdSe quantum dots for two-photon fluorescence thermal imaging [J].Nano Lett.2010,10(12):5109-5115.
    [251]Maestro L M, Jacinto C, Silva U R, Vetrone F, Capobianco J A, Jaque D, Sole J G. CdTe Quantum Dots as Nanothermometers:Towards Highly Sensitive Thermal Imaging [J]. Small 2011,7(13):1774-1778.
    [252]Nagy A, Steinbruck A. Gao J. Doggett N, Hollingsworth J A, Iyer R. Comprehensive Analysis of the Effects of CdSe Quantum Dot Size, Surface Charge, and Functionalization on Primary Human Lung Cells [J].. ACS Nano 6(6),2012:4748-4762.
    [253]Turyanska L, Bradshaw T D, Li M, Bardelang P. Drewe W C, Fay M W, Mann S, Patane A, Thomas N R. The differential effect of apoferritin-PbS nanocomposites on cell cycle progression in normal and cancerous cells [J]. J. Mater. Chem.2012,22:660-665.
    [254]Ren R, Zou YM. Detecting adenosine with an autonomic cycle of cascading DNA polymerizations [J]. Sensors and Actuators:B Chemical 2011,156 (1):298-303.
    [255]Shen P, Uesawa N, Inasawa S. Yamaguchi Y. Stable and color-tunable fluorescence from silicon nanoparticles formed by single-step plasma assisted decomposition of SiBr4 [J]. J. Mater. Chem.2010,20(9):1669-1675.
    [256]Zhang JC. Shen WQ, Pan DY, Zhang ZW, Fang YG, Wu MH, Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose [J]. New J. Chem.2010,34:,591-593.
    [257]Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates [J]. Chem. Mater.2009,21(23):5563-5565.
    [258]Liu CJ, Zhang P, Zhai X Y, Tian F, Li WC, Yang JH, Liu Y, Wang HB, Wang W, Liu WG. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence [J]. Biomaterials 2012,33:3604-3613.
    [259]Wei WL, Xu C, Ren JS, Xu BL, Qu XG. Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene|J].Chem. Commun.2012.48:1284-1286.
    [260]Guo X, Wang C-F, Yu Z-Y, Chen L, Chen S. Facile access to versatile fluorescent carbon dots toward light-emitting diodes [J]. Chem. Commun.2012,48:2692-2694.
    [261]Ma Z, Ming H, Huang H, Liu Y, Kang ZH. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability [J].New J. Chem.2012,36:861-864.
    [262]Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation [J]. J. Mater. Chem.2009,19(4):484-488.
    [263]Long Y-M, Zhou C-H, Zhang Z-L, Tian Z-Q, Bao L, Lin Y, Pang D-W. Shifting and non-shifting fluorescence emitted by carbon nanodots [J]. J. Mater. Chem.2012,22: 5917-5920.
    [264]Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CHA, Yang XB, Lee ST. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J]. Angew. Chem. Int. Ed.2010,49:4430-4434.
    [265]Zhou JG, Booker C, Li RY, Sun XL, Sham TK, Ding ZF. Electrochemistry and electrochemiluminescence study of blue luminescent carbon nanocrystlas [J]. Chem. Phys. Lett.2010,493:296-298.
    [266]Bourlinos A B, Zboril R, Petr J, Bakandrisos A, Krysmann M, Giannelis EP. Luminescent surface quaternized carbon dots [J]. Chem. Mater.2012,24(1):6-8.
    [267]Pan DY, Zhang JC, Li Z, Wu C, Yan XM, Wu MH. Obseration of pH-, solvent-, spin-, and excitation-depecdent blue photoluminescence from carbon nanoparticles [J]. Chem. Commun.2010,46(21):3681-3683.
    [268]Liu HP, Ye T, Mao CD. Fluorescent carbon nanoparticles derived from candle soot [J]. Angew. Chem. Int. Ed.2007,46(34):6473-6475.
    [269]Tian L, Ghosh D, Chen W, Pradhan S, Chang XJ, Chen SW. Nanosized carbon particles from natural gas soot [J]. Chem. Mater.2009,21(13):2803-2809.
    [270]Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds:No photobleaching and low cytotoxicity [J]. J. Am. Chem. Soc.2005,127(50):17604-17605.
    [271]Lin Z, Xue W, Chen H, Lin J-M. Classical oxidant induced chemiluminescence of fluorescent carbon dots [J]. Chem Commun.2012,48:1051-1053.
