基于离子液体的液相法制备无机纳米材料及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是指在室温下呈现液态、完全由离子所组成的有机溶剂,由于其独特的物理化学性质而受到广泛关注。相比于其在有机化学和催化领域的应用,离子液体在无机纳米材料合成方面的应用研究才刚刚开始。不同于之前传统分子溶剂(水或有机溶剂),以离子液体作为合成反应的介质具有独特的优势,可以制备具有特殊物相和形貌的无机纳米材料。到目前为止,已经有大量的研究报道了使用离子液体可以可控地制备无机纳米材料,但是对于其作用机理仍然没有清晰的认识。因此,在很多的研究工作中,离子液体仅仅是被当作简单的表面活性剂,其独特的优势并没有被完全展示出来。在本文研究中,我们系统地研究了离子液体在合成无机纳米材料中的作用机制,这些研究有望为如何使用离子液体可控合成特定物相和形貌的无机纳米材料提供一定的借鉴价值。论文的具体研究内容如下:
     1.以NH4-Dw和7-AlOOH为目标作用物,系统地研究了离子液体在反应过程中所起作用,首次在同一反应体系中提出两种不同的离子液体作用机制。首先,通过控制反应体系温度可以实现由NH4-Dw向y-AlOOH的物相转变。其次,通过调节体系中所加离子液体[Bdmim]Cl的量,可以得到形貌不同的NH4-Dw和y-AlOOH纳米结构。研究结果表明,由于NH4-Dw和y-AlOOH具有不同的表面结构,离子液体在合成NH4-Dw和y-AlOOH过程中表现出不同的作用模式,分为阳离子作用模式和阴离子作用模式。阳离子作用模式主要表现为分散作用,可以使线束状的NH4-Dw分散为线状的NH4-Dw。阴离子作用模式主要表现为诱导自组装作用,可以使六方γ-AlOOH片自组装成为多级花状结构。根据不同的作用模式,可以根据需要来选择离子液体的阴、阳离子,对所作用的无机纳米材料进行调控,因此有望实现可控地设计合成无机纳米材料。此外,通过焙烧前驱体NH4-Dw和y-AlOOH纳米结构可以得到形貌保持不变的多孔γ-Al2O3纳米结构,测试结果表明该多孔结构具有较大的比表面积和良好的孔径性能。
     2.首次使用[Bmim][H2PO4]作为离子液体前驱体合成出多种形貌的羟基磷酸铁(Fe5(PO4)4(OH)3·2H2O)。究结果表明,通过调节反应体系中[Bmim][H2PO4]的相对浓度和溶剂组成,可以得到暴露有{111}晶面的双棱锥状、暴露有{001}晶面的板状、由{441}和{111}晶面所组成的四方十六面体状、凹{001}晶面的截角双棱锥状的羟基磷酸铁。不同形貌的形成可以归因于[Bmim][H2PO4]对{111}晶面的生长有一定的保护作用。此外,以反应所得的羟基磷酸铁为芬顿催化剂,系统研究了不同形貌与其光催化性能之间的关系。实验结果表明,所得产物的光催化活性与其暴露面有密切联系,而与其比表面积关系不大。这些研究结果为如何设计合成高效的芬顿催化剂提供了一定的借鉴价值。
     3.通过便捷的水热法一步合成出不同物相(α-,β-和8-MnO2)和形貌(棒状、线状、花状和墙状)的二氧化锰纳米结构。实验结果表明,反应体系中前驱体KMnO4的浓度对于二氧化锰最终物相和形貌起到决定性作用。其中,体系中心的浓度会影响所成MnO2晶核的物相,而MnO4-的浓度会对成核速率以及随后的生长过程起到显著影响。另外,系统地研究了反应温度对所形成二氧化锰纳米墙结构的影响。更进一步地,对所制备的二氧化锰纳米结构进行了锂电性能测试,研究了不同物相和形貌与其电化学性能之间的相互关系。测试结果表明,二氧化锰纳米墙结构表现出优良的放电循环性能,是一种理想的电级材料。
     4.首次提出通过改变初级生长颗粒的暴露晶面来获得稳定性良好的介观晶体。在没有高分子聚合物作为添加剂的情况下,以N,N-二甲基甲酰胺和甲醇为复合溶剂,一步法合成出高稳定性的氧化铁介观晶体。改变初级生长颗粒的暴露晶面,可以降低其表面能,阻碍其进一步融合形成单晶结构,因而可以得到稳定性良好的介观晶体。此外,由于介观晶体自身的孔道结构,菱面体形的氧化铁介观晶体表现出优良的放电循环性能。
     5.通过单前驱体法,首次合成出一种形貌新颖的八足状PbS超结构。通过对该超结构生长过程进行仔细地分析,认为这种独特结构的形成是由晶体的热力学和动力学生长共同作用所致。通过改变溶剂的组成可以得到形貌不同的PbS微米结构,这些研究结果有望为可控合成无机纳米材料提供一定的借鉴价值。
     综上,本文主要研究了使用便捷和环境友好的液相合成法来制备具有特殊物相和形貌的无机纳米材料,证明了以离子液体为反应介质所制备的材料具有新颖的形貌和优异的性能,并且有望为更多无机纳米材料的可控合成提供一些新的思路。
Ionic liquids (ILs), which are liquid salts at room temperature, have attracted tremendous attention due to their unique properties. Compared the widespread application in organic chemistry and organometallic catalysis, their use in inorganic synthesis is just about to begin. It is worth mentioning that the ionothermal synthesis is quite different from hydro-or solvothermal conditions, which may lead to new materials with interesting morphologies and that are not accessible by using conventional organic solvents or water due to the unique physicochemical properties of ionic liquids. Despite great efforts have been made on controlling crystal phase and morphology of inorganic materials using ionic liquid, a consensus of the effect type between the ionic liquids and the substrate has still not been achieved. As the consequences of this situation, most of the synthesis are not be predicted and simply use an IL or a mixture of IL with conventional solvent just like common surfactant, not sufficiently exploits the main advantage of ILs. In this paper, we systematically study the effect of ILs on the formation of inorganic nanomaterials. The purposes are to explore the new functions of ILs and develop new synthetic methods of nanomaterials with desired phase and morphology. The main points can be summarized as follows:
     1. Well-dispersed NH4-DW and y-A100H nanostructures with controlled morphologies have been synthesized employing an ionic liquid-assisted hydrothermal process. The basic strategies used in this work are (i) controllable phase transition from NH4-DW to y-A100H can be realized with increasing the reaction temperature, and (ii) morphological evolution of NH4-DW and γ-AlOOH nanostructures could be affected by ionic liquid concentration. Based on the experimental results, the main objective of this work is to clarify the ionic liquid effect models on the synthesis of NH4-DW and γ-AlOOH nanostructures, which can be divided into cationic or anionic dominant effect model determined by the different surface structure of the targets. Specifically, under the cationic dominant regime, ionic liquids mainly show dispersion effect for NH4-DW nanostructures meanwhile the anionic dominant model can induce y-AlOOH particles self-assembly to form hierarchical structures. Under the guidance of the models proposed, the effect of ionic liquids would be optimized by the appropriate choice of cations or anions considering different effect model with substrate surface. It is highly expected that such effect models between ionic liquids and target products are helpful to understand and design rational ionic liquids consisting of specific functional groups, thus open up new opportunities for synthesis of inorganic nanomaterials with novel morphology and improved property. In addition, the as-prepared NH4-Dw and y-AlOOH nanostructures can then be converted to porous γ-Al2O3nanostructures by thermal decomposition while preserving the same morphology. By HRTEM and nitrogen adsorption analysis, the obtained γ-Al2O3samples have excellent porous properties and might be useful in catalysis and adsorption.
     2. Well-dispersed ferric giniite microcrystals with controlled sizes and shapes are solvothermally synthesized from ionic liquid precursors using1-n-butyl-3-methy-limidazolium dihydrogenphosphate ([Bmim][H2PO4]) as phosphate source. The success of this synthesis relies on the concentration and composition of the ionic liquid precursors. By adjusting the molar ratios of Fe(NO3)3·9H2O to [Bmim][H2PO4] as well as the composition of ionic liquid precursors, we obtained uniform microstructures such as bipyramids exposing{111} facets, plates exposing{001} facets, hollow sphere, tetragonal hexadecahedron exposing{441} and{111} facets, truncated bipyamids with carved{001} facets. The crystalline structure of the ferric giniite microcrystals is disclosed by various characterization techniques. It was revealed that [Bmim][H2PC>4] played an important role in stabilizing the{111} facets of ferric giniite crystals, leading to the different morphologies in the presence of ionic liquid precursors with different composition. Furthermore, since these ferric giniite crystals were characterized by different facets, they could serve as model Fenton-like catalysts to uncover the correlation between the surface and the catalytic performance for photodegradation of organic dyes under visible-light irradiation. Our measurements indicate that the photocatalytic activity of as-prepared Fenton-like catalysts is highly depended on the exposed facets, and the surface area has essentially no obvious effect on the photocatalytic degradation of organic dyes in the present study. It is highly expected that these findings are useful in understanding the photocatalytic activity of Fenton-like catalysts with different morphologies, and suggest a promising new strategy for crystal facet engineering of photocatalysts for wastewater treatment based on heterogeneous Fenton-like process.