    [272]Tian L, Song Y, Chang X J, Chen SW. Hydrothermally enhanced photoluminescence of carbon nanoparticles [J]. Scr. Mater.2010,62(11):883-886.
    [273]Goh EJ, Kim KS, Kim YR, Jung HS, Beack S, Kong WH, Scarcelli G, Yun SH, Hahn SK. Bioimaging of Hyaluronic Acid Derivatives Using Nanosized Carbon Dots [J]. Biomacromolecules 2012,13:2554-2561.
    [274]Dong YQ. Wang RX. Li H. Shao JW, Chi YW, Lin XM. Chen GN, Polyamine-functionalized carbon quantum dots for chemical sensing [J]. Carbon 2012,50: 2810-2815
    [275]Mitra S, Chandra S, Pathan S H. Sikdar N, Pramanik P, Goswami A. Room temperature and solvothermal green synthesis of self passivated carbon quantum dots [J]. RSC Adv. 2013,3:3189-3193.
    [276]Zhang LB, Zhu JB, Ai J, Zhou ZX, Jia XF, Wang EK, Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper(Ⅱ) ion [J]. Biosensors and Bioelectronics 2013.39:268-273.
    [277]Zhao Y, Zhang X-B, Han Z-X, Qiao L, Li Ch-Y, Jian L-X, Shen G-L, Yu R-Q. Highly Sensitive and Selective Colorimetric and Off-On Fluorescent Chemosensor for Cu2+ in Aqueous Solution and Living Cells [J]. Anal. Chem.2009,81:7022-7030.
    [278]Shao N. Zhang Y, Cheung SM. Yang RH, Chan WH, Mo T, Li KA, Liu F. Copper Ion-Selective Fluorescent Sensor Based on the Inner Filter Effect Using a Spiropyran Derivative[J]. Anal. Chem.2005.77:7294-7303.
    [279]Kim S H, Kim J S. Park S M. Chang S-K. Hg2+ -selective OFF-ON and Cu2+ -selective ON-OFF Type Fluoroionophore Based upon Cyclam [J]. Organic Letters 2006,8(3): 371-374.
    [280]Zhou X, Jin XJ, Sun GY, Li DH, Wu X. A cysteine probe with high selectively and sensitivity promoted by response-assisted electrostatic attraction [J]. Chem. Commun. 2012,48:8793-8795.
    [281]Huang HW. Liu XY, Hu T. Chu P K. Ultra-sensitive detection of cysteine by gold nanorod assembly [J]. Biosensors and Bioelectronics 2010,25:2078-2083.
    [282]Sudeep P K. Joseph S T S, Thomas K G. Selective Detection of Cysteine and Glutathione Using Gold Nanorods [J].J. Am,Chem. Soc.2005,127:6516-6517.
    [283]Miao XM. Ling LS, Cheng D, Shuai XT. A highly sensitive sensor for Cu2+ with unmodified gold nanoparticles and DNAzyme by using the dynamic light scattering technique [J]. Analyst 2012,137:3064-3069.
    [284]Yu MX, Shi M. Chen ZG, Li FY, Li XX, Gao YH, Xu J, Yang H, Zhou ZG, Yi T, Huang CH. Highly Sensitive and Fast Responsive Fluorescence Turn-On Chemodosimeter for Cu2+ and Its Application in Live Cell Imaging [J]. Chem. Eur. J.2008,14:6892-6900.
    [285]Kumar M. Kumar N, Bhalla V. Ratiometric nanomolar detection of Cu2+ ions in mixed aqueous media:a Cu2+ /Li+ions switchable allosteric system based on thiacalix[4] crown [J].Dalton Trans.2012.41:10189-10193.
    [286]Liu JW, Lu Y. Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles [J].Chem. Commun.2007:4872-4874.
    [287]Li F, Wang J, Lai YM, Wu C, Sun SQ, He YH, Ma H. Ultrasensitive and selective detection of copper (Ⅱ) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes [J]. Biosensors and Bioelectronics 2013,39:82-87.
    [288]Jung H S, Kwon P S, Lee J W, Kim J II, Hong C S, Kim J W, Yan SH, Lee J Y, Lee J H, Joo T, Kim J S. Coumarin-Derived Cu2+-Selective Fluorescence Sensor:Synthesis, Mechanisms, and Applications in Living Cells [J]. J. Am. Chem. Soc.2009,131: 2008-2012.
    [289]Leung K-H, He H-Z, Ma V P-Y, Chan D S-H, Leung C-H, Ma D-L. A luminescent G-quadruplex switch-on probe for the highly selective and tunable detection of cysteine and glutathione [J].Chem. Commun.2013,49:771-773.
    [290]Niu L-Y, Guan Y-S, Chen Y-Z, Wu L-Z, Tung C-H, Yang Q-Z. BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine [J]. J. Am. Chem. Soc.2012,134:18928-18931.
    [291]Das P, Mandal A K, Chandar N B, Baidya M, Bhatt H B, Ganguly B, Ghosh S K, Das A. New Chemodosimetric Reagents as Ratiometric Probes for Cysteine and Homocysteine and Possible Detection in Living Cells and in Blood Plasma [J]. Chem. Eur. J.2012,18: 15382-15393.
    [292]Wang Y, Zheng JW, Zhang ZJ, Yuan CW, Fu DG. CdTe nanocrystals as luminescent probes for detecting ATP, folic acid and L-cysteine in aqueous solution [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects 2009,342:102-106.
    [293]Chen HL, Li XK, Wu YB, Gao W, Bai RC. A ruthenium(Ⅱ) complex with environment-responsive dual emission and its application in the detection of cysteine/homocysteine [J].Dalton Trans.2012,41:13292-13297.
    [294]Li Q, Guo Y, Shao SJ. A BODIPY based fluorescent chemosensor for Cu(Ⅱ) ions and homocysteine/cysteine [J]. Sensors and Actuators B 2012,171-172:872-877.
    [295]Zhou YM, Zhang JL, Zhou H, Zhang QY, Ma TS, Niu JY. A new rhodamine B-based "off-on" fluorescent chemosensors for Cu2+ in aqueous media [J]. Journal of Luminescence 2012,132:1837-1841.
    [296]Gattas-Asfura K M, Leblanc R M. Pep tide-coated CdS quantum dots for the optical detection of copper(II) and silver(I) [J]. Chem. Commun. 2003:2684-2685.
    [297]Lee J-S, Ulmann P A, Han M S, Mirkin Ch A. A DNA-Gold Nanoparticle-Based Colorimetric Competition Assay for the Detection of Cysteine [J]. Nano Letters 2008, 8(2):529-533.
    [298]Jung H S. Pradhan T. Han J H. Heo K J. Lee J H. Kang C. Kim J S. Molecular modulated cysteine-selective fluorescent probe [J]. Biomaterials 2012,33:8495-8502.
    [299]Ghaedi M, Ahmadi F, Shokrollahi A. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry [J]. Journal of Hazardous Materials 2007,142:272-278.
    [300]Matousek T, Hernandez-Zavala A, Svoboda M. Langrova L, Adair B M. Drobna Z, Thomas D J. Styblo M, Dedina J. Oxidation state specific generation of arsines from methylated arsenicals based on L-cysteine treatment in buffered media for speciation analysis by hydride generation-automated cyotrapping-gas chroma to graphy-ato mi c absorption spectrometry with the multiatomizer [J]. Spectrochimica Acta Part B 2008,63: 396-406.
    [301]Tao G-H. Sturgeon R E. Sample nebulization for minimization of transition metal interferences with selenium hydride generation ICP-AES [J]. Spectrochimica Acta Part B 1999,54:481-489.
    [302]Feng Y-L, Chen H-W, Chen H-Y, Sequential determination of tin, arsenic, bismuth and antimony in marine sediment material by inductively coupled plasma atomic emission spectrometry using a small concentric hydride generator and L-cysteine as prereductant [J]. Fresenius J. Anal. Chem.1998,361:155-157.
    [303]Li X-A. Zhou D-M, Xu J-J, Chen H-Y. In-channel indirect amperometric detection of heavy metal ions for electrophoresis on a poly(dimethylsiloxane) microchip [J]. Talanta 2007,71:1130-1135.
    [304]Inoue T, Kirchhoff J R. Determination of Thiols by Capillary Electrophoresis with Amperometric Detection at a Coenzyme Pyrroloquinoline Quinone Modified Electrode [J].Anal. Chem.2002,74:1340-1354.
    [305]Rahman M A, Won M-S, Shim Y-B. Characterization of an EDTA Bonded Conducting Poymer Modified Electrode:Its Application for the Simultaneous Determination of Heavy Metal Ions [J]. Anal. Chem.2003,75:1123-1129.