     3. Four well-defined morphologies, including nanorod, nanowire, nanoflower and nanowall, of MnO2nanostructures with different crystal phases (α-, β-, and8-MnO2) have been synthesized employing a simple hydrothermal process. Our experimental results demonstrate that the concentration of KMnO4plays a key role of forming different shapes and phases of MnO2nanostructures. Specifically, the K+concentration can affect the crystal phase of MnO2seeds in the nucleation processes and the decomposition rate of MnO4can influence the number of MnO2nucleus at the initial nucleating stage and also can affect the subsequent crystal growth process. Moreover, the effects of reaction temperature on the morphology of8-MnO2nanowall are systematically studied. The electrochemical performances of the as-prepared MnO2as the positive material of rechargeable Li-ion batteries have also been researched. It is found that8-MnO2nanowall possess largely enhanced electrochemical activity compared to a-MnO2nanowires and β-MnO2nanorods. The vast difference in electrochemical activity is discussed in terms of the morphology, crystal phase and specific surface area of MnO2nanostructures. It is highly expected that these findings are useful in understanding the formation of MnO2nanocrystals with different morphologies, which are also applicable to other metal oxides nanocrystals.
     4. High-stability hematite mesocrystals were prepared by a facile route using N,N-dimethylformamide (DMF) and methanol as the mixed solvent without polymer additives. The success of this synthesis relies on (i) carefully analzed the time-resolved structure formation process of pesudocubic hematite single-crystal, and (ii) tuned the crystallograpically aligned orientations of primary particle units by crystal facet engineering to prevent the crystallographic fusion to single-crystal. To the best our knowledge, this is the first attempt to investigate the role of crystal facet engineering on the formation of stable mesocrystals. In particular, the rhombic hematite mesocrystals exhibit excellent lithium insertion behavior compared to the hematite single-crystals.
     5. A novel PbS hierarchical superstructure, denoted as octapodal dendrites with a cubic center, has been synthesized employing a simple single-source precursor route. Our experimental results demonstrate that the novel hierarchical superstructure was generated through the delicate balance between the kinetic growth and thermodynamic growth regimes. Moreover, the morphology of PbS crystals can be controlled by adjusting the solvent under thermodynamically or kinetically controlled growth regime. It is highly expected that these findings are useful in understanding the formation of PbS nanocrystals with different morphologies, which are also applicable to other fcc nanocrystals.
     In summary, we presented some facile and environmentally friendly methods for the controllable synthesis of inorganic nanomaterials in this dissertation. It has been proved that the ionic liquid possessing the extraordinary potential is favorable for the fabrication of nanomaterials with novel morphologies and improved properties. We believe the understanding that we develop of effect model of ILs on the formation of nanostructures is of fundamental importance. Furthermore, it is hoped that this findings will aid in the design of new synthetic methodologies for preparation of inorganic materials using ILs.
引文
[1]Shan, G. B.; Surampalli, R. Y.; Tyagi, R. D.; Zhang, T. C. Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control:a review. Frontiers of Environmental Science & Engineering in China,2009,3,249-264.
    [2]Modeshia D. R.; Walton R. I. Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev.,2010,39, 4303-4325.
    [3]Ozin, G. A.; Cademartiri, L. Nanochemistry:What Is Next? Small,2009,5,1240-1244.
    [4]Ozin, G. A.; Cademartiri, L. From Ideas to Innovation:Nanochemistry as a Case Study. Small, 2011,7,49-54.
    [5]Ozin, G. A.; Hou, K.; Lotsch, B. V.; Cademartiri, L.; Puzzo, D. P.; Scotognella, F.; Ghadimi, A.; Thomson, J. Nanofabrication by self-assembly. Materials Today,2009,12,12-23.
    [6]Zhu, Y.; Mei, T.; Wang Y.; Qian, Y. Formation and morphology control of nanoparticles via solution routes in an autoclave. J. Mater. Chem.,2011,21,11457-11463.
    [7]Shi, W.; Song, S.; Zhang, H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev.,2013,42, DOI:10.1039/c3cs60012b.
    [8]Pinna, N.; Niederberger, M. Surfactant-Free Nonaqueous Synthesis of Metal Oxide Nanostructures. Angew. Chem. Int. Ed.,2008,47,5292-5304.
    [9]Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. A general strategy for nanocrystal synthesis. Nature, 2005,437,121-124.
    [10]Liu, B.; Guo, Z.; Du, G.; Nuli, Y.; Hassan, M. F.; Jia, D. In situ synthesis of ultra-fine, porous, tin oxide-carbon nanocomposites via a molten salt method for lithium-ion batteries. J. Power Sources,2010,195,5382-5386.
    [11]Sugden, S.; Wilkins H. The preacher and chemical constitution part Ⅶ:fused metals and salts. J. Chem. Soc.,1929,7:1291-1298.
    [12]Wikes, J. S.; Zaworotko, M. J. Air and Water Stable 1-Ethyl-3-Methylimidazolium Based Ionic Liquids. Chem. Commun.,1992,965-967.
    [13]Gordon, C. M.; Muldoon, M. J. in Ionic Liquids in Synthesis,2nd ed. (Eds:Wassercheid, P.; Welton, T.), Wiley-VCH, Weinheim 2008, p.7.
    [14]Ma, Z.; Yu, J.; Dai, S. Preparation of Inorganic Materials Using Ionic Liquids. Adv. Mater., 2010,22,261-285.
    [15]Wasserscheid, P.; Keim, W. Ionic liquids-new "solutions" for transition metal catalysis. Angew. Chem. Int. Ed.,2000,39,3772-3789.
    [16]Antonietti, M.; Kuang, D. B.; Smarsly, B.; Zhou, Y. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed.,2004, 43,4988-4992.
    [17]Wilkes, J. S. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem.,2002,4:73-80.
    [18]Dai, S.; Ju, Y. H.; Gao, H. J.; Lin, J. S.; Pennycook, S. J.; Barnes, C. E. Preparation of Silica Aerogel using Ionic Liquids as Solvents. Chem. Commum.,2000,243-244.
    [19]Nakashinma, T.; Kimizuka, N. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids. J. Am. Chem. Soc,2003,125,6386-6387.
    [20]Zhou, Y.; Antonietti, M. Synthesis of Very Small TiO2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates. J. Am. Chem. Soc,2003,125,14960-14961.
    [21]Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.; Wormald, P.; Morris, R. E. Ionic Liquids and Eutectic Mixtures as Solvent and Template in Synthesis of Zeolite Analogues. Nature,2004,430,1012-1016.
    [22]Taubert, A. CuCl Nanoplatelets from an Ionic Liquid-Crystal Precursor. Angew. Chem. Int. Ed.,2004,43,5380-5382.
    [23]Zhou, Y; Antonietti, M. Preparation of highly ordered monolithie super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique. Adv. Mater.,2003,15,1452-1455.
    [24]Zhou, Y; Antonietti, M. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure. Chem. Commun.,2003, 20,2564-2565.
    [25]Zhou, Y; Jan, H.; Antonietti, M. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique. Nano Lett.2004, 4,477-481.
    [26]Firestone, M.; Dietz, M. L.; Seifert, S.; Trasobares, S.; Miller, D.; Zaluzec, N. Ionogel-templated synthesis and organization of anisotropic gold nanoparticles. Small,2005, 1,754-760.
    [27]Yoo, K. S.; Choi, H.; Dionysiou, D. D. Synthesis of anatase nanostructured TiO2 particles at low temperature using ionic liquid for photocatalysis. Catal Commun.,2005,6,259-262.
    [28]Park, H.; Yang, S. H.; Jun, Y S.; Hong, W. H.; Kang, J. K. Facile Route to Synthesize Large-Mesoporous y-Alumina by Room Temperature Ionic Liquids. Chem. Mater.2007,19, 535-542.
    [29]Zhang, C; Chen, J.; Zhou, Y; Li, D. Ionic liquid-based "all-in-one" synthesis and photolumin-escence properties of lanthanide fluorides. J. Phys. Chem. C,2008,112, 10083-10088.
    [30]Zhu, H.; Huang, J. F.; Pan, Z.; Dai, S. Ionothermal synthesis of hierarchical ZnO nanostructures from ionic-liquid precursors. Chem. Mater.,2006,18,4473-4477.
    [31]He, M.; Huang, P.; Zhang, C; Hu, H.; Bao, C; Gao, G; He, R.; Cui, D. Dual Phase-Controlled Synthesis of Uniform Lanthanide-Doped NaGdF4 Upconversion Nanocrystals via an OA/Ionic Liquid Two-Phase System for In Vivo Dual-Modality Imaging. Adv. Funct. Mater.,2011,21,4470-4477.
    [32]Dirksen, J. A.; Ring, T. A. Fundamentals of crystallization:kinetic effects on particle size distributions and morphology. Chem. Eng. Sci.,1991,46,2389-2427.
    [33]Peng, X. G; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth. J. Am. Chem. Soc,1998,120,5343-5344.
    [34]Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci.,2000,30, 545-610.
    [35]Pamplin, B. R. Crystal Growth. Pergamon Press:New York,1975.
    [36]Jiang, Y. in:Handbook of nanophase and nanostructured materials, eds. Wang, Z. L.; Liu, Y.; Zhang, Z. Kluwer Academic/Plenum Publishers and Tsinghua University Press,2003, p.244.
    [37]Zhang, Q.; Liu, S. J.; Yu, S. H. Recent advances in oriented attachment growth and synthesis of functional materials:concept, evidence, mechanism, and future. J. Mater. Chem.,2009,19, 191-207.
    [38]Xia, Y; Xiong, Y; Lim, B.; Skrabalak, S. E. Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed.,2009,48, 60-103.
    [39]Wohlrab, S.; Pinna, N.; Antonietti, M.; Colfen, H. Polymer-Induced Alignment of dl-Alanine Nanocrystals to Crystalline Mesostructures. Chem. Eur. J.,2005,11,2903-2913.
    [40]Colfen, H.; Mann, S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem. Int. Ed.,2003,42,2350-2365.
    [41]Colfen, H.; Antonietti, M. Mesocrystals:Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angew. Chem. Int. Ed.,2005,44,5576-5591.
    [42]Penn, R. L; Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:Insights from titania. Geochim. Cosmochim. Acta.,1999,63,1549-1557.
    [43]Alivisatos, A. P. Naturally Aligned Nanocrystals. Science,2000,289,736-737.
    [44]Manna, L.; Scher, E. C; Alivisatos, A. P. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. J. Am. Chem. Soc,2000,122, 12700-12706.
    [45]Wang, Z.; Schliehe, C; Wang, T.; Nagaoka, Y; Cao, Y C; Bassett, W. A.; Wu, H.; Fan, H.; Weller, H. Deviatoric Stress Driven Formation of Large Single-Crystal PbS Nanosheet from Nanoparticles and in Situ Monitoring of Oriented Attachment. J. Am. Chem. Soc,2011,133, 14484-14487.
    [46]Yu, J. H.; Joo, J.; Park, H. H.; Baik, S.; Kim, Y. W.; Kim, S. C; Hyeon, T. Synthesis of Quantum-Sized Cubic ZnS Nanorods by the Oriented Attachment Mechanism. J. Am. Chem. Soc,2005,127,5662-5670.
    [47]Koh, W; Bartnik, A. C; Wise, F. W; Murray, C. B. Synthesis of Monodisperse PbSe Nanorods:A Case for Oriented Attachment. J. Am. Chem. Soc,2010,132,3909-3913.
    [48]Cheng, Y.; Wang, Y.; Chen, D.; Bao, F. Evolution of Single Crystalline Dendrites from Nanoparticles through Oriented Attachment. J. Phys. Chem. B,2005,109,794-798.
    [49]Liang, H.; Zhao, H.; Rossouw, D.; Wang, W.; Xu, H.; Botton, G. A.; Ma, D. Silver Nanorice Structures:Oriented Attachment-Dominated Growth, High Environmental Sensitivity, and Real-Space Visualization of Multipolar Resonances. Chem. Mater.,2012,24,2339-2346.
    [50]Yang, S.; Gao, L. Controlled Synthesis and Self-Assembly of CeO2 Nanocubes. J. Am. Chem. Soc,2006,128,9330-9331.
    [51]Koh, W.; Yoon, Y; Murray, C. B. Investigating the Phosphine Chemistry of Se Precursors for the Synthesis of PbSe Nanorods. Chem. Mater.2011,23,1825-1829.
    [52]Pacholski, C; Kornowski, A.; Weller, H. Self-Assembly of ZnO:From Nanodots to Nanorods. Angew. Chem. Int. Ed.,2002,41,1188-1191.
    [53]Schliehel, C; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowskil, A.; Klinke, C; Weller, H. Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment. Science,2010,329,550-553.
    [54]Cho, K..; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. J. Am. Chem. Soc,2005,127, 7140-7147.
    [55]Zheng, H.; Smith, R. K..; Jun, Y; Kisielowski, C; Dahmen, U.; Alivisatos, A. P. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science,2009,324, 1309-1312.
    [56]Liao, H. G; Cui, L.; Whitelam, S.; Zheng, H. Real-Time Imaging of Pt3Fe Nanorod Growth in Solution. Science,2012,336,1011-1014.
    [57]Li, D.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C; Banfield, J. F.; Yoreo, J. J. D. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment. Science, 2012,336,1014-1018.
    [58]Tauber, A.; Li, Z. Inorganic Materials from Ionic Liquids. Dalton Trans.,2007,723-727.
    [59]Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Toward Greener Nanosynthesis. Chem. Rev., 2007,107,2228-2269.
    [60]Aliaga, C; Santos, C. S.; Baldelli, S. Surface Chemistry of Room-Temperature Ionic Liquids. Phys. Chem. Chem. Phys.,2007,9,3683-3700.
    [61]Weingartner, H. Understanding Ionic Liquids at the Molecular Level:Facts, Problems, and Controversies. Angew. Chem. Int. Ed.,2008,47,654-670.
    [62]Morris, R. Ionothermal Synthesis-Ionic Liquids as Functional Solvents in the Preparation of Crystalline Materials. Chem. Commun.,2009,2990-2998.
    [63]Torimoto, T; Tsuda, T; Okazaki, K.; Kuwabata, S. New Frontiers in Materials Science Opened by Ionic Liquids. Adv. Mater.,2010,22,1196-1221.
    [64]Dupont, J. From Molten Salts to Ionic Liquids:A "Nano" Journey. Acc. Chem. Res.,2011,44, 1223-1231.
    [65]Dupont, J.; Fonseca.G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions. J. Am. Chem. Soc.,2002,124,4228-4229.
    [66]Lee, J. S.; Wang, X.; Luo, H.; Baker, G. A.; Dai, S. Facile Ionothermal Synthesis of Microporous and Mesoporous Carbons from Task Specific Ionic Liquids. J. Am. Chem. Soc., 2009,131,4596-4597.
    [67]Wang, H.; Wang, J.; Zhang, S.; Xuan, X. Structural Effects of Anions and Cations on the Aggregation Behavior of Ionic Liquids in Aqueous Solutions. J. Phys. Chem. B,2008,112, 16682-16689.
    [68]Park, H.; Lee, Y. C.; Choi, B. G.; Choi, Y. S.; Yang, J. W.; Hong, W. H. Green One-Pot Assembly of Iron-Based Nanomaterials for the Rational Design of Structure. Chem. Commun.,2009,4058-4060.
    [69]Ott, L. S.; Cline, M. L.; Deetlefs, M.; Seddon, K. R.; Finke, R. G. Nanoclusters in Ionic Liquids:Evidence for N-Heterocyclic Carbene Formation from Imidazolium-Based Ionic Liquids Detected by 2H NMR. J. Am. Chem. Soc.,2005,127,5758-5759.
    [70]Ryu, H. J.; Sanchez, L.; Keul, H. A.; Raj, A.; Bockstaller, M. R. Imidazolium-Based Ionic Liquids as Efficient Shape-Regulating Solvents for the Synthesis of Gold Nanorods. Angew. Chem. Int. Ed.,2008,47,7639-7643.