    [306]Fei SD, Chen JH, Yao SZ, Deng GH, He DL, Kuang YF. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum [J]. Analytical Biochemistry 2005,339:29-35.
    [307]Huang K, Bulik I W, Marti A A. Time-resolved photoluminescence spectroscopy for the detection of cysteine and other thiol containing amino acids in complex strongly autofluorescent media [J].Chem. Commun.2012.48:11760-11762.
    [308]Liu J, Lu Y. A DNAzyme Catalytic Beacon Sensor for Paramagnetic Cu2+ Ions in Aqueous Solution with High Sensitively and Selectively [J]. J. Am. Chem. Soc.2007, 129:9838-9839.
    [309]Li HL, Liu JY, Fang YX, Qin YN, Xu SL, Liu YQ, Wang EK. G-quadruplex-based ultrasensitive and selective detection of histidine and cysteine [J]. Biosensors and Bioelectronics 2013,41:563-568.
    [310]Wang F, Kreiter M, He B, Pang SP, Liu C-Y. Synthesis of direct white-light emitting carbogenic quantum dots [J]. Chem. Commun.2010,46:3309-3311.
    [311]Bao L, Zhang Z-L, Tian Z-Q, Zhang L, Liu C, Lin Y, Qi BP, Pang D-W. Electrochemical Tuning of Luminescent Carbon Nanodots:From Preparation To Luminescence Mechanism [J]. Adv. Mater.2011,23:5801-5806.
    [312]Wu HY, Mi CC, Huang HQ, Han BF, Li J, Xu SK. Solvothermal synthesis of green-fluorescent carbon nanoparticles and their application [J]. Journal of Luminescence 2012,132:1603-1607.
    [313]Fan DH, Bi LH, Tang F, Zheng HX, Xu Q, Wang W. L-Cysteine modified flexible PDMS-gold electrode for sensing ascorbic acid and copper [J]. Sensors and Actuators B 2012.161:1124-1128.
    [314]Hu SL, Dong YG, Yang JL, Liu J, Cao SR. Simultaneous synthesis of luminescent carbon nanoparticles and carbon nanocages by laser ablation of carbon black suspension and their optical limiting properties [J]. J. Mater. Chem.2012,22(5):1957-1961.
    [315]Li Q, Ohulchanskyy TY, Liu RL, Koynov K, Wu DQ, Best A, Kumar R, Bonoiu A, Prasad PN. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro [J].J. Phys. Chem C 2010,114(28):12062-12068.
    [316]Liu JM, Lin LP, Wang XX, Lin SQ, Cai WL, Zhang LH, Zheng ZY. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modifies-carbon dots fluorescent probe [J]. Analyst 2012,137(11):2637-2642.
    [317]Liu RL, Wu DQ, Liu SH, Koynov K, Knoll W, Li Q. An aqueous route to multi photoluminescent carbon dots using silica spheres as carriers [J]. Angew. Chem. Int. Ed. 2009,48(25):4598-4601.
    [318]Yang S-T, Wang X, Wang HF, Lu FS, Luo PJG, Cao L, Meziani MJ, Liu J-H, Liu YF, Chen M, Huang YP, Sun Y-P. Carbon dots as nontoxic and high-performance fluorescence imaging agents [J]. J.Phys. Chem. C 2009,113:18110-18114.
    [319]Yang ST, Cao L, Luo PJG, Lu FS, Wang X, Wang HF, Meziani MJ, Liu YF, Qi G, Sun YP. Carbon dots for optical imaging in vivo [J]. J. Am. Chem. Soc.2009,131 (32): 11308-11309.
    [320]Zhang KJ. Liu XH. Sun YX, Wang F. Preparation, characterization, and fluorescence properties of well-dispersed core-shell CdS/carbon nanoparticles [J]. J. Mater. Sci.2011, 46(21):6975-6980.
    [321]Li RQ, Xu SH. Wang CL, Shao HB, Xu QY, Cui YP. Metal-enhanced fluorescence of CdTe nanocrystals in aqueous solution [J]. ChemPhysChem 2010,11(12):2582-2588.
    [322]Xie F, Baker MS, Goldys EM. Enhanced fluorescence detection on homogeneous gold colloid self-assembled monolayer substrates [J].Chem. Mater.2008,20(5):1788-1797.
    [323]Liaw JW, Chen CS, Chen JH. Enhancement or quenching effect of metallic nanodimer on spontaneous emission [J]. J. Quant. Spectrosc. Ra.2010. 111:454-465.