    [71]Bouvy, C.; Baker, G. A.; Yin, H.; Dai, S. Growth of Gold Nanosheets and Nanopolyhedra in Pyrrolidinium-Based Ionic Liquids:Investigation of the Cation Effect on the Resulting Morphologies. Cryst. Growth Des.,2010,10,1319-1322.
    [72]Zheng, W.; Liu, X.; Yan, Z.; Zhu, L. Ionic Liquid-Assisted Synthesis of Large-Scale TiO2 Nanoparticles with Controllable Phase by Hydrolysis of TiCl4.ACS Nano,2009,3,115-122.
    [73]Khare, Y.; Li, Z.; Mantion, A.; Ayi, A. A.; Sonkaria, S.; Voelkl, A.; Thunemann, A. F.; Taubert, A. Strong Anion Effects on Gold Nanoparticle Formation in Ionic Liquids. J. Mater. Chem., 2010,20,1332-1339.
    [74]Sieffert, N.; Wipff, G Ordering of Imidazolium-Based Ionic Liquids at the a-Quartz(001) Surface:A Molecular Dynamics Study. J. Phys. Chem. C,2008,112,19590-19603.
    [75]Duan, X.; Lian, J.; Ma, J.; Kim, T.; Zheng, W. Shape-Controlled Synthesis of Metal Carbonate Nanostructure via Ionic Liquid-Assisted Hydrothermal Route:The Case of Manganese Carbonate. Cryst. Growth Des.,2010,10,4449-4455.
    [76]Zhao, X.; Jin, W.; Cai, J.; Ye, J.; Li, Z.; Ma, Y.; Xie, J.; Qi, L. Shape- and Size-Controlled Synthesis of Uniform Anatase TiO2 Nanocuboids Enclosed by Active{100} and{001} Facets. Adv. Funct. Mater.,2011,21,3554-3563.
    [77]Kim, T.; Kim, W.; Hong, S.; Kim, J.; Suh, K. Ionic-Liquid-Assisted Formation of Silver Nanowires. Angew. Chem.,2009,121,3864-3867.
    [78]Park, H. S.; Choi, B. G.; Yang, S. H.; Shin, W. H.; Kang, J. K.; Jung, D.; Hong, W. H. Ionic-Liquid-Assisted Sonochemical Synthesis of Carbon-Nanotube-Based Nanohybrids: Control in the Structures and Interfacial Characteristics. Small,2009,5,1754-1760.
    [79]Yang, W.; Fellinger, T. P.; Antonietti, M. Efficient Metal-Free Oxygen Reduction in Alkaline Medium on High-Surface-Area Mesoporous Nitrogen-Doped Carbons Made from Ionic Liquids and Nucleobases. J. Am. Chem. Soc,2011,133,206-209.
    [80]Dobbs, W.; Suisse, J.; Douce, L.; Welter, R. Electrodeposition of Silver Particles and Gold Nanoparticles from Ionic Liquid-Crystal Precursors. Angew. Chem.,2006,118,4285-4288.
    [81]Recham, N.; Dupont, L.; Courty, M.; Djellab, K.; Larcher, D.; Armand, M.; Tarascon, J. M. Ionothermal Synthesis of Tailor-Made LiFePO4 Powders for Li-Ion Battery Applications. Chem. Mater.,2009,21,1096-1107.
    [82]Annand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-Liquid Materials for the Electrochemical Challenges of the Future. Nat. Mater.,2009,8,621-629.
    [83]Zhang, Z.; Pinnavaia, T. Mesostructured γ-Al2O3 with a Lathlike Framework Morphology. J. Am. Chem. Soc,2002,124,12294-12301.
    [84]Lee, H. C; Kim, H. J.; Chung, S. H.; Lee, K. H.; Lee, H. C; Lee, J. S. Synthesis of Unidirectional Alumina Nanostrucrures without Added Organic Solvents. J. Am. Chem. Soc, 2003,125,2882-2883.
    [85]Li, Y.; Bando, Y.; Golberg, D. Single-Crystalline a-Al2O3 Nanotubes Converted from Al4O4C Nanowires. Adv. Mater.2005,17,1401-1405.
    [86]Fang, X. S.; Ye, C. H.; Zhang, L. D.; Xie, T. Twinning-Mediated Growth of Al2O3 Nanobelts and Their Enhanced Dielectric Responses. Adv. Mater.,2005,17,1661-1665.
    [87]Park, H. S.; Choi, Y. S.; Jung, Y. M.; Hong, W. H. Intermolecular Interaction-Induced Hierarchical Transformation in ID Nanohybrids:Analysis of Conformational Changes by 2D Correlation Spectroscopy. J. Am. Chem. Soc,2008,130,845-852.
    [88]Park, H. S.; Choi, Y. S.; Kim, Y; Hong, W. H.; Song, H. J. ID and 3D Ionic Liquid-Aluminum Hydroxide Hybrids Prepared via an Ionothermal Process. Adv. Funct. Mater.,2007,17,2411-2418.
    [89]Farag, H. K.; Endres, F. Studies on the Synthesis of Nano-Alumina in Air and Water Stable Ionic Liquids. J. Mater. Chem.,2008,18,442-449.
    [90]Shen, S. C; Chen, Q.; Chow, P. S.; Tan, G. H.; Zeng, X. T; Wang, Z.; Tan, R. B. H. Steam-Assisted Solid Wet-Gel Synthesis of High-Quality Nanorods of Boehmite and Alumina. J. Phys. Chem. C,2007,111,700-707.
    [91]Zhang, L.; Zhu, Y. J. Microwave-Assisted Solvothermal Synthesis of AlOOH Hierarchically Nanostructured Microspheres and Their Transformation to γ-Al2O3 with Similar Morphologies. J. Phys. Chem. C,2008,112,16764-16768.
    [92]Yu, X.; Yu, J.; Cheng, B.; Jaroniec, M. Synthesis of Hierarchical Flower-like AIOOH and TiO2/AlOOH Superstructures and their Enhanced Photocatalytic Properties. J. Phys. Chem. C,2009,113,17527-17535.
    [93]Cai, W.; Yu, J.; Jaroniec, M. Template-Free Synthesis of Hierarchical Spindle-Like γ-Al2O3 Materials and Their Adsorption Affinity towards Organic and Inorganic Pollutants in Water. J. Mater. Chem.,2010,20,4587-4594.
    [94]Kuang, D.; Fang, Y; Liu, H.; Frommen, C.; Fenske, D. Fabrication of Boehmite AlOOH and γ-Al2O3 Nanotubes via a Soft Solution Route. J. Mater. Chem.,2003,13,660-662.
    [95]Lee, W.; Scholz, R.; Gosele, U. A Continuous Process for Structurally Well-Defined A12O3 Nanotubes Based on Pulse Anodization of Aluminum. Nano Lett.,2008,8,2155-2160.
    [96]Lian, J.; Ma, J.; Duan, X.; Kim, T.; Li, H.; Zheng, W. One-Step Ionothermal Synthesis of γ-Al2O3 Mesoporous Nanoflakes at Low Temperature. Chem. Commun.,2010,46, 2650-2652.
    [97]Kim, T.; Lian, J.; Ma, J.; Duan, X.; Zheng, W. Morphology Controllable Synthesis of y-Alumina Nanostructures via an Ionic Liquid-Assisted Hydrothermal Route. Cryst. Growth Des.,2010,10,2928-2933.
    [98]Serna, C. J. S.; Garcia-Ramos, J. V.; Pena, M. J. Vibrational Study of Dawsonite Type Compounds MA1(OH)2CO3 (M= Na, K, NH4). Spectrochim. Acta,1985,41 A,697-702.
    [99]Ali, A. A.; Hasan, M. A.; Zaki, M. I. Dawsonite-Type Precursors for Catalytic Al, Cr, and Fe Oxides:Synthesis and Characterization. Chem. Mater.,2005,17,6797-6804.
    [100]Stoica, G; Groen, J. C; Abello, S.; Manchanda, R.; Perez-Ramirez, J. Reconstruction of Dawsonite by Alumina Carbonation in (NH4)2CO3:Requisites and Mechanism. Chem. Mater.,2008,20,3973-3982.
    [101]Zhang, J.; Wei, S.; Lin, J.; Luo, J.; Liu, S.; Song, H.; Elawad, E.; Ding, X.; Gao, J.; Qi, S.; Tang, C. Template-Free Preparation of Bunches of Aligned Boehmite Nanowires. J. Phys. Chem. B,2006,110,21680-21683.
    [102]Stoica, G; Perez-Ramirez, J. Reforming Dawsonite by Memory Effect of AACH-Derived Aluminas. Chem. Mater.,2007,19,4783-4790.
    [103]Railsback, L. B. Patterns in the Compositions, Properties, and Geochemistry of Carbonate Minerals. Carbonates Evaporites,1999,14,1-20.
    [104]Hernandez, M. J.; Ulibarri, M. A.; Cornejo, J; Pena, M. J.; Serna, C. J. Thermal Stability of Aluminium Hydroxycarbonates with Monovalent Cations. Thermochim. Acta,1985,94, 257-266.
    [105]Corazza, E.; Sabelli, C; Vannucci, S. Dawsonite:New Mineralogical Data and Structure Refinement. Monatsh.,1977,9,381-397.
    [106]Krokidis, X.; Raybaud, P.; Gobichon, A.; Rebours, B.; Euzen, P.; Toulhoat, H. Theoretical Study of the Dehydration Process of Boehmite to γ-Alumina. J. Phys. Chem. B,2001,105, 5121-5130.
    [107]Digne, M.; Sautet, P.; Raybaud, P. Toulhoat, H.; Artacho, E. Structure and Stability of Aluminum Hydroxides:A Theoretical Study. J. Phys. Chem. B,2002,106,5155-5162.
    [108]Chiche, D.; Chizallet, C; Durupthy, O.; Chaneac, C; Revel, R.; Raybaud, P.; Jolivet, J. Growth of Boehmite Particles in the Presence of Xylitol:Morphology Oriented by the Nest Effect of Hydrogen Bonding. Phys. Chem. Chem. Phys.,2009,11,11310-11323.
    [109]Ueno, K.; Watanabe, M. From Colloidal Stability in Ionic Liquids to Advanced Soft Materials Using Unique Media. Langmuir,2011,27,9105-9115.
    [110]Lopes, J. N. A. C; Padua, A. A. H. Nanostructural Organization in Ionic Liquids. J. Phys. Chem.B,2006,110,3330-3335.
    [111]Triolo, A.; Russina, O.; Bleif, H. J.; Cola, E. D. Nanoscale Segregation in Room Temperature Ionic Liquids. J. Phys. Chem. B 2007,111,4641-4644.
    [112]Larson, I.; Drummond, C. J.; Chan, D. Y. C; Grieser, F. Direct Force Measurements between Titanium Dioxide Surfaces. J. Am. Chem. Soc.,1993,115,11885-11890.
    [113]Schulz, J. C.; Warr, G. G. Adsorbed Layer Structure of Cationic and Anionic Surfactants on Mineral Oxide Surfaces. Langmuir,2002,18,3191-3197.
    [114]Parks, G. A. The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chem. Rev.,1965,65,177-198.
    [115]Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem.,1985,57, 603-619.
    [116]Li, Z.; Rabu, P.; Strauch, P.; Mantion, A.; Taubert, A. Uniform Metal (Hydr)Oxide Particles from Water/Ionic Liquid Precursor (ILP) Mixtures. Chem. Eur. J.,2008,14,8409-8417.
    [117]Li, Z.; GeBner, A.; Richters, J.; Kalden, J.; Voss, T.; Kubel, C.; Taubert, A. Hollow Zinc Oxide Mesocrystals from an Ionic Liquid Precursor (ILP). Adv. Mater.,2008,20,1279-1285.
    [118]Paraknowitsch, J. P.; Zhang, J.; Su, D.; Thomas, A.; Antonietti, M. Ionic Liquids as Precursors for Nitrogen-Doped Graphitic Carbon. Adv. Mater.,2010,22,87-92.
    [119]Chen, C. C.; Ma, W. H.; Zhao, J. C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev.,2010,39,4206-4219.
    [120]Navalon, S.; Martin, R.; Alvaro, M.; Garcia, H. Gold on diamond nanoparticles as a highly efficient fenton catalyst. Angew. Chem.,2010,122,8581-8585.
    [121]Yip, A. C; Lam, F. L.; Hu, X. J. Collagen fiber immobilized Fe(Ⅲ):a novel catalyst for photo-assisted degradation of dyes. Chem. Commun.,2005,41,3218-3220.
    [122]Lim, H.; Lee, J.; Jin, S.; Kim, J.; Yoon, J.; Hyeon, T. Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chem. Commun.,2006,42,463-465.
    [123]Zhang, G. Q.; Wang, S.; Yang, F. L. Efficient adsorption and combined heterogeneous/homogeneous Fenton oxidation of amaranth using supported nano-FeOOH as cathodic catalysts. J. Phys. Chem. C 2012,116,3623-3634.
    [124]Garrido, E. G.; Theng, B. K. G.; Mora, M. L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions-A review. Appl. Clay Sci.,2010,47,182-192.
    [125]Plata, G B. O.; Alfano, O. M.; Cassano, A. E. Decomposition of 2-chlorophenol employing goethite as Fenton catalyst Ⅱ:Reaction kinetics of the heterogeneous Fenton and photo-Fenton mechanisms. Appl. Catal. B:Environ.,2010,95,14-25.
    [126]Deng, J. H.; Jiang, J. Y; Zhang, Y. Y.; Lin, X. P.; Du, C. M.; Xiong, Y. FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange Ⅱ. Appl. Catal. B:Environ.,2008,84,468-473.
    [127]Guo, L.; Chen, F.; Fan, X.; Cai, W.; Zhang, J. S-doped a-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol. Appl. Catal. B:Environ.,2010,96,162-168.
    [128]Hartmann, M.; Kullmann, S.; Keller, H. Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J. Mater. Chem.,2010,20,9002-9017.
    [129]Zhang, G; Gao, Y. Zhang, L.; Guo, Y. Fe2O3-pillared rectorite as an efficient and stable fenton-like heterogeneous catalyst for photodegradation of organic contaminants. Environ. Sci. Technol,2010,44,6384-6389.
    [130]Kim, J. K.; Martinez, F.; Metcalfe, I. S. The beneficial role of use of ultrasound in heterogeneous Fenton-like system over supported copper catalysts for degradation of />-chlorophenol. Catal. Today,2007,124,224-231.
    [131]Li, D.; Pan, C; Shi, R.; Zhu, F. Controllable synthesis of Fe5(PO4)4(OH)3-2H2O as a highly efficient heterogeneous Fenton-like catalyst. CrystEngComm,2011,13,6688-6693.
    [132]Ma, J.; Ma, W.; Chen, C; Ji, H.; Zhao, J. An Efficient Anthraquinone-Resin Hybrid Co-Catalyst for Fenton-Like Reactions:Acceleration of the Iron Cycle Using a Quinone Cycle under Visible-Light Irradiation. Chem. Asian J.,2011,6,2264-2268.
    [133]Sun, C; Chen, C; Ma, W.; Zhao, J. Photodegradation of organic pollutants catalyzed by iron species under visible light irradiation. Phys. Chem. Chem. Phys.,2011,13,1957-1969.
    [134]Zhou, X.; Lan, J.; Liu, G; Deng, K.; Yang, Y; Nie, G; Yu, J.; Zhi, L. Facet-Mediated Photodegradation of Organic Dye over Hematite Architectures by Visible Light. Angew. Chem.,2012,124,182-186.
    [135]Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science,1998,281,1647-1650.
    [136]Zhou, K. B.; Li, Y. D. Catalysis Based on Nanocrystals with Well-Defined Facets. Angew. Chem., Int. Ed.,2012,51,602-613.
    [137]Tachikawa, T.; Yamashita, S.; Majima, T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc,2011, 133,7197-7204.
    [138]Xiong, Y. J.; Xia, Y. N. Shape-Controlled Synthesis of Metal Nanostructures:The Case of Palladium. Adv. Mater.,2007,19,3385-3391.
    [139]Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem., Int. Ed.,2006,45,4597-4601.
    [140]Goodman, D. W. Model studies in catalysis using surface science probes. Chem. Rev.,1995, 95,523-536.
    [141]Liu, G; Yu, J. C; Lu, G Q.; Cheng, H. M. Crystal facet engineering of semiconductor photocatalysts:motivations, advances and unique properties. Chem. Commum.,2011,47, 6763-6783.
    [142]Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growtt. Nat. Mater.,2007,6,692-697.
    [143]Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev.,2011, 40,4167-4185.
    [144]Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev., 2010,110,527-546.
    [145]Liu, S. W.; Yu, J. G; Jaroniec, M. Anatase TiO2 with dominant high-energy{001} facets: synthesis, properties, and applications. J. Am. Chem. Soc,2010,132,11914-11916.