    [324]Bogdan N, Roy R, Morin M. Glycodendrimer coated gold nanoparticles for proteins detection based on surface energy transfer process[J]. RSC Advances 2012,2(3): 985-991.
    [325]Kaewtong C. Jiang GQ, Ponnapati R, Pulpoka B. Advincula R. Redox nanoreactor dendrimer boxes:in situ hybrid gold nanoparticles via terthiophene and carbazole peripheral dendrimer oxidation [J]. Soft Matter 2010.6(21):5316-5319.
    [326]Zeng YL. Tang CR, Wang HW, Jiang JH, Tian MN. Shen GL, Yu RQ. A novel density-tuable nanocomposites of CdTe quantum dots linked to dendrimer-tethered multi-wall carbon nanotubes [J]. Spectrochirn. Acta A.2008.70 (5):966-972.
    [327]Anema JR. Li JF. Yang ZL, Ren B, Tian ZQ. Shell-isolated nanoparticle-enhanced raman spectroscopy:Expanding the versatility of surface-enhanced raman scattering [J]. Annu. Rev. Anal. Chem 2011,4:129-150.
    [328]Magde D. Rojas GE, Seybold PG. Solvent dependence of the fluorescence lifetimes of xanthene dyes [J]. Photochem. Photobiol.1999,70(5):737-744.
    [329]Sun YP, Zhou B. Lin Y, Wang W, Fernando KAS, Pathak P. Meziani MJ. Harruff BA, Wang X, Wang HF, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. J. Am. Chem. Soc.2006,128,7756-7757.
    [330]Mochalin VN, Gogotsi Y. Wet chemistry route to hydrophobic blue fluorescent nanodiamond [J].J.Am. Chem. Soc.2009,131(13),4594-4595.
    [3311 Pan DY, Zhang JC, Li Z, Wu MH. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J]. Adv. Mater.2010.22(6),734-738.
    [332]Wang F. Xie Z, Zhang H, Liu CY, Zhang YG. Highly luminescent organosilane-functionalized carbon dots [J]. Adv. Funct. Mater.2011.21(6):1027-1031.
    [333]Li QQ, Peng M, Li NN, Qin JG, Li Z. New colorimetric chemosensor bearing naphthalendiimide unit with large blue-shift absorption for naked eyes detection of Cu2+ ions [J]. Sensors and Actuators B 2012,173:580-584.
    [334]Tang LJ, Cai MJ. A highly selective and sensitive fluorescent sensor for Cu2+ and its complex for successive sensing of cyanide via Cu2+ displacement approach [J]. Sensors and Actuators B 2012,173:862-867.
    [335]Zhou L, Lin YH, Huang ZZ, Ren JS, Qu XG. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrics [J]. Chem. Commun.2012,48:1147-1149.
    [336]Huang KW, Bulik IW, Marti AA. Time-resolved photoluminescence spectroscopy for the detection of cysteine and other thiol containing amino acids in complex strongly autofluorescent media [J].Chem. Commun.2012,48:11760-11762.
    [337]Ghosh S, Khan AH, Acharya S. Fabrication of highly stable, hybrid PbS nanocomposites in PAMAM dendrimer matrix for photodetection [J]. J. Phys. Chem. C 2012,116(10):6022-6030.
    [338]Borodko Y, Thompson CM, Huang WY, Yildiz HB, Frei H, Somorjai GA. Spectroscopic study of platinum and rhodium dendrimer (PAMAM G4OH) compounds: structure and stability [J]. J. Phys. Chem. C 2011,115(11):4757-4767.
    [339]Shan Y, Xu JJ, Chen HY. Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA [J]. Chem. Commun.2009, (8):905-907.
    [340]Sirk AHC, Sadoway DR. Electrochemical synthesis of diamondlike carbon films [J]. J. Electrochem. Soc.2008,155 (5):E49-E55.
    [341]Iwasaki M, Hirata A. Deposition of highly-density amorphous carbon films by sputtering in electron-beam-excited plasma [J]. New Diam. Front. C. Tec.2005,15(3): 139-149.
    [342]Chu PK, Li LH. Characterization of amorphous and nanocrystal line carbon films [J]. Mater. Chem. Phys.2006,96:253-277.
    [343]Chhowalla M in Silva SRP (ed.). Properties of amorphous carbon [M]., London: INSPEC, The Institution of Electrical Engineers,2003. pp 81.