    [146]Chen, J. S.; Tan, Y. L; Li, C. M.; Cheah, Y. L.; Luan, D.; Madhavi, S.; Boey, F. Y. C; Archer, L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100%exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc,2010,132,6124-6130.
    [147]Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic Materials:Possibilities and Challenges. Adv. Mater.,2012,24,229-251.
    [148]Jiang, Z. Y; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Syntheses and Properties of Micro/Nanostructured Crystallites with High-Energy Surfaces. Adv. Funct. Mater.,2010,20, 3634-3645.
    [149]Tian, N.; Zhou, Z. Y; Sun, S. G; Ding, Y; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007,316,732-735.
    [150]Ma, Y. Y; Kuang, Q.; Jiang, Z. Y; Xie, Z. X.; Huang, R. B.; Zheng, L. S. Synthesis of Trisoctahedral Gold Nanocrystals with Exposed High-Index Facets by a Facile Chemical Method. Angew. Chem., Int. Ed.,2008,47,8901-8904.
    [151]Chen, Y. X.; Chen, S. P.; Zhou, Z. Y; Tian, N.; Jiang, Y X.; Sun, S. G; Ding, Y; Wang, Z. L. Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry. J. Am. Chem. Soc,2009,131, 10860-10862.
    [152]Zhou, Z. Y; Huang, Z. Z.; Chen, D. J.; Wang, Q.; Tian, N.; Sun, S. G High-Index Faceted Platinum Nanocrystals Supported on Carbon Black as Highly Efficient Catalysts for Ethanol Electrooxidation. Angew. Chem., Int. Ed.,2010,49,411-414.
    [153]Yu, T.; Kim, D. Y; Zhang, H.; Xia, Y. N. Platinum Concave Nanocubes with High-Index Facets and Their Enhanced Activity for Oxygen Reduction Reaction. Angew. Chem., Int. Ed., 2011,50,2773-2777.
    [154]Ming, T; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.;-Yan, C. H. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc,2009,131, 16350-16351.
    [155]Zhang, J.; Langille, M. R.; Personick, M. L; Zhang, K.; Li, S. Y; Mirkin, C. A. Concave cubic gold nanocrystals with high-index facets. J. Am. Chem. Soc,2010,132,14012-14014.
    [156]Yu, Y; Zhang, Q. B.; Liu, B.; Lee, J. Y Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. J. Am. Chem. Soc,2010,132,18258-18265.
    [157]Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having{411} high-index facets. J. Am. Chem. Soc,2011,133,4718-4721.
    [158]Zheng, Y. Q.; Tao, J.; Liu, H. Y; Zeng, J.; Yu, T.; Ma, Y; Moran, C.; Wu, L. J.; Zhu, Y. M.; Liu, J. Y; Xia, Y. N. Facile Synthesis of Gold Nanorice Enclosed by High-Index Facets and Its Application for CO Oxidation. Small,2011,7,2307-2312.
    [159]Xia, X. H.; Zeng, J.; McDearmon, B.; Zheng, Y. Q.; Li, Q. G; Xia, Y. N. Silver Nanocrystals with Concave Surfaces and Their Optical and Surface-Enhanced Raman Scattering Properties. Angew. Chem.,2011,123,12750-12754.
    [160]Yang, H. G; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G; Smith, S. C; Cheng, H. M.; Lu, G Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature,2008,453, 638-641.
    [161]Yang, H. G; Liu, G; Qiao, S. Z.; Sun, C. H.; Jin, Y. G; Smith, S. C; Zou, J.; Cheng, H. M.; Lu, G Q. Solvothermal synthesis and photoreactivity of anatase T1O2 nanosheets with dominant{001} facets. J. Am. Chem. Soc,2009,131,40784083.
    [162]Han, X. G; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc,2009,131,3152-3153.
    [163]Liu, G; Yang, H, G.; Wang, X. W.; Cheng, L. N.; Pan, J.; Lu, G Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant{001} facets derived from TiN. J. Am. Chem. Soc,2009,131,12868-12869.
    [164]Ariga, H.; Taniike, T; Morikawa, H.; Tada, M.; Min, B. K.; Watanabe, K.; Matsumoto, Y; Dceda, S.; Saiki, K.; Iwasawa, Y. Surface-mediated visible-light photo-oxidation on pure TiO2 (001). J. Am. Chem. Soc,2009,131,14670-14672.
    [165]Ahmed, A. Y; Kandiel, T. A.; Oekermann, T.; Bahnemann, D. Photocatalytic Activities of Different Well-defined Single Crystal TiO2 Surfaces:Anatase versus Rutile. J. Phys. Chem. Lett.,2011,2,2461-2465.
    [166]Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y; Ye, J. H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc,2011,133, 6490-6492.
    [167]Huang, W. C; Lyu, L. ML; Yang, Y. C.; Huang, M. H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc,2012,134,1261-1267.
    [168]Ye, L. Q.; Zan, L.; Tian, L. H.; Peng, T. Y; Zhang, J. J. The{001} facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun.,2011,47,6951-6953.
    [169]Jiang, J.; Zhao, JC; Xiao, X. Y; Zhang, L. Z. Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets. J. Am. Chem. Soc,2012,134, 4473-4476.
    [170]Ye, L. Q.; Tian, L.; Peng, T. Y.; Zan, L. Synthesis of highly symmetrical BiOI single-crystal nanosheets and their{001} facet-dependent photoactivity. J. Mater. Chem.,2011,21, 12479-12484.
    [171]Wang, D. G; Jiang, H. F.; Zong, X.; Xu, Q.; Ma, Y; Li, G. L.; Li, C. Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation. Chem. Eur. J. 2011,17,1275-1282.
    [172]Recham, N.; Dupont, L; Courty, M.; Djellab, K.; Larcher, D.; Armand, M.; Tarascon, J. M. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chem. Mater.,2009,21,1096-1107.
    [173]Zhang, C; Chen, J.; Zhu, X.; Zhou, Y.; Li, D. Synthesis of tributylphosphate capped luminescent rare earth phosphate nanocrystals in an ionic liquid microemulsion. Chem. Mater.,2009,21,3570-3575.
    [174]Lian, J.; Duan, X.; Ma, J.; Peng, P.; Kim, T.; Zheng, W. Hematite (a-Fe2O3) with various morphologies:ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano,2009,3,3749-3761.
    [175]Migowski, P.; Zanchet, D.; Machado, G; Gelesky, M. A.; Teixeira, S. R.; Dupont, J. Nanostructures in ionic liquids:correlation of indium nanoparticles'size and shape with imidazolium salts'structural organization and catalytic properties. Phys. Chem. Chem. Phys., 2010,12,6826-6833.
    [176]Yang, W.; Fellinger, T. P.; Antonietti, M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc,2011,133,206-209.
    [177]Buckley, H. E. Crystal Growth, Wiley, New York,1951.
    [178]Mann, S. The Chemistry of Form. Angew. Chem.,2000,112,3532-3548.
    [179]Siegfried, M. J.; Choi, K. S. Directing the architecture of cuprous oxide crystals during electrochemical growth. Angew. Chem.,2005,117,3282-3287.
    [180]Tao, A.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small,2008,4, 310-325.
    [181]Sun, Y; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science,2002, 298,2176-2179.
    [182]Greyson, E.; Barton, J.; Odom, T. Tetrahedral Zinc Blende Tin Sulfide Nano-and Microcrystals. Small,2006,2,368-371.
    [183]Chen, D.; Gao, L.; Yasumori, A.; Kuroda, K.; Sugahara, Y. Size-and Shape-Controlled Conversion of Tungstate-Based Inorganic-Organic Hybrid Belts to WO3 Nanoplates with High Specific Surface Areas. Small,2008,4,1813-1822.
    [184]Yang, H. G; Zeng, H. C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B,2004,108,3492-3495.
    [185]Li, J.; Zeng, H. C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc,2007,129,15839-15847.
    [186]Zeng, H. C. Synthetic architecture of interior space for inorganic nanostructures. J. Mater. Chem.,2006,16,649-662.
    [187]Duan, X.; Liu, X.; Chen, Q.; Li, H.; Li, J.; Hu, X.; Li, Y.; Ma, J.; Zheng, W. Ionic liquid-assisted synthesis of CdSe dendrites from nanospheres through oriented attachment. Dalton Trans.,2011,40,1924-1928.
    [188]Lu, F.; Zhang, Y.; Zhang, L.; Zhang, Y; Wang, J.; Adzic, R. R.; Stach, E. A.; Gang, O. Truncated ditetragonal gold prisms as nanofacet activators of catalytic platinum. J. Am. Chem. Soc.,2011,133,18074-18077.
    [189]Han, S.; Li, C; Liu, Z. Q.; Lei, B.; Zhang, D. H.; Jin, W.; Liu, X. L; Tang, T.; Zhou, C. W. Transition Metal Oxide Core-Shell Nanowires:Generic Synthesis and Transport Studies. Nano Lett.,2004,4,1241-1246.
    [190]Moralesa, F.; Smita, E.; Groota, F. M. R; Vissera, T.; Weckhuysen, B. M. Effects of Manganese Oxide Promoter on the CO and H2 Adsorption Properties of Titania-supported Cobalt Fischer-Tropsch Catalysts. J. Catal.,2007,246,91-99.
    [191]Feng, Q.; Kanoh, H.; Miyai, Y; Ooi, K. Alkali Metal Ions Insertion/Extraction Reactions with Hollandite-Type Manganese Oxide in the Aqueous Phase. Chem. Mater.,1995,7, 148-153.
    [192]Yang, X. S.; Chen, X.; Zhang, X.; Yang, W. S.; Evans, D. G Intercalation of Methylene Blue into Layered Manganese Oxide and Application of The Resulting Material in a Reagentless Hydrogen Peroxide Biosensor. Sens, Actuators, B,2008,129,784-789.
    [193]Luo, J. Y; Zhang, J. J.; Xia Y. Y. Highly Electrochemical Reaction of Lithium in the Ordered Mesoporosus β-MnO2. Chem. Mater.,2006,18,5618-5623.
    [194]Jiao, F.; Bruce, P. G Mesoporous Crystalline p-MnO2-a Reversible Positive Electrode for Rechargeable Lithium Batteries. Adv. Mater.,2007,19,657-660.
    [195]Thackeray, M. M. Manganese oxides for lithium batteries. Prog. Solid State Chem.,1997, 25,1-71.
    [196]Wang, X.; Li Y. D. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods. Chem. Eur. J.,2003,9,300-306.
    [197]Liu, Z. H.; Ooi, K.; Kanoh, H.; Tang W. P.; Yang, X. J.; Tomida, T. Synthesis of Thermally Stable Silica-Pillared Layered Manganese Oxide by an Intercalation/Solvothermal Reaction. Chem. Mater.,2001,13,473-478.
    [198]Wang, X.; Li, Y. D. Rational Synthesis of a-MnO2 Single-Crystal Nanorods. Chem. Commun.,2002,764-765.
    [199]Chen, R. J.; Zavalij, P.; Whittingham, M. S. Hydrothermal Synthesis and Characterization of KxMnO2·H2O. Chera. Mater.,1996,8,1275-1280.
    [200]Subramanian V.; Zhu, H. W.; Vajtai, R.; Ajayan, P. M.; Wei, B. Q. Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures. J. Phys. Chem. B,2005,109, 20207-20214.
    [201]Song, X. C; Zhao, Y; Zheng, Y. F. Synthesis of MnO2 Nanostructures with Sea Urchin Shapes by a Sodium Dodecyl Sulfate-Assisted Hydrothermal Process. Cryst. Growth Des., 2007,7,159-162.
    [202]Gaillot, A. C; Drits, V. A.; Plancon, A.; Lanson B. Structure of Synthetic K-Rich Bimessites Obtained by High-Temperature Decomposition of KMnO4.2. Phase and Structural Heterogeneities. Chem. Mater,2004,16,1890-1905.
    [203]Portehault, D.; Cassaignon, S.; Baudrin, E.; Jolivet, J. P. Morphology Control of Cryptomelane Type MnO2 Nanowires by Soft Chemistry. Growth Mechanisms in Aqueous Medium. Chem. Mater.,2007,19,5410-5417.
    [204]Wang, X.; Li, Y. D. Selected-Control Hydrothermal Synthesis of a-and P-MnO2 Single Crystal Nanowires. J. Am. Chem. Soc,2002,124,2880-2881.
    [205]Ma, R.; Bando, Y.; Zhang, L. Q.; Sasaki, T. Layered MnO2 nanobelts:hydrothermal synthesis and electrochemical measurements. Adv. Mater.,2004,16,918-922.
    [206]Li, W. N.; Yuan, J. K.; Shen, X. F.; Gomez-Mower, S.; Xu, L. P.; Sithambaram, S.; Aindow, M.; Suib, S. L. Hydrothermal Synthesis of Structure-and Shape-Controlled Manganese Oxide Octahedral Molecular Sieve Nanomaterials. Adv. Funct. Mater.,2006,16,1247-1253.
    [207]Wu, C. Z.; Xie, W.; Zhang, M.; Bai, L. F.; Yang, J. L; Xie, Y. Environmentally Friendly y-MnO2 Hexagon-Based Nanoarchitectures:Structural Understanding and Their Energy-Saving Applications. Chem. Eur. J.,2009,15,492-500.
    [208]Li, Z. Q.; Ding, Y; Xiong, Y. J.; Yang, Q.; Xie, Y. One-Step Solution-Based Catalytic Route to Fabricate Novelα-MnO2 Hierarchical Structures on a Large Scale. Chem. Commun.,2005, 918-920.
    [209]Liu, D. W.; Garcia, B. B.; Zhang, Q. F.; Guo, Q.; Zhang, Y H.; Sepehri, S.; Cao, G. Z. Mesoporous Hydrous Manganese Dioxide Nanowall Arrays with Large Lithium Ion Energy Storage Capacities. Adv. Funct. Mater.,2009,19,1015-1023.
    [210]Liu, D. W.; Zhang, Q. F.; Xiao, P.; Garcia, B. B.; Guo, Q.; Champion, R.; Cao, G Z. Hydrous Manganese Dioxide Nanowall Arrays Growth and Their Li+ions Intercalation Electrochemical Properties. Chem. Mater.,2008,20,1376-1380.
    [211]Zhu, H. T.; Luo, J.; Yang, H. X.; Liang, J. K.; Rao, G. H.; Li, J. B.; Du, Z. M. Bimessite-type MnO2 Nanowalls and Their Magnetic Properties. J. Phys. Chem. C,2008, 112,17089-17094.
    [212]Zhang, G. X.; Sun, S. H.; Li, R. Y; Sun, X. L. New Insight into the Conventional Replacement Reaction for the Large-Scale Synthesis of Various Metal Nanostructures and Their Formation Mechanism. Chem. Eur. J.,2010,16,10630-10634.
    [213]Xiao, W.; Wang, D. L.; Lou, X. W. Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction. J. Phys. Chem. C,2010,114, 1694-1700.
    [214]Xi, L. F.; Lam, Y M. Controlling Growth of CdSe Nanowires through Ligand Optimization. Chem. Mater.,2009,21,3710-3718.
    [215]Peng, Z. P.; Jiang, Y S.; Song, Y. H.; Wang, C; Zhang, H. J. Morphology Control of Nanoscale PbS Particles in a Polyol Process. Chem. Mater.,2008,20,3153-3162.
    [216]Jiao, F.; Bao, J. L.; Bruce, P. G Factors Influencing the Rate of Fe2O3 Conversion Reaction. Electrochem. Solid-State Lett.,2007,10,264-266.
    [217]Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Three-Dimensional Battery Architectures. Chem. Rev.,2004,104,4463-4492.
    [218]Wang Y.; Cao, G. Z. Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides. Chem. Mater.,2006,18,2787-2804.
    [219]Maier, J. Nanoionics:Ion Transport and Electrochemical Storage in Confined Systems. Nature,2005,4,805-815.
    [220]Balaya, P.; Li, H.; Kienle, L.; Maier, J. Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity. Adv. Funct. Mater.,2003,13,621-625.
    [221]Fang, J.; Ding, B.; Gleiter, H. Mesocrystals:Syntheses in metals and applications. Chem. Soc. Rev.,2011,40,5347-5360.
    [222]Yuwono, V. M.; Burrows, N. D.; Soltis, J. A.; Perm, R. L. Oriented aggregation:formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc,2010,132, 2163-2165.
    [223]Ye, J.; Liu, W; Cai, J.; Chen, S.; Zhao, X.; Zhou, H.; Qi, L. Nanoporous anatase TiO2 mesocrystals:Additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J. Am. Chem. Soc,2011,133,933-940.
    [224]Niederberger, M.; Krumeich, F.; Hegetschweiler, K.; Nesper, R. An iron polyolate complex as a precursor for the controlled synthesis of monodispersed iron oxide colloids. Chem. Mater.,2002,14,78-82.
    [225]Jia, B.; Gao, L. Growth of well-defined cubic hematite single crystals:oriented aggregation and ostwald ripening. Cryst. Growth Des.,2008,8,1372-1376.
    [226]Chen, J. S.; Zhu, T; Li, C. M.; Lou, X. W. Building Hematite Nanostructures by Oriented Attachment. Angew. Chem., Int. Ed.,2011,50,650-653.
    [227]Colfen H.; Antonietti, M. Mesocrystals and Nonclassical Crystallization, John Wiley& Sons:Chichester, U.K.,2008.
    [228]Zhu, L; O'Brien, P. Mesocrystals:Properties and Applications. J. Phys. Chem. Lett.,2012, 3,620-628.
    [229]Chang, Y; Teo, J. J.; Zeng, H. C. Formation of colloidal CuO nanocrystallites and then-spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir, 2005,21,1074-1079.
    [230]Chen, J. S.; Zhu, T; Yang, X. H.; Yang, H. G; Lou, X. W. Top-down fabrication of a-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties. J. Am. Chem. Soc,2010,132,13162-13164.
    [231]Wang, B.; Chen, J. S.; Hao, H. B.; Wang, Z.; Lou, X. W. Quasiemulsion-Templated Formation of α-Fe2O3 Hollow Spheres with Enhanced Lithium Storage Properties. J. Am. Chem. Soc.,2011,133,17146-17148.
    [232]Wang, Z.; Luan, D.; Madhavi, S.; Li, C; Lou, X. W. α-Fe2O3 nanotubes with superior lithium storage capability. Chem. Comm.,2011,47,8061-8063.
    [233]Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostrucrured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale,2012,4,2526-2542.
    [234]Brezesinski, K.; Haetge, J.; Wang, J.; Mascotto, S.; Reitz, C; Rein, A.; Tolbert, S. H.; Perlich, J.; Dunn, B.; Brezesinski, T. Ordered Mesoporous α-Fe2O3 (Hematite) Thin-Film Electrodes for Application in High Rate Rechargeable Lithium Batteries. Small,2011,7, 407414.
    [235]Chou, S. W.; Zhu, C. L; Neeleshwar, S.; Chen, C. L; Chen, Y. Y.; Chen, C. C. Controlled growth and magnetic property of FePt nanostructure:cuboctahedron, octapod, truncated cube, and cube. Chem. Mater.,2009,21,4955-4961.
    [236]Zhang, H.; Li, W.; Jin, M.; Zeng, J.; Yu, T.; Yang, D.; Xia, Y. Controlling the morphology of Rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. Nano Lett., 2011,11,898-903.
    [237]Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D. In situ and ex situ studies of platinum nanocrystals:Growth and evolution in solution. J. Am. Chem. Soc,2009,131, 14590-14595.
    [238]Ren, J.; Tilley, R. D. Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J. Am. Chem. Soc,2007,129,3287-3291.
    [239]Lim, B.; Jiang, M.; Tao, J.; Camargo, P.; Zhu, Y; Xia, Y. Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions. Adv. Funct. Mater.,2009,19,189-200.
    [240]Wang, N.; Cao, X.; Guo, L.; Yang, S. H.; Wu, Z. Y. Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route. ACS Nano,2008,2,184-190.
    [241]Peng, Z.; Jiang, Y.; Song, Y.; Wang, C; Zhang, H. Morphology control of nanoscale PbS particles in a polyol process. Chem. Mater.,2008,20,3153-3162.
    [242]Trindade, T.; O'brien, P.; Zhang, X. M.; Motevallic, M. Synthesis of PbS nanocrystallites using a novel single molecule precursors approach:X-ray single-crystal structure of Pb(S2CNEtPri)2. J. Mater. Chem.,1997,7,1011-1016.
    [243]Lee, S. M.; Jun, Y. W.; Cho, S. N.; Cheon, J. Single-crystalline star-shaped nanocrystals and their evolution:programming the geometry of nano-building blocks. J. Am. Chem. Soc, 2002,124,11244-11245.
    [244]Afzaal, M.; Ellwood, K.; Pickett, N. L; O'Brien, P.; Raftery, J.; Waters, J. Growth of lead chalcbgenide thin films using single-source precursors. J. Mater. Chem.,2004,14, 1310-1315.
    [245]Aslania, A.; Morsalia, A.; Zeller, M. Nano-strucrures of two new lead(Ⅱ) coordination polymers:New precursors for preparation of PbS nano-strucrures. Solid State Sci.,2008,10, 1591-1597.
    [246]Lambou, M. G; Dollear, F. G. A preparation of lead thiocyanate. J. Am. Oil. Chem. Soc, 1946, Apr.,97-100.
    [247]Lin, T. H.; Lin, C. W.; Liu, H. H.; Sheu, J. T.; Hung, W. H. Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chem. Commun.,2011,47, 2044-2046.
    [248]Bashouti, M.; Lifshitz, E. PbS sub-micrometer structures with anisotropic shape:Ribbons, wires, octapods, and hollowed cubes. Inorg. Chem.,2008,47,678-682.
    [249]Jun, Y.; Lee, J. H.; Choi, J.; Cheon, J. Symmetry-controlled colloidal nanocrystals: Nonhydrolytic chemical synthesis and shape determining parameters. J. Phys. Chem. B, 2005,109,14795-14806.
    [250]Berg, W. F. Proc. R. Soc. Lond. A1938,164,79-95.
    [251]Hong, J. W.; Lee, Y. W.; Kim, M. S.; Kang, W.; Han, S. W. One-pot synthesis and electrocatalytic activity of octapodal Au-Pd nanoparticles. Chem. Commun.,2011,47, 2553-2555.
    [252]Wang, X.; Xi, G; Liu, Y.; Qian, Y. Controllable synthesis of PbSe nanostructures and growth mechanisms. Cryst. Growth Des.,2008,8,1406-1411.
    [253]Zhu, J. P.; Yu, S. H.; He, Z. B.; Jiang, J.; Chen, K.; Zhou, X. Y. Complex PbTe hopper (skeletal) crystals with high hierarchy. Chem. Commun.,2005,5802-5804.
    [254]Zhang, G; Lu, X.; Wang, W.; Li, X. Facile synthesis of a hierarchical PbTe flower-like nanostructure and its shape evolution process guided by a kinetically controlled regime. Chem. Mater.,2007,19,5207-5209.
    [255]Ni, Y. H.; Liu, H. J.; Wang, F.; Liang, Y; Hong, J. M; Ma, X.; Xu, Z. Shape controllable preparation of PbS crystals by a simple aqueous phase route. Cryst. Growth Des.,2004,4, 759-764.
    [256]Xiong, S.; Xi, B.; Xu, D.; Wang, C; Feng, X.; Zhou, H.; Qian, Y. L-cysteine-assisted tunable synthesis of PbS of various morphologies. J. Phys. Chem. C,2007,111, 16761-16767.
    [257]Zuo, F.; Yan, S.; Zhang, B.; Zhao, Y; Xie, Y. L-cysteine-assisted synthesis of PbS nanocube-based pagoda-like hierarchical architectures. J. Phys. Chem. C,2008,112, 2831-2835.
    [258]Liu, S.; Xiong, S.; Bao, K.; Cao, J.; Qian, Y. Shape-controlled preparation of PbS with various dendritic hierarchical structures with the assistance of L-methionine. J. Phys. Chem. C,2009,113,13002-13007.
    [259]Zhu, T. J.; Chen, X.; Cao, Y. Q.; Zhao, X. B. Controllable synthesis and shape evolution of PbTe three-dimensional hierarchical superstructures via an alkaline hydrothermal method. J. Phys. Chem. C,2009,113,8085-8091.
    [260]Zhang, S.; Wu, C; Wu, Z.; Yu, K.; Wei, J.; Xie. Y. Construction of PbSe Hierarchical Superstructures via an Alkaline Etching Method. Cryst. Growth Des.,2008,8,2933-2937.
    [261]Carb6-Argibay, E.; Rodriguez-Gonzalez, B.; Pacifico, J.; Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L. M. Chemical Sharpening of Gold Nanorods:The Rod to Octahedron Transition. Angew. Chem.,2007,119,9141-9145.
    [262]Tsuji, M.; Ma.eda, Y.; Hikino, S.; Kumagae, H.; Matsunaga, M.; Tang, X. L.; Matsuo, R.; Ogino, M.; Jiang, P. Shape evolution of octahedral and triangular platelike silver nanocrystals from cubic and right bipyramidal seeds in DMF. Cryst. Growth Des.,2009,9, 4700-4705.